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In recent years, the fractional partial differential equation of the Boussinesq type has attracted much
attention from researchers due to its practical importance. In this paper, we study a non-local problem
for the Boussinesq type equation D{fu(t) + ADfu(t) + v?Au(t) =0, 0 <t < T, 1 < a < 3/2, where D"
is the Caputo fractional derivative, and A is an abstract operator. In the classical case, i.e., when a = 2,
this problem has been studied previously, and an interesting effect has been discovered: the existence and
uniqueness of a solution depend significantly on the length of the time interval and the parameter v. In this
note, we show that in the case of a fractional equation, there is no such effect: a solution of the problem
exists and is unique for any 7" and v.
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Introduction

Let H be a separable Hilbert space, and let A : D(A) C H — H be an arbitrary unbounded,
positive self-adjoint operator, and we assume that A has a compact inverse A~!, where D(A) is the
domain of A. Let Ay and {vy} be the eigenvalues and corresponding eigenfunctions of A.

Let us introduce the Caputo fractional derivative D{* of order v € (1,2) of a vector-valued function
h(t) € H (see, for example [1])

DOR(E) = F(zl 5 / ¢ hﬂgildg, L0,
0

provided the right-hand side exists. Here I'(«) is Euler’s gamma function.
Let 1 < a < 3/2. The object of study of this work is the following fractional differential equation

Du(t) + ADXu(t) + v*Au(t) =0, 0<t<T (1)

with non-local conditions

u(0) = u(T), (2)

T
/u(t)dt =, (3)
0
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where ¢ € H is a given vector and v > 0 is a fixed number.

Note that since the abstract operator A is only required to have a complete orthonormal system of
eigenfunctions, any elliptic operator can be considered as A. For example, if we take Lo(Q2), Q C RV,
as the Hilbert space H, then we can take the Laplace operator (—A) with the Dirichlet condition as
A.

The equation (1) has different names for different values of the parameter o. Thus, if & = 1, it
is called a differential equation of the Barenblatt-Zheltov-Kochina type (see |2]), and if o = 2, it is
called a differential equation of the Boussinesq type (see [3]). If 0 < a < 1, it is called a fractional
differential equation of the Barenblatt-Zheltov-Kochina type, in the case 1 < a < 2, it is called a
fractional differential equation of the Boussinesq type. Differential equations of the Boussinesq type
were introduced by Joseph Boussinesq in 1872 (see [3], eq. 26). The Boussinesq equations are widely
used in numerical modeling in coastal engineering for modeling waves in shallow water and harbors.
Although wave modeling in such cases is well described by the Navier-Stokes equations, it is currently
extremely difficult to solve three-dimensional equations in complex models. Therefore, approximate
models, such as the Boussinesq equations can be used to reduce three-dimensional problems to two-
dimensional states (see, e.g., [4]).

There is a number of works (see, for example, [2], [5]-[7]) in which specialists consider various
initial-boundary value problems for differential and fractional differential equations of the Barenblatt-
Zheltov-Kochina type. Since our study relates to the Boussinesq type differential equation, we present
some results related specifically to these equations.

Due to the mathematical and physical importance, over the last couple of decades, existence and
nonexistence of solutions of the Boussinesq type equations have been extensively studied by many
mathematicians and physicists (see, for example [8]-[12] with fractional order, and literature therein).
Nonlinear Boussinesq type equations arise in a number of mathematical models of physical processes,
for example, in the modeling of surface waves in shallow waters or considering the possibility of
energy exchange through the lateral surfaces of the wave guide in the physical study of nonlinear
wave propagation in wave guide (see, for example, [13] and [14], and literature therein). In [13], the
authors consider the Cauchy problem of the two-dimensional generalized Boussinesq type equation
uy — Au — Augy + A%u+ Af(u) = 0. Under the assumption that f(u) is a function with exponential
growth at infinity and under some assumptions on the initial data, the authors prove the existence
and, in some cases the nonexistence of a global weak solution.

Model equations of the Boussinesq type (the problem (1)-(3) with @ = 2, v = 1 and
A= —88—;2 — 88—;2, z,y € (0,1)) and equations of mixed type and nonlinear equations containing equa-
tions of the Boussinesq type are systematically studied in a series of works [15]-[17]. In these works,
the existence and uniqueness of the classical solution of initial-boundary value problems were proved
and some inverse problems were studied. In the work [18], problems for the Boussinesq equation with
a spectral parameter were investigated.

