
Bulletin of the Karaganda University. Mathematics Series, No. 3(115), 2024, pp. 46–54

https://doi.org/10.31489/2024M3/46-54 Research article

A stable difference scheme for the solution of a source identification
problem for telegraph-parabolic equations

M. Ashyraliyev1,∗, M.A. Ashyralyyeva2

1Mälardalen University, Väster̊as, Sweden;
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In the present paper, we construct a first order of accuracy difference scheme for the approximate solution of
the inverse problem for telegraph-parabolic equations with an unknown spacewise dependent source term.
The unique solvability of constructed difference scheme and the stability estimates for its solution were
obtained. The proofs are based on the spectral representation of the self-adjoint positive definite operator
in a Hilbert space.
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Introduction

Differential equations with unknown source terms are widely used in the mathematical modelling
of real-life phenomena in many different fields of science and have been broadly investigated over the
years (see, e.g., [1]–[9] and the references therein).

The problems for differential equations containing a time- and/or space-dependent parameter
(source term) are called source identification problems. These types of problems are inverse and their
solutions cannot be determined uniquely from imposed initial and/or boundary conditions. To achieve
a well-posedness of a source identification problem, one needs to provide some additional condition(s).
Source identification problems for mixed type differential equations have been receiving a great deal of
attention recently (see, e.g., [10]–[19] for hyperbolic-parabolic, [20]–[22] for elliptic-hyperbolic, and [23]
for parabolic-elliptic source identification problems).

Numerous local and nonlocal boundary value problems for telegraph-parabolic equations with un-
known source terms can be reduced to the following abstract problem for the differential equation with
a spacewise dependent parameter p

u′′(t) + αu′(t) +Au(t) = p+ f(t), 0 < t < 1,

u′(t) +Au(t) = p+ g(t), −1 < t < 0,

u(0+) = u(0−), u′(0+) = u′(0−),
u(−1) = ϕ, u(λ) = ψ, −1 < λ ≤ 1

(1)

in a Hilbert space H with a self-adjoint positive definite operator A satisfying A ≥ δI, where δ > α2

4
and α ≥ 0. The last condition in (1) is considered in order to compensate the uncertainty in the
problem due to unknown term p.
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The unique solvability of problem (1) in the space C(H) of the continuous H-valued functions u(t)
defined on [−1, 1], equipped with the norm

‖u‖C(H) = max
−1≤t≤1

‖u(t)‖H

was established in [24], and the following theorem on the continuous dependence of the solution on the
given data was proven.

Theorem 1 ([24]). Assume that ϕ, ψ ∈ D(A). Let f(t) and g(t) be continuously differentiable
functions on [0, 1] and [−1, 0], respectively. Then, for the solution {u(t), p} of problem (1) in C(H)×H
the following stability inequalities

‖u‖C(H) + ‖A−1p‖H ≤M(δ, λ)
[
‖ϕ‖H + ‖ψ‖H + max

0≤t≤1
‖f(t)‖H + max

−1≤t≤0
‖g(t)‖H

]
,

max
0≤t≤1

‖u′′(t)‖H + max
0≤t≤1

‖αu′(t)‖H + max
−1≤t≤0

‖u′(t)‖H + ‖Au‖C(H) + ‖p‖H

≤M(δ, λ)
[
‖Aϕ‖H + ‖Aψ‖H + max

0≤t≤1
‖f ′(t)‖H + ‖f(0)‖H + max

−1≤t≤0
‖g′(t)‖H + ‖g(0)‖H

]
hold, where M(δ, λ) does not depend on ϕ, ψ, f(t) and g(t).

In general, the differential equations with unknown parameters are not solvable analytically and
therefore one needs to use numerical methods to approximate their solutions. The main goal of this
study is to construct and investigate a first order of accuracy stable difference scheme for the approx-
imate solution of abstract problem (1). We prove the unique solvability of the constructed difference
scheme and obtain the stability estimates for its solution. The analysis is based on the operator approach
and the proofs of the stability estimates are based on the spectral representation of the self-adjoint
positive definite operator in a Hilbert space.

