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Fractional Hermite-Hadamard-type inequalities represent a significant area of study in convex analysis due
to their extensive applications in mathematical and applied sciences. These inequalities provide powerful
tools for estimating the integral mean of a convex function in terms of its values at the endpoints of a
given interval. In this paper, we focus on the development and refinement of fractional Hermite-Hadamard-
type inequalities for the class of twice differentiable m-convex functions. Utilizing advanced analytical
techniques, such as Hölder’s inequality and the power mean integral inequality, we derive new bounds that
generalize existing results in the literature. These findings not only extend classical inequalities to a broader
class of convex functions but also provide sharper and more versatile estimations. The presented results are
expected to have significant implications in various mathematical domains, including fractional calculus,
optimization, and mathematical modeling. This work contributes to the ongoing efforts to generalize and
refine integral inequalities by incorporating fractional operators and broader convexity assumptions, offering
a deeper understanding of the behavior of m-convex functions under fractional integration.
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“All analysts spend half their time hunting through the literature for inequalities which
they want to use and cannot prove.”

– Hardy

Introduction

Let ξ : I ⊂ R→ R be a convex function. Then

ξ

(
$1 +$2

2

)
≤ 1

$2 −$1

$2∫
$1

ξ(ζ)dζ ≤ ξ($1) + ξ($2)

2

is known in the literature as Hermite-Hadamard dual inequality [1]. If ξ is concave, then both in-
equalities hold in the reserved direction. We note that Hadamard’s inequality may be regarded as a
refinement of the concept of convexity and it easily follows from well-known Jensen’s inequality.
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Hermite-Hadamard type inequalities play a significant role in the study of convex functions and
have attracted considerable attention in mathematical analysis and its applications. These inequal-
ities provide valuable estimates for the average value of a convex function in terms of its endpoint
evaluations. Over the years, various generalizations and extensions have been developed to encompass
broader classes of functions, including s-convex, h-convex, and m-convex functions and many more.
For further study related to the topic we refer [2–4] to the interested readers.

The concept of m-convexity, introduced as a generalization of classical convexity, is particularly
useful in optimization theory, economics, and applied analysis [5]. In 1984, Toader defined the class of
m−convex functions [6] as:

Definition 1. A function ξ : [0, $2]→ R is called m−convex, if ξ satisfies

ξ(vζ1 +m(1− v)ζ2) ≤ vξ(ζ1) +m(1− v)ξ(ζ2),

for all ζ1, ζ2 ∈ [0, $2] and m, v ∈ [0, 1].
Remark 1. If we put m = 0 and m = 1 in the above definition then m−convexity changes into

Star-shaped [1] and classical convexity [7], respectively.
In parallel, the development of fractional calculus the study of integrals and derivatives of arbitrary

(non-integer) order – has led to new avenues for generalizing classical inequalities. Fractional integrals,
such as the Riemann–Liouville and Hadamard fractional integrals, have proven to be powerful tools in
extending integral inequalities to fractional settings (for example see [8–10]).

By combining the frameworks of fractional calculus and m-convexity, researchers have established
fractional Hermite-Hadamard type inequalities form-convex functions, which provide sharper and more
generalized bounds than their classical counterparts. These inequalities not only refine existing results
but also open up possibilities for applications in diverse fields such as control theory, mathematical
physics, signal processing, and differential equations (for further study see [11] and [12]).

Theorem 1. If 1 ≤ p, q ≤ ∞, 1
p + 1

q = 1 and g ∈ Lq, then ξg ∈ L1 and∫
|ξ(ζ)g(ζ)|dζ ≤ ‖ξ‖p‖g‖q, (1)

where ξ ∈ Lp if ‖ξ‖p =
(∫
|ξ(ζ)|pdζ

) 1
p <∞.

The above inequality is known as Hölder’s inequality [13].
Remark 2. Note that Cauchy−Schwarz inequality would be obtained by taking p = q = 2. Also, if

we put q = 1 and let p → ∞, then we attain,∫
|ξ(ζ)g(ζ)|dζ ≤ ||ξ||∞||g||1,

where ||ξ||∞ stands for essential supremum of |ξ|, i.e.,

||ξ||∞ = ess sup
∀ζ
|ξ(ζ)|.

Another representation of Hölder’s inequality is known in literature as Power mean integral in-
equality [14], defined as:

Theorem 2. If ξ and g are real valued functions defined on I with |ξ| and |ξ||g|q are integrable on
I then for q ≥ 1, we have:

$2∫
$1

|ξ(ζ)||g(ζ)|dζ ≤

 $2∫
$1

|ξ(ζ)|dζ

1− 1
q
 $2∫
$1

|ξ(ζ)||g(ζ)|qdζ

 1
q

. (2)
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Now, we are going to give some necessary definitions and mathematical results related to fractional
calculus which will be used further in this article.