Let us cite two more works [19] and [20] that motivated the appearance of our research. In these
works, the above non-local problem (1)—(3) was studied for a classical partial differential equation in
which A is the Laplace operator with the Dirichlet condition. So in the fundamental work [19], Alimov
and Khalmukhamedov studied the following non-local problem in the cylinder Q x (0,7):

u — Ay — 1?Au=0, 2€Q, 0<t<T,
u(z,0) = u(z,T), x€Q,
T (4)
[ uta e = ()
0

where ¢(z) is a given function. The authors discovered an interesting effect: it turns out that the
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existence and uniqueness of the solution of this problem significantly depend on the length of the time
interval and the parameter v. If % € (0,1), then the solution exists and is unique for all ¢ € D(A).
The case % > 1 is more complicated: if % > 1, and this number is not a natural number, then for the
existence of a solution, it is necessary that the function ¢ is orthogonal to some eigenfunctions of the
Laplace operator, and in this case, the solution is not unique. If the number % is a natural number,
then only orthogonality is not enough; it is necessary that the function ¢ is smoother: ¢ € D(A?).

Since the parameter v in the equation is fixed, this result means that if the process under study
lasts “not so long”, then a solution to the problem exists for any measurements ¢. However, if the
process lasts “a little” longer, then the solution does not exist for all data ¢.

In the recent work [20], problem (4) was studied with the kernel tu(z,t) in the integral condition.
Similar to the paper [19]|, conditions have been found for the time interval (0,7, function ¢ and
parameter v, which guarantees the existence of a solution to the problem.

A natural question arises: will the effect found in [19] be preserved, if instead of the second time
derivative in equation (4) we take the fractional derivative of order « € (1,3/2), in other words, instead
of equation in (4), consider equation (1)? In this paper it will be shown that the above parameter
% does not play a significant role in solving the non-local problem (1)-(3) and the solution to this
problem exists and is unique for any function ¢ € D(A), regardless of the value of the number %

The article is organized as follows: Section 2 provides some information about the domain of
definition of the operator A and proves the necessary estimates for the Mittag-Leffler functions. In
Section 3, we will formulate the main result of the work and construct a formal solution to the problem
(1)—(3). Section 4 is devoted to the proof of Theorem 1. In the “Conclusions” section discusses possible

further developments of the obtained results.

1 Preliminaries

In this section, we provide some information about the operator A and present new bounds for the
Mittag-Leffler function in the case 1 < p < 3/2, based on the findings of the study conducted by [21].
The action of the abstract operator A under consideration on the element h € H can be written as

Ah =" Nehyug,
k=1

where hy, is the Fourier coefficient of the element h: hy = (h,vg). Obviously, the domain of this
operator has the form

D(A)={he H:> X|hl* < oo}.
k=1

For elements h and g of D(A) we introduce the norm and inner product as

IAI1F = > Ajlhel* = || AR]P,
k=1

[e.e]
(hg)1 = > AihaGs,
k=1
respectively. Together with this norm D(A) turns into a Hilbert space.
Let us denote by C((a,b); H) the sets of continuous vector functions u(t) on the interval t € (a,b),
whose values lie in H, and by AC*((a,b); H) the sets of vector functions whose derivatives are absolutely
continuous with respect to t € (a,b).
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Recall, the Mittag-LefHler function E, ,(t) has the form (see e.g. [22], p. 56):

[e.o]

t’l’b
Bput) =3
= T(pn+p)

where p > 0 and p complex number.

Next, we establish some two-sided estimates for the Mittag-Leffler function E, ,(—t), 1 < p < 3/2,
t>0, u=1,23,p. The following simple method for obtaining these estimates was suggested to the
authors by Professor A.V. Pskhu (see, [21]).

Let ¢(9, 5; z) stand for the Wright function, defined as

o0 k
z
¢(575§Z):;W, d>-1, BeR, zeC.

Let 0 < & < 1. In the work of A.V. Pskhu [21] for functions h(t) defined at ¢ > 0, the following integral
transform is introduced and studied:

Pt =7t [ nis)o( ~ e Jas.
0

Note that P$7h(t) is some modification of the integral transform introduced by B. Stankovi¢ in 1955
(see [23]).
Let us present the following statement from [21].

Lemma 1. Let v > 0. Then

PEnpy—1 — p&ytn—1 I'(v) )
I'(&y +n)
From Lemma 1, by the definition of the Mittag-LefHler function, we get

PN By (MP)] = 44T g e (AF). (5)

Lemma 2. ( see [24], p. 372, 373) There is a function f(«) decreasing on the interval (1,3/2) such
that for any a € (1,3/2) and 8 > f(«) function E, g(z) does not vanish, where f(c) satisfies the
following inequality:

4
a+h(a) < fla) < 3% l1<a<3/2,

where
h(a) =exp [—7(1 — 1/a)].

