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In this paper, the problem of a doubly nonlinear degenerate parabolic system with nonlinear sources and
absorption terms not located in a homogeneous medium was considered. It obeys zero Dirichlet boundary
conditions in a smooth bounded domain. The comparison principle and self-similar approach was used
to study the problem. In this paper, the nonlinear splitting method was used to prove the existence of
global and blow-up in finite time solutions. It is shown that the role of the nonlinear source and nonlinear
absorption is important for the existence and non-existence of the solution. The results contribute to a
broader understanding of nonlinear parabolic systems.
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Introduction

In this paper, we consider the following doubly nonlinear degenerate parabolic system with both
nonlinear sources and absorptions with variable densities:

∂u

∂t
= ∇

(
|x|n1 um1−1

∣∣∣∇uk1∣∣∣p1−2
∇u
)

+ vq1 − α1u
r1 , x ∈ Ω, t > 0,

∂v

∂t
= ∇

(
|x|n2 vm2−1

∣∣∣∇vk2∣∣∣p2−2
∇v
)

+ uq2 − α2v
r2 , x ∈ Ω, t > 0,

u (x, t) = v (x, t) = 0, x ∈ ∂Ω, t > 0,

u (x, 0) = u0 (x) , v (x, 0) = v0 (x) , x ∈ Ω,

(1)

where pi ≥ 2, ki,mi ≥ 1, ni, qi, ri, αi ≥ 0 (i = 1, 2) and Ω is a bounded domain of RN , N ≥ 1 with a
smooth boundary ∂Ω. The initial data u0 (x) , v0 (x) ∈ C2+ν

(
Ω
)
, with 0 < ν < 1, u0 (x) , v0 (x) ≥ 0

and u0 (x) , v0 (x) 6≡ 0.
In recent years, the problem of reaction-diffusion processes with nonlinear interactions has attracted

considerable attention because it arises in such fields as biology, chemistry and physics. Population
dynamics, chemical reactions, heat transfer and other phenomena can be predicted if the conditions
for the existence of global and blow-up in finite time solutions are known. For example, in a biological
context, the presence of a variable density term means changing population density or resources that
are not distributed uniformly. For more detailed information on physical models describing with the
above and similar equations, we refer to literature [1–7] and references therein.
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However, there are few studies on doubly nonlinear degenerate parabolic systems including both
reaction and absorption terms in an inhomogeneous medium.

Doubly nonlinear degenerate parabolic equations and systems have been studied by many scientists
(see [5–12] and references therein). Especially, when ni = 0, pi = 2 and mi = ki = 1 (i = 1, 2) the
system (1) reduces to following semilinear form:

∂u

∂t
= ∆u+ vq1 − α1u

r1 , x ∈ Ω, t > 0,

∂v

∂t
= ∆v + uq2 − α2v

r2 , x ∈ Ω, t > 0,

u (x, t) = v (x, t) = 0, x ∈ ∂Ω, t > 0,

u (x, 0) = u0 (x) , v (x, 0) = v0 (x) , x ∈ Ω.

(2)

In particular, Bedjaoui and Souplet [3] used the comparison principle to show the global solvability
of problem (2). Authors of [4–8, 13–15] analyzed the blow-up properties of solutions to system (2)
without absorption terms, when α1 = α2 = 0. The critical Fujita exponent for solutions with blow-up
was found by the authors of [13–15]. Aripov and Bobokandov [8] obtained estimates of solutions and
fronts (free boundaries) for equations with a single absorption term in an inhomogeneous medium.

Recently, many authors have addressed the problems with variable densities [8, 11, 12, 15–21].
Zhou et al. [9, 10] determined the global existence and blow-up of solutions to a degenerate singu-
lar parabolic system. The authors obtained the blow-up set and uniform blow-up conditions using the
comparison principle and asymptotic analysis methods. Kong et al. [5] established uniform blow-up
profiles for the weakly absorbed case of a semilinear parabolic system.

Anh et al. [20] and Niu et al. [21] investigated the long-time behavior of solutions to the following
degenerate parabolic equation

∂u

∂t
= ∇

(
σ(x) |∇u|p−2∇u

)
+ g − f(x, u), x ∈ Ω×R+,

u (x, t) = 0, x ∈ ∂Ω×R+,

u (x, 0) = u0 (x) , x ∈ Ω.