1 First order of accuracy stable difference scheme

Let τ = 1/N be sufficiently small positive number satisfying λ ≥ −1 + τ . Let us define the grid
points tk = kτ, −N ≤ k ≤ N . For the approximate solution of problem (1), we construct the first
order of accuracy stable difference scheme

uk+1−2uk+uk−1

τ2
+ α

uk+1−uk
τ +Auk+1 = p+ fk, 1 ≤ k ≤ N − 1,

uk−uk−1

τ +Auk = p+ gk, −N + 1 ≤ k ≤ 0,

u1−u0
τ = p−Au0 + g0, u−N = ϕ, u` = ψ,

(2)

where ` = bλ/τc, fk = f(tk), 1 ≤ k ≤ N − 1 and gk = g(tk), −N + 1 ≤ k ≤ 0.
We first present some lemmas, which we will need in the remaining part of this paper. Here and

everywhere else, we denote

R =

((
1 +

ατ

2

)
I + iτ

(
A− α2

4
I

)1/2
)−1

, R̃ =

((
1 +

ατ

2

)
I − iτ

(
A− α2

4
I

)1/2
)−1

and
Q = (I + τA)−1 .

Lemma 1 ([25]). The following estimates hold

‖R‖H→H ≤ 1, ‖R̃‖H→H ≤ 1, ‖R̃−1R‖H→H ≤ 1,
∥∥R−1R̃∥∥

H→H ≤ 1. (3)
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Lemma 2 ([25]). The following estimates hold

‖Qm‖H→H ≤
1

1 +mτδ
< 1, m ≥ 1, (4)

‖A1/2Qm‖H→H ≤
1

2
√
mτ

, m ≥ 1. (5)

Lemma 3. If −1 + τ ≤ λ < τ , then −N + 1 ≤ ` ≤ 0, and the following estimate holds∥∥∥∥(I −QN+`
)−1∥∥∥∥

H→H
≤M1(δ, λ). (6)

Proof. The proof of estimate (6) is based on estimate (4).

Lemma 4. The following estimates hold for m ≥ 1∥∥∥∥∥
[
Rm−1

2

(
I − α

2i

(
A− α2

4
I

)−1/2)
+
R̃m−1

2

(
I +

α

2i

(
A− α2

4
I

)−1/2)

+
A

2i

(
A− α2

4
I

)−1/2 (
R̃−1Rm−1 −R−1R̃m−1

)]
QN

∥∥∥∥∥
H→H

< 1. (7)

Proof. Since

Rm−1

2

(
I − α

2i

(
A− α2

4
I

)−1/2)
+
R̃m−1

2

(
I +

α

2i

(
A− α2

4
I

)−1/2)

+
A

2i

(
A− α2

4
I

)−1/2 (
R̃−1Rm−1 −R−1R̃m−1

)
=

[
I − τA+ i

{α
2
I −

(
1 +

ατ

2

)
A
}(

A− α2

4
I

)−1/2]
Rm−1

2

+

[
I − τA− i

{α
2
I −

(
1 +

ατ

2

)
A
}(

A− α2

4
I

)−1/2]
R̃m−1

2
,

using (3) and the following estimates∥∥∥∥∥
[
I − τA± i

{α
2
I −

(
1 +

ατ

2

)
A
}(

A− α2

4
I

)−1/2]
QN

∥∥∥∥∥
H→H

< 1, (8)

we obtain (7). The proof of estimates (8) is based on the spectral representation of the self-adjoint
positive definite operator A in a Hilbert space H [25].

Lemma 5. If τ ≤ λ ≤ 1, then 1 ≤ ` ≤ N and the following estimate holds∥∥∥∥∥
(
I −

[
R`−1

2

(
I − α

2i

(
A− α2

4
I

)−1/2)
+
R̃`−1

2

(
I +

α

2i

(
A− α2

4
I

)−1/2)

+
A

2i

(
A− α2

4
I

)−1/2 (
R̃−1R`−1 −R−1R̃`−1

)]
QN

)−1∥∥∥∥∥∥
H→H

≤M2(δ, λ, α). (9)
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Proof. The proof of estimate (9) is based on estimate (7).

We now present the main theorem for the solution of the first order of accuracy difference scheme (2).

Theorem 2. The difference scheme (2) has a unique solution and the following stability estimate
holds

max
−N≤k≤N

‖uk‖H +
∥∥A−1p∥∥

H

≤M∗(δ, λ, α)
[
‖ϕ‖H + ‖ψ‖H + max

1≤k≤N−1
‖fk‖H+ max

−N+1≤k≤0
‖gk‖H

]
, (10)

where M∗(δ, λ, α) is independent of ϕ, ψ, τ , fk and gk.