Lemma 3. Let o € (1,2). Then the following estimate holds:
Bar(—t) <1 t>0.
Proof. Let p=1,p=2,{ = 5,n=1-§ and A = —1 in equality (5). Then, we have:
Eo1(—t%) = P%’k%(Ezl(—tZ)) = P23 cost.

Using the inequality | cost| < 1 and Lemma 1, we get

) [ A

[N]1)

|Eaa1(—t%)| <P

Lemma 3 is proved.
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Lemma 4. Let oo € (1,3/2) and 0 < @ < 0o. Then there exists a number £; = €1(a) > 0, depending
on a such that the following estimate holds

0<er < Eup(—t*)<1, 0<t<a.

)
Proof. Let p=1,p =2, = $,n=2—5 and A = —1. Then from (5) it follows the following
equality
tEqo(—t*) = P22 2(Ey1(—t*)) = P22 2 cost.

Using the inequality | cost| < 1 and Lemma 1, we get

o s T(1)
tEqo(—t%)| < P22 21 =t—* =1,
‘ 0172( )| — 2 2 F(Q)
Therefore, for t > 0, we have that
[Ea2(—t%)] < 1.

Let 0 < a < co. First we show that E,2(—t*) > 0. Since f = 2 > f(«), then from Lemma 2 it
follows Eq 2(—t%) # 0, and therefore E, o(—t“) function keeps its sign for all £ > 0. On the other hand,
we know that E,2(0) = 1 > 0 and therefore E, o(—t*) > 0 for all £ > 0. Further it is well known
that E,2(—t*) € C[0,00). Since function E, 2(—t*), continuous in a closed domain [0, a], reaches
its minimum and this minimum is obviously positive, denoting it by 1 = £1(a) > 0, we obtain the
statement of the lemma. Lemma 4 is proved.

Lemma 5. Let a € (1,3/2). Then the following estimate holds

1
0 < Ea73(—ta) S 5,

and A = —1. Then from (5) it follows the following

0<t<b.

Proof. Let p=1,p=2¢§=9,n1=3—
equality

QR

tzEa,i%(_ta) = P%’37%(E271(—t2)) = P22 cost.
Using the inequality | cost| < 1 and Lemma 1, we get

a5 a 1) 2
t2Eq 5(—t* <P*v3"1:t2(— = _.
’ Dé,3( )‘ —_ 2 2 1‘\(3) 2
Therefore 1

Bas(~t%)| < 5, 130

Now we show that E, 3(—t*) > 0. Since § = 3 > f(«), then from Lemma 2 it follows E,, 3(—t*) # 0,
and therefore Eq, 3(—t*) function keeps its sign for all ¢ > 0. Also, we know that E, 3(0) = 3 > 0 and
therefore E, 3(—t*) > 0 for all £ > 0. Lemma 5 is proved.

Lemma 6. Let « € (1,3/2). Then there exists a number Cy > 0, such that the following estimate
holds:

—

(Ea2(=T%)? + Ea3(=T*)(1 = Ea1(=T%)) > Co.
Proof. We have that

(Ba2(=T%))?* + Ea3(=T*)(1 = Eq1(=T%)) 2 (Eaa2(~T%))*
According to Lemma 4, there exists a positive number Cp, such that
(Eap(=T%))* > Co,

where Cy = 7. Lemma 6 is proved.
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Lemma 7. Let a € (1,2). Then, the following estimate holds

1
E —t) < ——, t>0.
’ 01706( )‘ — F(Oé)’ -

Proof. Let p=1,p=2,§ = §,n=0and A = —1. Then from (5) it follows the equality
1 By o(—1%) = P2Y(Ey 1 (—t%)) = P20 cost.
Using the inequality | cost| < 1 and Lemma 1, we get

a INQ!
|ta71Eoé7a(_ta)’ < P§,01 :tafl ( ) — tafl

I(a) T(a)’

Therefore, for ¢ > 0, we have that

N 1
Eaa ()] <

Lemma 7 is proved.

2 Formulation of the main result and formal solution of the problem (1)—(3)

The solution of problem (1)-(3) will be understood in the sense of the following definition:

Definition 1. If a function u(t) € ACY([0,T); H), Dfu(t), Au(t), ADXu(t) € C((0,T); H) and
satisfies all the conditions of problem (1)—(3), then it is called the solution of problem (1)—(3).
Note that here the absolute continuity of the derivative u/(t) is necessary to avoid non-uniqueness

of solutions due to singular functions.
Here is the main result of this paper.