(3)

The existence of a global attractor in Lq was shown using some estimates of the solution.
Other related works includes [22–29], where the authors studied doubly degenerate parabolic equa-

tions with nonlinear sources and absorption terms when ki = mi (i = 1, 2)

∂u

∂t
= ∇

(
|∇um1 |p1−2∇um1

)
+ vq1 − α1u

r1 , x ∈ Ω, t > 0,

∂v

∂t
= ∇

(
|∇vm2 |p2−2∇vm2

)
+ uq2 − α2v

r2 , x ∈ Ω, t > 0,

u (x, t) = v (x, t) = 0, x ∈ ∂Ω, t > 0,

u (x, 0) = u0 (x) , v (x, 0) = v0 (x) , x ∈ Ω.

This is also known as the p-Laplacian system when ki = mi = 1 (i = 1, 2). Xiulan Wu [30] provided
criteria for the global existence or the finite-time blow-up of solutions to (3).

This study extends the results to the more general case of a doubly nonlinear degenerate parabolic
system including variable density terms. This provides a more precise understanding of the behavior
of the physical phenomena described by the system (3).

The rest of the paper is organized as follows. Section 1 gives preliminary notations and main
results. Section 2 is devoted to the existence of global and finite-time exploding solutions. Finally,
conclusions and observations are discussed.
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1 Preliminaries and Main results

Degenerate equations may not have classical solutions, so we define weak upper and weak lower
solutions. In this paper we denote QT = Ω× (0, T ).

Definition 1. We call a non-negative function (u, v) ∈
[
C2,1 (QT ) ∩ C (QT )

]2 a weak upper solution
(a weak lower solution) of problem (1) in QT if the following fulfills:

∂u

∂t
≥ (≤)∇

(
|x|n1 um1−1

∣∣∣∇uk1∣∣∣p1−2
∇u
)

+ vq1 − α1u
r1 , x ∈ Ω, t > 0,

∂v

∂t
≥ (≤)∇

(
|x|n2 vm2−1

∣∣∣∇vk2∣∣∣p2−2
∇v
)

+ uq2 − α2v
r2 , x ∈ Ω, t > 0,

u (x, t) ≥ v (x, t) ≥ 0, x ∈ ∂Ω, t > 0,

u (x, 0) ≥ u0 (x) , v (x, 0) ≥ v0 (x) , x ∈ Ω.

We also say that (u, v) is a weak solution of problem (1) in QT if (u, v) is both weak upper and weak
lower solution of (1) in QT . Moreover, (u, v) is a global solution of problem (1) if it is a solution of (1)
in QT for any T > 0, and any solution (u, v) blows up in the sense of the L∞ norm if T <∞:

lim
t→T

(‖u (·, t)‖∞ + ‖v (·, t)‖∞) =∞.

In order to state our results, we introduce some useful symbols. Let ϕ(x) and ψ(x) satisfy the
following elliptic problem respectively:

−∇
(
|x|n1 ϕm1−1

∣∣∣∇ϕk1∣∣∣p1−2
∇ϕ
)

= 1, x ∈ Ω, ϕ(x) = 1, x ∈ ∂Ω, (4)

−∇
(
|x|n2 ψm1−1

∣∣∣∇ψk1∣∣∣p1−2
∇ψ
)

= 1, x ∈ Ω, ψ(x) = 1, x ∈ ∂Ω. (5)

It is known [19] that (4) and (5) have unique solutions with the following properties:

M1 = max
x∈Ω

ϕ(x) <∞, M2 = max
x∈Ω

ψ(x) <∞,

ϕ(x), ψ(x) > 1 in Ω, ∇ϕν < 0, ∇ψν < 0 on ∂Ω.

To simplify notation, we also let µ1 = max {m1 + k1 (p1 − 2) , r1}, µ2 = max {m2 + k2 (p2 − 2) , r2}.
Theorem 1. Let n1n2 < p1p2. If q1q2 < µ1µ2, then all nonnegative solutions of problem (1) are

global.