Definition 2. [15] Let ξ ∈ L[$1, $2]. The Riemann−Liouville integrals Jα$1
+ξ(ζ) and Jα$2

−ξ(ζ) of
order α > 0 are defined by

Jα$1
+ξ(ζ) =

1

Γ(α)

ζ∫
$1

(ζ − v)α−1ξ(v)dv, ζ > $1

and

Jα$2
−ξ(ζ) =

1

Γ(α)

$2∫
ζ

(v − ζ)α−1ξ(v)dv, ζ < $2,

respectively, where Γ(α) =
∞∫
0

e−uuα−1du is the Gamma function.

Remark 3. Note that if we take α = 0, then J0
$1

+ξ(ζ) = J0
$2

−ξ(ζ) = ξ(ζ) and if we take α = 1,
then the fractional integrals reduce to the classical one.

In 2013 Bhatti et al. proved the following three distinct results related to fractional Hermite-
Hadamard-type inequality for the class of twice differentiable convex functions [16].

Theorem 3. Let ξ : I ⊂ R → R be a twice differentiable function on I◦ such that |ξ′′| is a convex
function on I. Suppose that $1, $2 ∈ I◦ with $1 < $2 and ξ′′ ∈ L[$1, $2], then the below stated
inequality for fractional integrals with α > 0 holds:∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ α($2 −$1)

2

2(α+ 1)(α+ 2)

[
|ξ′′($1)|+ |ξ′′($2)|

2

]
≤ ($2 −$1)

2

(α+ 1)
β(2, α+ 1)

[
|ξ′′($1)|+ |ξ′′($2)|

2

]
,

where β is the Euler Beta function.

Theorem 4. Let ξ : I ⊂ R → R be a twice differentiable function on I◦. Assume that p ∈ R,
p > 1 such that |ξ′′|

p
p−1 is a convex function on I. Suppose that $1, $2 ∈ I◦ with $1 < $2 and

ξ′′ ∈ L[$1, $2], then the below stated inequality for fractional integrals with α > 0 holds:∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

(α+ 1)
β

1
p (p+ 1, αp+ 1)

[
|ξ′′($1)|q + |ξ′′($2)|q

2

] 1
q

,

where β is the Euler Beta function.

Theorem 5. Let ξ : I ⊂ R→ R be a twice differentiable function on I◦. Assume that q ≥ 1, p > 1
such that |ξ′′|q is a convex function on I. Suppose that $1, $2 ∈ I◦ with $1 < $2 and ξ′′ ∈ L[$1, $2],
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then the below stated inequality for fractional integrals with α > 0 holds:∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ α($2 −$1)

2

4(α+ 1)(α+ 2)

[(
2α+ 4

3α+ 9
|ξ′′($1)|q +

α+ 5

3α+ 9
|ξ′′($2)|q

) 1
q

+

(
α+ 5

3α+ 9
|ξ′′($1)|q +

2α+ 4

3α+ 9
|ξ′′($2)|q

) 1
q

]
.

The structure of this article unfolds as follows: In the subsequent section, we aim to establish
three unique outcomes concerning fractional Hermite-Hadamard-type inequalities applicable to the
category of twice differentiable m−convex functions. Our approach will leverage diverse techniques,
encompassing Hölder’s and power mean integral inequalities. These findings are anticipated to exhibit
a broader scope compared to those presented in [16]. The third section will provide a concluding
statement, while the final section will offer insights and future prospects for readers interested in
further exploration.

1 Various Estimations of Right Bound of Fractional Hermite-Hadamard-type Inequalities for Twice
Differentiable m−Convex Functions

In order to prove our main results we need to recall following lemma from [16].
Lemma 1. Let ξ : I ⊂ R → R be a twice differentiable function on I◦, the interior of I. Assume

that $1, $2 ∈ I◦ with $1 < $2 and ξ′′ ∈ L[$1, $2], then the below stated identity for fractional
integrals with α > 0 holds:

ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

=
($2 −$1)

2

2(α+ 1)

1∫
0

v(1− vα)[ξ′′(v$1 + (1− v)$2) + ξ′′((1− v)$1 + v$2)]dv,

where Γ(α) =
∞∫
0

e−uuα−1du.

Now, we are going to state and prove of our new results related to fractional Hermite-Hadamard-
type inequalities for twice differentiable m−convex functions.