Theorem 1. Let ¢ € D(A). Then, there is a unique solution of problem (1)-(3) and it has the form:

[e.o]

VrFo 2 (—U%T“)Ea,l (—I/’%ta)

o= k=1 <T((Ea,2(—V13Ta))2 + Bag(—1iT*) (1 = o (—1T%)))

+

+

pit(1 — By (13T™)) By (1) Ju Q

T2((Ba2(—v3T*)? + Eas(—v3T°)(1 = Ea (—1319)))

where v, = vy /1 i’;k and ¢ = (o, vx) are the Fourier coefficients of function ¢.

In this section we will construct a formal solution of problem (1)-(3) and prove the uniqueness of
the solution.

Let u(t) be any solution of the non-local problem (1)—(3). Then since the system {vy} is complete
in H, the solution has the form:

u(t) = 3 Tult) (7)
k=1

If we multiply both sides of this equality scalarly by v;, then from the orthonormality of the system of
eigenfunctions {vy}, we obtain the equalities T};(t) = (u(t), vj).
Substituting (7) into equation (1), we get

DT (t) + M DTy () + 2\ Ti(t) = 0.
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Then, we have that
(1 + M) DT (t) + 2\ Ti(t) = 0.

If we divide above equation to 1 + Ay and by v we denote vy /5 j:’;\ , then we obtain
D{Ty(t) + v Ti(t) = 0, (8)
and using the conditions (2) and (3), we have:
Tk(o) = Tk(T)a (9)
and
T
/ Ti(t)dt = g, (10)
0

The solution of the equation (8) has the form (see, for example [25], p. 231.)

Ti(t) = apEo1(—Vit®) 4 byt By o(—vEL®). (11)
To find the unknown coefficients ay and by, we use the non-local conditions (9) and (10).

Apply conditions (9) and (10) to (11), we get:

ar, = apFo1(—VETY) + b TEo2(—VET™),
T

/(akEOC,l(—V,%ta) + bktEag(—V]%ta))dt = QPk-
0

Solving this system of equations, we will have

gOkEmQ(—l/gTa)
T((Ba2(—v3T*))* + Ea3(—viT*)(1 = Ea(—3T)))’

ap =

(1 = Eaa1(—v7T*))
TQ((EQQ(—V]%TO‘))2 + Emg(—l/]%TO‘)(l — EOL’l(—V]?Ta)))‘

Using the equalities (7), (11), (12) and (13) we get the formal solution (6) for the problem (1)—(3).
It remains to prove that the constructed formal solution satisfies all the requirements of Definition 1,
i.e. is indeed a solution to problem (1)—(3). We will do this in the next section.
On the other hand, the uniqueness of the solution follows from the already established equalities
(12) and (13). Indeed, let us show that the solution to the homogeneous problem (1)—(3) with function
= 0 is identically zero. From equalities (12) and (13) it follows that ay = by = 0, and then all
coefficients T} (t) of series (7) are equal to zero. Due to the completeness of system {vy}, it follows
that u(t) = 0.

by, =

3 Proof of Theorem 1

Let S;(t) be the partial sums of (6). Then
J
AS; () = MelarEa (—17t®) + bt Eo o (—Vit™))vg.
k=1
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By Parseval equality, we obtain

|AS; ()| = Z)\|akEa1 (=) + bt By o (—13t%)|% <

< CZAk\akEal( V2t |2+CZ)\ bt B o(—v3t)|2.
k=1

Let us estimate the following two terms, separately

QOkEa72(—V]%Ta)Ea71(—V]%tOC) ’
T((Ba2(=13T%))? + Ea3(—13T%)(1 = Eq 1 (—viT®)))

Iy = |y s (—1724%)| = ]

and

t 1_'Eb _ 2704 Eh __2ta
o = [bet B o —24%)] = e |

’TQ((E 2(=ViT*))? + Ea3(—3T)(1 = Ea (—13T7))) |

To estimate I, we apply Lemma 3, Lemma 4 and Lemma 6. Then

|<Pk| 1
I <CT™ 14
1< B <o, (1)
Similarly
L< e Lo 2t| k). (15)
=720 k

Using estimates (14) and (15), we obtain:

1AS; ()] < C°T 2ZA loxl? +C°T~ tQZA [oxl?.