Theorem 2. Let n1n2 < p1p2 and q1q2 = µ1µ2, then:
1. if r1 > m1 + k1(p1 − 2), r2 > m2 + k2(p2 − 2), which is q1q2 = r1r2 and if α1, α2 are sufficiently

large, then nonnegative solutions of problem (1) blows up in finite time, and exists globally for
small initial values;

2. if r1 < m1 + k1(p1 − 2), r2 < m2 + k2(p2 − 2), thus q1q2 = (m1 + k1(p1 − 2))(m2 + k2(p2 − 2)),
then all nonnegative solutions of problem (1) are global for small initial values;

3. suppose r1 < m1 + k1(p1− 2), r2 > m2 + k2(p2− 2), thus q1q2 = (m1 + k1(p1− 2))r2, then there
is a non-negative blow-up in finite time solution of problem (1) for large initial data;

4. suppose r1 > m1 + k1(p1− 2), r2 < m2 + k2(p2− 2), thus q1q2 = r1(m2 + k2(p2− 2)), then there
is a non-negative blow-up in finite time solution of problem (1) for large initial data.

Theorem 3. Suppose n1n2 < p1p2. If q1q2 > µ1µ2, then nonnegative solutions of problem (1) blows
up in finite time for sufficiently large initial data and exists globally for small initial values.
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2 Global existence and Blow-up

Here we give the proof of global existence and blow-up solutions using the comparison principle.
Self-similar approach and nonlinear splitting methods are used to construct comparable solutions. We
start with Theorem 1.

Proof of Theorem 1. We divide the proof of Theorem 1 into 4 cases:

Case 1: When µ1 = m1 + k1 (p2 − 2), µ2 = m2 + k2 (p2 − 2), thus q1q2 < (m1 + k1 (p2 − 2)) ×
× (m2 + k2 (p2 − 2)) and n1n2 < p1p2. We have u ≤ w and v ≤ z, where (w, z) satisfies

∂w

∂t
= ∇

(
|x|n1 wm1−1

∣∣∣∇wk1∣∣∣p1−2
∇w
)

+ zq1 , x ∈ Ω, t > 0,

∂z

∂t
= ∇

(
|x|n2 zm2−1

∣∣∣∇zk2∣∣∣p2−2
∇z
)

+ wq2 , x ∈ Ω, t > 0,

w (x, t) = z (x, t) = 0, x ∈ ∂Ω, t > 0,

w (x, 0) = w0 (x) , z (x, 0) = z0 (x) , x ∈ Ω

by comparison principle and from [3,20], it follows that (w, z) is global and so it is (u, v).

Case 2: When µ1 = r1, µ2 = r2, thus q1q2 < r1r2 and n1n2 < p1p2. Let (u, v) = (A1, A2), where
A1 ≥ maxx∈Ω u0(x), A2 ≥ maxx∈Ω v0(x) and A1, A2 will be determined later. After some
calculations, we have

∂u

∂t
−∇

(
|x|n1 um1−1

∣∣∣∇uk1∣∣∣p1−2
∇u
)
− vq1 + α1u

r1 = α1A
r1
1 −A

q1
2 ,

∂v

∂t
−∇

(
|x|n2 vm2−1

∣∣∣∇vk2∣∣∣p2−2
∇v
)
− uq2 + α2v

r2 = α2A
r2
2 −A

q2
1 .

(u, v) = (A1, A2) is a time-independent upper solution of problem (1) if

α1A
r1
1 ≥ A

q1
2 and α2A

r2
2 ≥ A

q2
1 ,

i.e.
A
q1
r1
2 α

− 1
r1

1 ≤ A1 ≤ A
r2
q2
2 α

1
q2
2 . (6)

Since q1q2 < r1r2, then there exist A1, A2 satisfying (6).

Case 3: When µ1 = r1, µ2 = m2 + k2 (p2 − 2) and n1n2 < p1p2, we have q1q2 < r1(m2 + k2 (p2 − 2))).
Let (u, v) = (A1, A2ψ(x)), where ψ(x) from (5) and we can choose A1 ≥ maxx∈Ω u0(x) and
A2 ≥ maxx∈Ω v0(x) satisfying

A
q2

m2+k2(p2−2)

1 ≤ A2 ≤
1

M2
(α1A

r1
1 )

1
q1 .

