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Introduction

Over the years, nonlocal and local boundary value problems (BVPs) for third-order partial differen-
tial equations (PDEs) have gone through extensive investigations (see, for instance, [1-9]). Time delay
(TD) is a common phenomenon in various engineering projects. The theory as well as applications of
delay nonlinear and linear third-order ordinary differential and difference equations having delay terms
have been explored in numerous works (see, for instance, [10-16]).

The stability of the third order partial delay differential equation (PDDE) having involution and
Dirichlet condition was investigated in [17]. Nevertheless, the third order PDDE with involution and
Robin condition (IRC) is not studied before. Therefore, the main motivation for this paper is to study
the stability of the third order partial delay differential and difference equations with IRC.

1 Differential problem stability

In [0,00) X (—p, p), the initial BVP for the TD third order PDE with IRC.

(24D — (3(y)ucy(C.9)), + B (O(=y)uc—y (G —1))_,
= —b (=0(y)uy( — w,y)), + B (O(—y)u—y(C,—y))_,
+(I)(C7y)a 0<t< o0, (_pv P) )

u(C,y) = 9(¢y), —w < ¢ <0,y € [—p,p],

a1u(C, —p) — 11uy (¢, —p) = 0, a0u((, p) + y2uy(¢,p) =0, 0 < (< o0
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is studied. In this study, we make the assumption that w > 0, § > 6(y) = §(—y) > 6 > 0, y € (—t,t)
and § — d|8] > 0, a1, ag,v1,72 are non negative constants.
We examine the Hilbert space Lo [—p, p] consisting of all square integrable functions defined on

[—p, p| , equipped with the norm
N
1@ naip=( [ 000"
-p

A unique solution wu({,y) is possessed by problem (1) for the smooth functions §(y), y € (—t,t),
9(¢y),—w < ¢ <0, y € [—p,p,2(¢,y), 0 < (< o0, y€ (—pp),andb e R provided the
compatibility conditions are met.

Theorem 1. The following stability estimates hold for the solutions of problem (1):

Ogggx ||U44(C,')”W (—pop) ogglgx ‘|UC(C7')HW22(_p7p) Ogggx ”U(Cv‘)HWS(—p,p)

< M>
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max 9(C Mz >}-
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Here, the Sobolev spaces W§ for k = 1,2, 3 consist of all square integrable functions ¢ (y) defined on
[—p, p|, each equipped with their respective norms

2 3

g = | [ 3 vy -y |

P i=0

2 tlme

Note that My does not depend on g(¢,y) and ®((,y).
Proof. With this we are able to change problem (1) to the following initial value problem

PO 1 A% — pAv( —w) + D(C), 0< ¢ < o0,
(2)
v(() =9((),~w<(<0

in H = Lo [—p, p| which happens to be Hilbert space having a self-adjoint positive definite operator
(SAPDO) A that is given by the formula below:

Au(y) = —(6(y)uy(y))y + BO(—y)u—y(=y))—y, (3)
having domain
D(A) = {u(y) : u(y), uy(y), (6(y)uy)y € L2 [—p,p],c1u(—p) — n1uy(—p) = 0, agu(p) + v2uy(p) = 0}.

Theorem 1’s proof relies on the positive definiteness as well as the self-adjointness of the space operator
A as specified by equation (3), as well as the results presented in paper [18]. Additionally, the proof
incorporates the theorem on the stability of the solution to problem (2).
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Theorem 2. [19] The following estimate applies to the solution of problem (2):

3 o2, |4t

1 d*v(¢)
¢ ||y 2 o<<<nw
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max
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max
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H
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Stability of the difference scheme

For the approximate solution of problem (1), we study the stable difference scheme (DS). Prob-
lem (1) discretization is conducted in two stages.

Firstly, the spatial discretization is executed. The equation below defines the grid space:
[—t,t]h:{y:yn ‘ yp =nh, —I' <n <T, Fh:t}.