Therefore, if ¢ € D(A), then

J J
22 Z MJop|? + C*T42 Z A2 )on|? < const.
k=1 k=1

Thus Au(t) € C([0,T]; D(A)).
Now we will show that the termwise differentiated series (6) converges uniformly on [0, 7], which
will mean that «/(t) € C([0,T], H). We have that

j
Z (apt®1 (—VRt®) + bp B 1 (—VEtY))uy
k=1

By Parseval equality, we obtain that

1S5 = Zlakta (=t®) + b B (—vit®)* <

J J
< O  apt® B o (A2 + O |bpEa (—v2t%)|2
) k ) k
k=1 k=1
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Let us estimate the following two terms, separately

Ot By o(—1VET®) Eq o (—1V3t%)
T((Baa(—T) + Eag(—T)(1 — Eax(—02T%)))

)

I = |akta*1Ea7a(—V,§ta)| = ‘

and

1 = Eq1(—vET®))Eg 1 (—vit®
I2Z|bkEa,1(_l/]%ta)|_‘ i o1 (= T)) Ea (—vjct?) ‘

T2((Ea2(=13T*))* + Eas(—13T*)(1 — Eqa(=17T*))) |
To estimate I;, we apply Lemmas 3-7. Then

1

I < o119l — <O T gy, 16
Similarly
W’k\ -2
Ir < <CT . 17
= T2 ¢y oxl {an

Apply estimates (16) and (17), we get

J J
IS < VT2 Y o4 T Y [
k=1 =

Hence
IS5 < Cllel], t > 0.

Further let us show that u/(¢) is absolutely continuous. For this, we take the first-order derivative
with respect to ¢ from the partial sums S%(¢):

J
S7(t) =Y (ant® Baa1(—vit®) + bpt® " Ea,a(—17t*))ox
k=1

From this it is easy to see that S7(t) € L((0,T), H). Therefore, we get u(t) € ACL([0,T]; H).
Now we show that the following sum Df*S;(t) converge uniformly in ¢ € (0,7). To do this, first
consider the sums

J
A
(I+A)LAS;(t Z . +’“Ak (0Bt (—V3Y) + byt Eq o(—121%))uy,
=1
By Parseval equality, we get

—1 2 2 2 2
I+ A AS O = 3 (Koo () + it Baa( 1) <

J J 2
A

E ta 240 E 716 bptE, o — 2t

kz 1+)\ z‘ak al( vit®)| >\k)2’ k a,2( v t%)|

By estimates (14), (15) and /\’“ < 1 we have that

J J
1T+ A) T AS; ()12 < T2 el + C2T 2 Y gl
k=1
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From this, since ¢ € H, we have that

J J
Cc*1r2 Z lon|? + C2T 42 Z lor|* < const.
k=1 k=1

Therefore (I + A)~'Au(t) € C((0,T); H). Now applying the obvious equality
D¢u(t) = —v2(1 + A)~L Au(t), which follows from the commutativity of the corresponding operators,
we obtain Dfu(t) € C((0,T"), H).

It remains to prove the continuity of AD{u(t). From equality AD$u(t) = —Dfu(t) — v2 Au(t) and
continuity of D{u(t) and Au(t), it follows ADu(t) € C((0,T), D(A)). Theorem 1 is proved.

4 Conclusions

The work is devoted to the study of the correctness of a certain non-local problem (1)—(3) for
equations of Busineski type. Namely, the question of the existence and uniqueness of a solution to the
corresponding non-local problem is analyzed. In recent years, a number of works have appeared where
initial boundary value problems for various types of equations of Busineski type have been studied.
The motivation for this was primarily the numerous applications of such problems in the modeling of
various processes in physics and mechanics.

Recently, a fundamental work [19] (see also [20]) appeared, where the correctness of a similar
non-local problem was studied in the case when a = 2. Here the authors discovered an interesting
phenomenon: the correctness of the problem significantly depends on the duration of the process 1" and
the parameter v. It turned out that the most optimal case is when the process does not last that long,
ie. % € (0,1): here the problem is correct for any ¢ € D(A). If the process lasts longer, i.e. % >1,
then additional conditions will appear on the function ¢ and these conditions depend on whether the
number % is a natural number or not.

The question naturally arises: does this phenomenon persist in the case when, instead of the second
derivative with respect to time, we take a derivative in the sense of Caputo D{* of order 1 < a < 3/2.
In this paper it is shown that there is no such effect and the corresponding non-local problem has a
unique solution for any ¢ € D(A).

In the future, it would be interesting to consider other fractional derivatives instead of Caputo
derivatives, to see if the corresponding effect would take place. Also interesting is the study of inverse
problems to determine the right-hand side of the equation for such non-local problems.

These tasks are the subject of further research.
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