After direct computation, we have

∂u

∂t
−∇

(
|x|n1 um1−1

∣∣∣∇uk1∣∣∣p1−2
∇u
)
− vq1 + α1u

r1 ≥ 0,

∂v

∂t
−∇

(
|x|n2 vm2−1

∣∣∣∇vk2∣∣∣p2−2
∇v
)
− uq2 + α2v

r2 ≥ 0.

(7)

So, (u, v) = (A,Bψ(x)) is a upper solution for system (1)

Mathematics Series. No. 1(117)/2025 15
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Case 4: If µ1 = m1 + k1 (p1 − 2), µ2 = r2, we have q1q2 < r2(m1 + k1 (p1 − 2)) and n1n2 < p1p2, we
let (u, v) = (A1(ϕ(x) + 1), A2), where ϕ(x) from (4) and choose such A1 ≥ maxx∈Ω u0(x) and
A2 ≥ maxx∈Ω v0(x) satisfying

A
q1

m1+k1(p1−2)

2 ≤ A1 ≤
1

M1
(α2A

r2
2 )

1
q2 .

Then system of inequalities (7) is fulfilled.

Proof of Theorem 1 is completed.

Proof of Theorem 2. We consider 4 cases to prove Theorem 2:

Case 1: When r1 > m1 + k1(p1− 2), r2 > m2 + k2(p2− 2) and n1n2 < p1p2, we know q1q2 = r1r2. We
can choose A1 and A2 sufficiently large, fulfilling A1 ≥ maxx∈Ω u0(x), A2 ≥ maxx∈Ω v0(x) and

α
− 1
r1

1 A
q1
r1
2 ≤ A1 ≤ α

1
q2
2 A

r2
q2
2 .

It is clear, that (u, v) = (A1, A2) is a weak upper solution of problem (1). It is easy to check, by
comparison principle that the solution (u, v) = (A1, A2) of problem (1) is global.

Now we need to prove our blow-up conclusion. Assume that Ω contains the origin. Denote

u(x, t) = (T − t)−γ1U (ξ1) , v(x, t) = (T − t)−γ2V (ξ2) ,

where U (ξ1) =

(
A
p1−n1
p1−1 − ξ

p1−n1
p1−1

1

) p1−1
m1−1+k1(p1−2)

, V (ξ2) =

(
A
p2−n2
p2−1 − ξ

p2−n2
p2−1

2

) p2−1
m2−1+k2(p2−2)

,

ξ1 = |x|
(T−t)β1 , ξ2 = |x|

(T−t)β2 , β1 = 1−γ1(m1+k1(p1−2)−1)
p1

> 0, β2 = 1−γ2(m2+k2(p2−2)−1)
p2

> 0 and
γ1, γ2, A, T > 0 are to be determined later. Note that BATβ (0) contains the support of u(x, t)
and v(x, t), where β = maxβ1, β2 if T > 1; β = minβ1, β2 if T ≤ 1, which is included in Ω if T
is sufficiently small.

After a direct computation, we obtain

∂u

∂t
= (T − t)−γ1−1

(
γ1U (ξ1) + β1ξ1

dU

dξ1

)
∇
(
|x|n1 um1−1

∣∣∣∇uk1∣∣∣p−2
∇u
)

= (T − t)−γ1(m1+k1(p1−2))−β1p1

ξn1
1

(
kp1−2

1 Nbp1−1
1 U (ξ1) + kp1−2

1 bp1−1
1 ξ1

dU

dξ1

)
,

∂v

∂t
= (T − t)−γ2−1

(
γ2V (ξ2) + β2ξ2

dV

dξ2

)
∇
(
|x|n2 vm2−1

∣∣∣∇vk2∣∣∣p−2
∇v
)

= (T − t)−γ2(m2+k2(p2−2))−β2p2

ξn2
2

(
kp2−2

2 Nbp2−1
2 V (ξ2) + kp2−2

2 bp2−1
2 ξ2

dV

dξ2

)
,

where b1 = p1
m1+k1(p1−2)−1 and b2 = p2

m2+k2(p2−2)−1 .