We present the Hilbert space Loy = Lao([—t,t]s) of the grid functions ¢"(y) = {¢"}' defined on
[—t, t]n, endowed with the norm

1/2
o (S el

ye[fti]h

|

We associate the difference operator A% with the differential operator A that is defined by equation (3),
using the following expression

I'—1

Ay (y) = { = Ow)eh), ~ BOEwe™), b (4)

—T+1
that acts in the space of grid functions ¢"(y) = {¢"}!' 1 and meeting the requirements

T 7F+1)

athe™ =y (o7 — ¢ =0, aghg" + (" — " =0.

Here

It is properly-established that A7, as defined by equation (4) is a SAPDO in L. By making use of
A%, the initial discretization step leads to the problem that follows:

h
W + AYu"(¢,y) = —bATU (¢ — w,y)
+O"(C,y), y € [~t,t]h, 0< < oo, (5)

uh(g’y) = gh(Cay)u —w < C < 07 Yy e [_tvt]h, —w < C <0.

Mathematics Series. No.3(115),/2024 57



A. Ashyralyev, S. Ibrahim, E. Hincal

Secondly, problem (5) is replaced with the following first order of accuracy DS

uly o (y)—3ull | (v)+3ul (y)—ul_; (v) +Ayﬂﬁ+2(y)—uﬁ+1(y)
7’ h n

= bAJu () + PR (y), P (y) = "Gy y) k> 1, y € [, 8],

uh —ul
(T + 2 AR O = gl (0, ),

uh —_ouh ul
(T + 2 Ap) 2P0 — g (0,1), y € [, th,

'LLh —U
(Th + 772Ay) mM+1(92] o (Y) _ v () mel(y),y c [—t,t]h,

(T + Ay a2 g W) g (0

h h
| = mu (¥)— 2“mMn21( )Jrumez(y)’y e [—t,t]h,m =1,2

here n =1/M and (; = kn, —M < k < co.
Theorem 3. Let h and 7 be values that are small enough. The following estimates hold for the
solution of DS (6):

h h
Up — Up_q
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h h h
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+Y 4npM=2))""n Y @) lwy, | m =015,
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h h
b = max{ ot 0wy 162G, - 9" (@, |-

M<k<0 M<k:<0

Here, W., , W3, and W3, represent spaces of all mesh functions Y (¢) defined on the interval [—p, ol
having the specific norm

2 3

Wy = (3 3 (o)

y€[—p,p] =0

7 tlme

Note that x1 does not depend on 7, h, g"(t;), and ®%(y).
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Proof. DS (6) can be written in abstract form

h
“k+2 3u,€+1+3u,c up_q

—I—A uk+2nuk+1 —bAhUk M+(I)h k> 1,

- 2
(Th + 12 Ap) =520 = g2(0), (Y + 17 Ap) =0 = g2(0), (7)
(Th + ,,72Ah)umM+2 2uan+1+umM u?nM_2u?nl’>]/[2—1+umM—27

in Loy, which is a Hilbert space with SAPDO Aj, = A that is defined using the formula (4). Where,

g,i‘ = g/,?(y)7 <I>Z = (IDZ(y) and uZ = uZ(y) are known and unknown abstract mesh functions that are

defined on [—p, p|, with the values in H = Lgj,. Consequently, Theorem 2 proof relies on the theorem

4 below as well as the self-adjointness and positive definiteness of the space operator Ay (4) [20].
Theorem 4. |21] The following estimate holds for the solution of DS (7):

h h h
A% Upio — 2Up g + Uy
h P

max

1
_ max
2 0<k<(m+1)M—2

1<k< m+1)M
o 1Sk (mr)