Proof. Let us denote
uk = vk +A−1p, −N ≤ k ≤ N. (11)

Then, the difference scheme (2) results in the following auxiliary difference scheme
vk+1−2vk+vk−1

τ2
+ α

vk+1−vk
τ +Avk+1 = fk, 1 ≤ k ≤ N − 1,

vk−vk−1

τ +Avk = gk, −N + 1 ≤ k ≤ 0,

v1−v0
τ = −Av0 + g0, v` = v−N + ψ − ϕ.

(12)

First, we obtain the formulas for solution of scheme (12). For the given v0 the following difference
scheme { vk+1−2vk+vk−1

τ2
+ α

vk+1−vk
τ +Avk+1 = fk, 1 ≤ k ≤ N − 1,

v1−v0
τ = −Av0 + g0

has a solution

vk =

[
Rk−1

2

(
I − α

2i

(
A− α2

4
I

)−1/2)
+
R̃k−1

2

(
I +

α

2i

(
A− α2

4
I

)−1/2)]
v0

+
(
R− R̃

)−1
τ
(
Rk − R̃k

)
(−Av0 + g0)

− 1

2i

k∑
j=1

(
A− α2

4
I

)−1/2 (
Rk−j − R̃k−j

)
fjτ, 1 ≤ k ≤ N. (13)

Furthermore, for the given v−N , the following difference scheme

vk − vk−1
τ

+Avk = gk, −N + 1 ≤ k ≤ 0

has a solution

vk = QN+kv−N +

k∑
j=−N+1

Qk−j+1gjτ, −N + 1 ≤ k ≤ 0. (14)

In particular, putting k = 0 in (14), we get

v0 = QNv−N +

0∑
j=−N+1

Q−j+1gjτ.
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Then, by putting this expression for v0 in (13), we obtain

vk =

[
Rk−1

2

(
I − α

2i

(
A− α2

4
I

)−1/2)
+
R̃k−1

2

(
I +

α

2i

(
A− α2

4
I

)−1/2)

− τA
(
R− R̃

)−1 (
Rk − R̃k

)]QNv−N +

0∑
j=−N+1

Q−j+1gjτ


+
(
R− R̃

)−1 (
Rk − R̃k

)
τg0 −

1

2i

k∑
j=1

(
A− α2

4
I

)−1/2 (
Rk−j − R̃k−j

)
fjτ, 1 ≤ k ≤ N.

Using R− R̃ = −2iτ
(
A− α2

4 I
)1/2

RR̃, we have

vk =

[
Rk−1

2

(
I − α

2i

(
A− α2

4
I

)−1/2)
+
R̃k−1

2

(
I +

α

2i

(
A− α2

4
I

)−1/2)

+
A

2i

(
A− α2

4
I

)−1/2 (
R̃−1Rk−1 −R−1R̃k−1

)]QNv−N +
0∑

j=−N+1

Q−j+1gjτ


− 1

2i

(
A− α2

4
I

)−1/2 (
R̃−1Rk−1 −R−1R̃k−1

)
g0

− 1

2i

k∑
j=1

(
A− α2

4
I

)−1/2 (
Rk−j − R̃k−j

)
fjτ, 1 ≤ k ≤ N. (15)

If −1 + τ ≤ λ < τ , then −N + 1 ≤ ` ≤ 0, and therefore from (12) and (14) it follows

v` = v−N + ψ − ϕ = QN+`v−N +
∑̀

j=−N+1

Q`−j+1gjτ,

so that

v−N =
(
I −QN+`

)−1 ∑̀
j=−N+1

Q`−j+1gjτ + ϕ− ψ

 . (16)

If τ ≤ λ ≤ 1, then 1 ≤ ` ≤ N , and therefore from (12) and (15) it follows

v` =v−N + ψ − ϕ =

[
R`−1

2

(
I − α

2i

(
A− α2

4
I

)−1/2)
+
R̃`−1

2

(
I +

α

2i

(
A− α2

4
I

)−1/2)