We need to find suitable parameters such that

(T − t)−γ1−1

(
γ1U (ξ1) + β1ξ1

dU

dξ1
− kp1−2

1 Nbp1−1
1 ξn1

1 U (ξ1)− kp1−2
1 bp1−1

1 ξn1+1
1

dU

dξ1

)
+

+ (T − t)−r1γ1 U r1 (ξ1) ≤ (T − t)−q1γ2 V q1 (ξ2)

(8)
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(T − t)−γ2−1

(
γ2V (ξ2) + β2ξ2

dV

dξ2
− kp2−2

2 Nbp2−1
2 ξn2

2 V (ξ2)− kp2−2
2 bp2−1

2 ξn2+1
2

dV

dξ2

)
+

+ (T − t)−r2γ2 V r2 (ξ2) ≤ (T − t)−q2γ1 V q2 (ξ1) .

(9)

Note that U, V are continuous for C2 except for ξ1 = A, ξ2 = A where U ′, V ′ has a positive jump.
Therefore, to obtain a lower solution of (1), we will prove (8) and (9) pointwise for ξ1 > 0, with
ξ1 6= A. It is easy to see that

dU

dξ1
= − p1

m1 + k1 (p1 − 2)− 1
ξ
p1+n1
p1−1

−1

1

(
A
p1+n1
p1−1 − ξ

p1+n1
p1−1

1

) p1−1
m1+k1(p1−2)−1

−1

,

dV

dξ2
= − p2

m2 + k2 (p2 − 2)− 1
ξ
p2+n2
p2−1

−1

2

(
A
p2+n2
p2−1 − ξ

p2+n2
p2−1

2

) p2−1
m2+k2(p2−2)−1

−1

and (8) is trivial for ξ1 ≥ A. A simple computation shows that (8) is satisfied. We distinguish
two steps for 0 < ξ1 < θ1A and θ1A < ξ1 < A, where

θ1 =

(
γ1 + kp1−2

1 Nbp1−1
1

γ1 + kp1−2
1 Nbp1−1

1 + β1b1 + kp1−2
1 bp11

) p1−1
p1+n1

< 1.

Step 1. For θ1A < ξ1 < A, we have

γ1U (ξ1) + βξ1
dU

dξ1
− kp1−2

1 Nbp1−1
1 ξn1

1 U (ξ1)− kp1−2
1 bp1−1

1 ξn1+1
1

dU

dξ1

=

(
A
p1+n1
p1−1 − ξ

p1+n1
p1−1

1

) p1−1
m1+k1(p1−2)−1

−1

((
γ1 + kp1−2

1 Nbp1−1
1

)
A
p1+n1
p1−1 −

(
γ1 + kp1−2Nbp1−1

1 + β1b1 + kp1−2
1 bp11

)
ξ
p1+n1
p1−1

1

)
≤

≤
(
A
p1+n1
p1−1 − ξ

p1+n1
p1−1

1

) p1−1
m1+k1(p1−2)−1

−1

((
γ1 + kp1−2

1 Nbp1−1
1

)
A
p1+n1
p1−1 −

(
γ1 + kp1−2

1 Nbp1−1
1 + β1b1 + kp1−2

1 bp11

)
(θ1A)

p1+n1
p1−1

)

≤ −β1b1 (θ1A)
p1+n1
p1−1

(
A
p1+n1
p1−1 − ξ

p1+n1
p1−1

1

) p1−1
m1+k1(p1−2)−1

−1

+

.

Step 2. For 0 < ξ1 ≤ θ1A, the inequality

U (ξ1) ≥
(

1− θ
p1+n1
p1−1

1

) p1−1
m1+k1(p1−2)−1

A
p1

m1+k1(p1−2)−1 > 0,

V (ξ2) ≥
(

1− θ
p2+n2
p2−1

1

) p2−1
m2+k2(p2−2)−1

A
p2

m2+k2(p2−2)−1 > 0

holds. It follows from γ2q1 > γ1 + 1 that

(T − t)−γ1−1

(
γ1U (ξ1) + β1ξ1

dU

dξ1
− kp1−2Nbp1−1

1 ξn1
1 U (ξ1)− kp1−2

1 bp1−1
1 ξn1+1

1

dU

dξ1

)
≤ p1 − 1

p1
(T − t)−q1γ2 U q1 (ξ1)
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if T is sufficiently small. If

α1 (T − t)−r1γ1 U r1 (ξ1) ≤ p1 − 1

p1
(T − t)−q1γ2 V γ2 (ξ2) , (10)

then (8) holds.
Similarly, if

α2 (T − t)−r2γ2 V r2 (ξ2) ≤ p2 − 1

p2
(T − t)−q2γ1 U q2 (ξ1) , (11)

γ1q2 > γ2 + 1 and T is sufficiently small, then (9) holds.