3
max [ A7 ulllg < xa [(2+ nfbl(M - 2))"b

0<k<(m+1)M
m ' M 1
+> @4nblM =2 > AR | m=0,1,...,
i=1 s=(i—1)M+1

3
— 2 Z h 2 4,h
where by = maxc{_m [1ALg" @)oo [Angf (@l a3 (G}

2 Numerical algorithm for the third order delay partial differential equation

We give the algorithm for numerically solving the initial BVP for third order delay PDE having
involution and Robin boundary condition

Bu(C,y) Bu(¢y) aU(C) 1 8%u((,— ) ou(¢,—y)
o~ agay +8= Y — 5 + =5

T 87 acoy
~0.1(- 1) 4 8u(g ~1,y))

—35e X cos 2y + 1.2e~ 2(¢-1) cos 2y,

0< (<0, —T<y<m,

u((,y) = e *cos2y, -1 <(<0, -mr<y<m,

u(¢, —m) — e726 = 28uy, (¢, —7), —u({, 7) + e = 28u, (¢, ), 0 < ¢ < oo

The exact solution of problem (8) is u(¢,y) = e % cos2y, —m < y < 1, —1 < ¢ < co. We use the set
of grid points [—1,00), X [=m, 7|y = {(Ck,¥n) : ¢k = kn, —M < k,Mn = 1,y, = nh, —-I' <n <T,
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I'h = 7}, for the approximate solutions of the problem (8), we get the first order of accuracy DS in ¢

—35e %k cos 2y, + 1.2e2(Sk—M) cos 2y,
tyk=kn, mM+1<k<(m+1)M-2,
m=20,1,..., -I'+1<n<I-1,

Mnp=1, yo=nh, -I'+1<n<T'-1, Th=m,
u® = cos(2nh),

1_0 —2ul +ul

“711+1 n—1 1
o+ n(—T + Sun)

—2ul +u

0 0
_1_77(% — 8ul) = —2cos(2nh),

2 _oyl 0 u? | —2uZ4uZ
Uy :]LG+un+(_ n41 h2n n—1 —|—8u%)

—2up Uy

h2 - 8u1

n)

+2(u111+1

—2ud +u0

( _ k+2 . k+1 k+2 k41 k+2 k41
u§+273uﬁ+1+3u§;7uﬁ ! _ un+1_un+1_2(un —Un )+un71_un71
7’ nh?
k+2 k+1 k42 k+1 k+2 k+1
8U’Ti+2—uﬁ“ A L A A A
+ n 8 nh?
k42 k+1 k—M k—M ,  k—M
u —u u —2u +u
— — 1 n -1 —
+in e = —(0.1) (— nil 2 ol Suk M)

0
—I—(—W +8ud) =4cos(2nh), -T'+1<n<T -1,

2
u;nM_2u:lnM—1+umM—2

k ok 2 (ko k
ubp—e 2 = 3 (uhpy —uby),

*u]fﬂ+6_2<k = %(ulf‘*ulli_l)a 0§k§<00,
(MM <k < (m+1)M, m=1,2,...

uxMT;uwM Fop(— ?ﬂ“—2uﬁhl;/l+1+u?}/[1+l + 8uan+1)

+77(“T-M*2U£M+le\{1 — 8uan) _ uTM—:;ZLM_l’

WTMA2 gy mMEL n (_u?ﬁ“—?uy’?MH-&-uﬂwﬁQ + 8umM+2)
e 2 n

+2(umﬁﬂ*2uanH+u;"_Mlﬂ B SUIL”M"‘l) N (_um41}{172u£M+u:ln_l\/Il

= p o , —I'+1<n<TI'=1, m=1,2,...,
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We rewrite (9) in the matrix form as in the following;:

k=1,2,3,...