+
A

2i

(
A− α2

4
I

)−1/2 (
R̃−1R`−1 −R−1R̃`−1

)]QNv−N +

0∑
j=−N+1

Q−j+1gjτ


− 1

2i

(
A− α2

4
I

)−1/2 (
R̃−1R`−1 −R−1R̃`−1

)
g0 −

1

2i

∑̀
j=1

(
A− α2

4
I

)−1/2 (
R`−j − R̃`−j

)
fjτ,
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so that

v−N =

(
I −

[
R`−1

2

(
I − α

2i

(
A− α2

4
I

)−1/2)
+
R̃`−1

2

(
I +

α

2i

(
A− α2

4
I

)−1/2)

+
A

2i

(
A− α2

4
I

)−1/2 (
R̃−1R`−1 −R−1R̃`−1

)]
QN

)−1

×

[{
R`−1

2

(
I − α

2i

(
A− α2

4
I

)−1/2)
+
R̃`−1

2

(
I +

α

2i

(
A− α2

4
I

)−1/2)

+
A

2i

(
A− α2

4
I

)−1/2 (
R̃−1R`−1 −R−1R̃`−1

)} 0∑
j=−N+1

Q−j+1gjτ

− 1

2i

(
A− α2

4
I

)−1/2 (
R̃−1R`−1 −R−1R̃`−1

)
g0

− 1

2i

∑̀
j=1

(
A− α2

4
I

)−1/2 (
R`−j − R̃`−j

)
fjτ + ϕ− ψ

 . (17)

Thus, for the solution of auxiliary difference scheme (12), we have formulas (14) and (15), with v−N
being found by formula (16) if −1 + τ ≤ λ < τ and formula (17), if τ ≤ λ ≤ 1. Now, taking into
account that u−N = ϕ, we have A−1p = ϕ−v−N . Then, using (11), we obtain the solution of difference
scheme (2).

Now, let us obtain the estimate (10). Using (16) and estimates (4) and (6), we obtain

‖v−N‖H ≤M1(δ, λ)
[
‖ϕ‖H + ‖ψ‖H + max

−N+1≤k≤0
‖gk‖H

]
. (18)

Next, using (17) and the estimates (3), (4), (5), and (9), we obtain

‖v−N‖H ≤M2(δ, λ, α)
[
‖ϕ‖H + ‖ψ‖H + max

1≤k≤N−1
‖fk‖H + max

−N+1≤k≤0
‖gk‖H

]
. (19)

Then, using (14) and the estimates (4), (18), and (19), we get

‖vk‖H ≤‖v−N‖H + max
−N+1≤k≤0

‖gk‖H

≤M3(δ, λ, α)
[
‖ϕ‖H + ‖ψ‖H + max

1≤k≤N−1
‖fk‖H + max

−N+1≤k≤0
‖gk‖H

]
(20)

for k = −N + 1, . . . , 0. Using (15) and the estimates (3), (4), (5), (7), (18), and (19), we obtain

‖vk‖H ≤‖v−N‖H +M4(δ, α)
(

max
1≤k≤N−1

‖fk‖H + max
−N+1≤k≤0

‖gk‖H
)

≤M5(δ, λ, α)
[
‖ϕ‖H + ‖ψ‖H + max

1≤k≤N−1
‖fk‖H + max

−N+1≤k≤0
‖gk‖H

]
(21)

for k = 1, . . . , N . Since A−1p = ϕ− v−N , using (18), (19), and the triangle inequality, we have∥∥A−1p∥∥
H
≤‖ϕ‖H + ‖v−N‖H
≤M6(δ, λ, α)

[
‖ϕ‖H + ‖ψ‖H + max

1≤k≤N−1
‖fk‖H + max

−N+1≤k≤0
‖gk‖H

]
. (22)
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Finally, using (11), (20), (21), and (22), we prove the estimate

‖uk‖H ≤
∥∥A−1p∥∥

H
+ ‖vk‖H

≤M7(δ, λ, α)
[
‖ϕ‖H + ‖ψ‖H + max

1≤k≤N−1
‖fk‖H + max

−N+1≤k≤0
‖gk‖H

]
(23)

for k = −N, . . . , N . Estimate (10) follows from (22) and (23).
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Sweden; e-mail: maksat.ashyralyyev@mdu.se; https://orcid.org/0000-0001-6708-3160

Maral Ashyralyyeva — Lecturer, Magtymguly Turkmen State University, Ashgabat, Turkmenistan;
e-mail: ashyrmaral2010@mail.ru; https://orcid.org/0009-0001-5403-9838

∗The author’s name is presented in the order: First, Middle and Last Names.

54 Bulletin of the Karaganda University