Next, we choose suitable γ1 γ2 to satisfy (10) and (11). It is easy to see that there is γ1 >
q1+1
q1q2−1

and γ2 >
q2+1
q1q2−1 , fulfilling the inequalities

γ2q1 > γ1 + 1, γ1q2 > γ2 + 1. (12)

If q1q2 = r1r2, then we choose some large γ1 and γ2 satisfying (12), and q1 = γ1
γ2
r1, hence

q2 = γ2
γ1
r2. Consequently, by (10) and (11), for sufficiently small α1 and α2 the following hold

α1U
r1 ≤ p1 − 1

p1
V q1 , α2V

r2 ≤ p2 − 1

p2
U q2 . (13)

Hence, (u, v) is a blow-up lower solution of problem (1) with sufficiently large initial data (u0, v0).

Case 2: When r1 < m1 + k1(p1 − 2), r2 < m2 + k2(p2 − 2) and n1n2 < p1p2, we have
q1q2 = (m1 + k1(p1 − 2)) (m2 + k2(p2 − 2)). We choose A1 and A2 satisfying

(A2ψ (x))
q1

m1+k1(p1−2) ≤ A1 ≤
(
A2ϕ

−q2 (x)
)m2+k2(p2−2)

q2 .

The solution is global for small initial data, because (u, v) = (A1ϕ (x) , A2ψ (x)) , where ϕ (x),
ψ (x) satisfy (4), (5) respectively, is a global upper solution of problem (1).

Cases 3 and 4: Cases 3 and 4 are proved similarly to Case 2.

Proof of Theorem 3. We consider two main cases: large initial values and small initial data for
theorem. First, we consider the case of large initial values and prove that the solution blows up in
finite time. Then, we consider the case of small initial data and show that the solutions exist globally.
For each, we break into four subcases based on different conditions of µ1 and µ2.

Case 1: 1. When µ1 = m1 + k1 (p1 − 2), µ2 = m2 + k2 (p2 − 2), that is q1q2 >
(m1 + k1 (p1 − 2)) (m2 + k2 (p2 − 2)) and n1n2 < p1p2. Let (u, v) = (A1ϕ (x) , A2ψ (x)),
where ϕ (x), ψ (x) satisfy (4), (5) respectively. Choosing then

A1 =
1

2

(
(A2M2)

q1
m1+k1(p1−2) +A

m2+k2(p2−1)
q2

2 M−1
1

)
,

A2 =
(
M

m1+k1(p1−2)
1 M q1

2

)− q2
q1q2−(m1+k1(p1−2))(m2+k2(p2−1))

.

Therefore, (u, v) is a global upper solution for problem (1) if A1 ≥ maxx∈Ω u0 (0) and
A2 ≥ maxx∈Ω v0 (0) for small initial values.
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2. When µ1 = r1, µ2 = r2 and n1n2 < p1p2, that is q1q2 > r1r2 choosing

A1 =
1

2

(
α
− 1
r1

1 A
q1
r1
2 + α

1
q2
2 A

r2
q2
2

)
and A2 = (αq21 α

r1
2 )

1
q1q2−r1r2 ,

then (u, v) = (A1, A2) is a global upper solution for problem (1), if A1 ≥ maxx∈Ω u0 (0) and
A2 ≥ maxx∈Ω v0 (0) for small initial values.

3. When µ1 = r1, µ2 = m2 + k2 (p2 − 2) and n1n2 < p1p2, that is q1q2 > r1 (m2 + k2 (p2 − 2)).
Let (u, v) = (A1, A2ψ (x)) , where ψ (x) satisfies (5). Then we choose

A1 = (α1M
q1
2 )
− m2+k2(p2−2)
q1q2−r1(m2+k2(p2−1)) , A2 =

1

2

(
A

q2
m2+k2(p2−2)

1 + (α1A
r1
1 )

1
q1

1

M2

)
.

Therefore, (u, v) is a global upper solution for problem (1), if A1 ≥ maxx∈Ω u0 (0) and
A2 ≥ maxx∈Ω v0 (0).