Xt = LHYY,

—|—YZXmM_2,

m=1,2,...,

cos (2(—=I')h)
cos (2(-T'+1)h)

cos (2(F —1)h)
cos (2(T")h)

X2 =YPx' + Yy,
XmMJrl — LJXmM 4 LWXmM*l,
XmMJrZ — YPXmMJrl 4 YXXmM 4 YSXmel

fAXk_A,_Q + @Xk—H +AXk +ka—1 — gO(Xk_M),

where A,©,A,Q, F,H,J,P,Q,S,V,W,X and Z are (2I" + 1) x (2I" + 1) matrices, o(x*™), x?, x*
and X", r =k, k+1,k+2 are (2I'+ 1) x 1 column vectors defined by

[1+3 -2 0

a b a
0 a b
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 a* b*
a* b*  a*
0 0 0
0O 0 O
Il ¢ 1
0 I ¢
0O 0 O
0O 0 O
0O 0 O
0O 0 O
0O 0 O
0 I* ¢*
* ¢ ¥
0O 0 O
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w1
b*

*

[an}

w1
w2

I+ 1*
c—+c*
*+1

o

b*

o

l*

o

L+ 1"
c

e}

oo oo o -

S o

0
b*

a*

oo oo o -

o O O o o -

~ O

*

o O O o o -

QO =~ -

S|

e}

oo oo o -

oo oo o -

~ O -
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0

0
0
0

0
0
0

[0 0 0 O

0 e 00

0 0 e O

0
e
0

e
0
0

0 00O
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0 00O
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0 00O
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i
L 1
I
3
I 1
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L 1
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coco - of o
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*
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o i, - oo o
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L 1
I
~
T 1
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o oo ST
—
o oo *U%ih
® _
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o %X > o oo
)
Rl
2fv* o oo
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L 1
I
N

h*

h*

h*

h*
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0 0 O 0 0 0 C - N
¢ q ¢ 0 0 0 O Xo
0 ¢ ¢ 0 0 0 P_M+1 X—M+1
Q = : ' ’ Qo(kiM) = ) Xr = : )
0 0 0 q* q 0* 90§€\4—1 XM-1
0O 0 O g q q I ‘P’f\/[ | Xy
| 0 0 O 0O 0 0 |

r=kk+1,k+2,

where
k—M k—M k—M
U — 2u +u"

o = —(0.1) (— ntl 22 n-l +8quM> — 35e2% cos 2y, 4+ 1.2e2(CkM) cos 2y,
CGo=kn, tM+1<k<(m+1)M-2 m=0,1,.., -I'+1<n<T-1.
Where,a:—n%, a*:—gnﬁ, b:n%—i—n%—i—%, b*:8n2h2+%’ 6—2—;’—3—17%—%, c=-b" 1l =
;%51:_“”“:%562_%””:‘ﬁ7S:—%ij%7f=7£+%+8mf*=—%,p=
7772+ﬁ+167 p*:_ﬁ7 U:§p7 ,U*_ip*’]_f_'_ﬁ? ]*:f*a h*: *a e*:f_27 S*_

p*—8, ¥ = —vx, ¢=—% w; =a+a*, w2:b+b*,n27%f4, =2 L=F1 Y=V

8 Numerical analysis

Provided in Table below are the solutions obtained numerically for various values of M and T,
with u” representing the solution of this DS at u((x,y,) numerically. The table consist of values for
M =T =30,60,120in ¢ € [0,1], ¢ € [1,2], ¢ € [2, 3] respectively and the errors are calculated by

M k
mEy = max Uu —u|.
M M+ 1<k<(m41)M, —T'<n<T [0Sk yn) =
Table
Errors of DS (9)
(M,F) M=I'=30 | M=I'=60 | M=1 =120
¢€0,1] | 0.1933 0.1012 0.0516
¢€l1,2] | 0.2350 0.1169 0.0583
¢€[2,3] | 0.1692 0.0780 0.0340

If M and I' are doubled as shown in the above table, the values of the errors decrease by a factor
of approximately 3 for DS (9).

4 Conclusion

In this paper, the first order of accuracy DS for the numerical solution of the third order delay
PDE with IRC is considered. Numerical results are given for illustration.
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