4. When µ1 = m1 + k1 (p1 − 2), µ2 = r2 and n1n2 < p1p2, that is q1q2 > r2 (m1 + k1 (p1 − 2)).
Let (u, v) = (A1ϕ (x) , A2) , where ϕ (x) satisfies (4). We choose

A1 =
1

2

(
A

q1
m1+k1(p1−2)

2 + (α2A
r2
2 )

1
q2

1

M1

)
, A2 = (α2M

q2
1 )
− m1+k1(p1−2)
q1q2−r2(m1+k1(p1−2)) .

Therefore, (u, v) is a global upper solution for problem (1), if A1 ≥ maxx∈Ω u0 (0) and
A2 ≥ maxx∈Ω v0 (0).

Case 2: Next, consider large initial values. We construct a blow-up lower solution and use the com-
parison principle. Let w(x) > 0 be a continuous function and w(x)|∂Ω = 0. We assume, that
0 ∈ Ω and w(0) > 0.

1. Let r1 ≥ m1 + k1(p1 − 2) and r2 ≥ m2 + k2(p2 − 2) and n1n2 < p1p2, hence q1q1 > r1r2.
The proof is similar to that in [1]. However, we give more details. In order to fulfill (13),
we require

γ2q1 > γ1 + 1, γ2q1 > γ1r1,

γ1q2 > γ2 + 1 > γ2r2.
(14)

We set λ = γ1/γ2, then by (14),

r2

q2
< λ <

q1

r1
, r2 − 1 <

1

γ2
< min {q1 − λ, λq2 − 1}.

If λ ≤ q1+1
q2+1 , then min {q1 − λ, λq2 − 1} = λq2 − 1. We assume, that

r2

q2
<
q1 + 1

q2 + 1
. (15)

Since q1q2 > r1r2, (15) holds or
r1

q1
<
q2 + 1

q1 + 1
. (16)

If (16) holds, we just exchange the roles of functions u and v in problem (1). Therefore, we
need to guarantee, that (15) holds.

To fulfill (14), we have to find a suitable λ from

r2

q2
< λ < min

{
q1 + 1

q2 + 1
,
q1

r1

}
.
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It is possible since r2
q2
< q1

r1
and α2 > 0, such that

0 < r2 − 1 <
1

γ2
< λq2 − 1.

Thus, (13) holds. Therefore, (u, v) is a lower solution of (1) for r1 ≥ m1 + k1(p1 − 2) and
r2 > m2 + k2(p2 − 2).

2. If r1 < m1 + k1(p1 − 2) and r2 ≥ m2 + k2(p2 − 2) and n1n2 < p1p2, hence
q1q2 > r2 (m1 + k1(p1 − 2)). Any solution of (1) is an upper solution to the following
homogeneous Dirichlet problem

∂u

∂t
≥ ∇

(
|x|n1 um1−1

∣∣∣∇uk1∣∣∣p1−2
∇u
)

+ vq1 − α1u
r1 − α1, x ∈ Ω, t > 0,

∂v

∂t
≥ ∇

(
|x|n2 vm2−1

∣∣∣∇vk2∣∣∣p2−2
∇v
)

+ uq2 − α2v
r2 , x ∈ Ω, t > 0.

(17)

Following q1q2 > r2 (m1 + k1(p1 − 2)), similarly to the above proof, one can see that (u, v)
is still a lower solution of (17) for appropriate u0 and v0. It means that (u, v) blows up.

The subcases (3) r1 ≥ m1 + k1(p1 − 2), r2 < m2 + k2(p2 − 2) and n1n2 < p1p2 and (4)
r1 < m1 + k1(p1 − 2), r2 < m2 + k2(p2 − 2) and n1n2 < p1p2 can be treated in a similar
way.

Proof of Theorem 3 is completed.

Conclusion

This paper considers the problem of a doubly nonlinear degenerate parabolic system with nonlinear
source and absorption terms with variable density. We extend existing results on the global existence
and blow-up of solutions to the case with variable density in the diffusion term. Since the global
existence and blow-up property of solutions allow us to predict or control the future of processes,
the obtained results are significant and contribute to a concise understanding of doubly nonlinear
degenerate parabolic problems. Future directions of research include investigating the problem in
wider settings and studying other qualitative properties of the solutions.
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