Theorem 6. Let ξ : I ⊂ [0,∞) → R be a twice differentiable function on I◦, the interior of I.
Assume that $1, $2 ∈ I◦ with $1 < $2 and ξ′′ ∈ L[$1, $2]. If |ξ′′| is m−convex on I for some
m ∈ (0, 1], then the below stated inequality for fractional integrals with α > 0 holds:∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣ ≤ α($2 −$1)
2

6(α+ 1)(α+ 3)

×
[
|ξ′′($1)|+ |ξ′′($2)|+m

(α+ 5)

2(α+ 2)

(∣∣∣ξ′′ ($1

m

)∣∣∣+
∣∣∣ξ′′ ($2

m

)∣∣∣)] .
Proof. By using Lemma 1 and the property of absolute value, we have,∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

2(α+ 1)

1∫
0

|v(1− vα)|[|ξ′′(v$1 + (1− v)$2)|+ |ξ′′((1− v)$1 + v$2)|]dv. (3)
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As we have |ξ′′| is a m−convex function, so we can take

∣∣ξ′′ (v$1 + (1− v)$2)
∣∣ ≤ v ∣∣ξ′′ ($1)

∣∣+m(1− v)
∣∣∣ξ′′ ($2

m

)∣∣∣
and ∣∣ξ′′ ((1− v)$1 + v$2)

∣∣ ≤ m(1− v)
∣∣∣ξ′′ ($1

m

)∣∣∣+ v|ξ′′($2)|.

Utilizing the above two results, (3) becomes∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

2(α+ 1)

1∫
0

[
v2(1− vα)|ξ′′($1)|+mv(1− v)(1− vα)

∣∣∣ξ′′ ($2

m

)∣∣∣
+mv(1− v)(1− vα)

∣∣∣ξ′′ ($1

m

)∣∣∣+ v2(1− vα)|ξ′′($2)|
]
dv.

After arranging and using the following facts the result of Theorem 6 is accomplished.

1∫
0

v2(1− vα)dv =
α

3(α+ 3)

and

1∫
0

v(1− vα)(1− v)dv =
α(α+ 5)

6(α+ 2)(α+ 3)
.

Remark 4. The following well-known results would be captured as special cases of our obtained
result by varying different values of m and α:

1. If we choose m = 1 in Theorem 6, then we get first inequality of Theorem 3.
2. If we choose α = m = 1 in Theorem 6, then we get Hermite-Hadamard-type inequality for twice

differentiable convex function [17].

Corollary 1. If we choose α = 1 in Theorem 6, then we get the following Hermite-Hadamard-type
inequality for twice differentiable m−convex function:∣∣∣∣∣∣ξ($1) + ξ($2)

2
− 1

$2 −$1

$2∫
$1

ξ(ζ)dζ

∣∣∣∣∣∣
≤ ($2 −$1)

2

48

[
|ξ′′($1)|+ |ξ′′($2)|+m

(∣∣∣ξ′′ ($1

m

)∣∣∣+
∣∣∣ξ′′ ($2

m

)∣∣∣)] .
Theorem 7. Let ξ : I ⊂ [0,∞) → R be a twice differentiable function on I◦, the interior of I.

Assume that $1, $2 ∈ I◦ with $1 < $2 and ξ′′ ∈ L[$1, $2]. If |ξ′′|q is m−convex on I for some
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m ∈ (0, 1] and q ≥ 1 then the following inequality for fractional integrals with α > 0 and 1
p + 1

q = 1
holds: ∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

2(α+ 1)
β

1
p (p+ 1, αp+ 1)

×

( |ξ′′($1)|q +m
∣∣ξ′′ ($2

m

)∣∣q
2

) 1
q

+

(
m
∣∣ξ′′ ($1

m

)∣∣q + |ξ′′($2)|q

2

) 1
q

 ,
where β is the Euler Beta function.

Proof. By using Lemma 1 and the property of absolute value, we have∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

2(α+ 1)

1∫
0

|v(1− vα)|[|ξ′′(v$1 + (1− v)$2)|+ |ξ′′((1− v)$1 + v$2)|]dv. (4)

Applying (1) to
1∫
0

|v(1 − vα)||ξ′′(v$1 + (1 − v)$2)|dv and
1∫
0

|v(1 − vα)||ξ′′((1 − v)$1 + v$2)|dv

implies

1∫
0

|v(1− vα)||ξ′′(v$1 + (1− v)$2)|dv

≤

 1∫
0

|v(1− vα)|pdt


1
p
 1∫

0

|ξ′′(v$1 + (1− v)$2)|qdv


1
q

and

1∫
0

|v(1− vα)||ξ′′((1− v)$1 + v$2)|dv

≤

 1∫
0

|v(1− vα)|pdt


1
p
 1∫

0

|ξ′′((1− v)$1 + v$2)|qdv


1
q

.

As we have |ξ′′|q is a m−convex function, so we can take∣∣ξ′′ (v$1 + (1− v)$2)
∣∣q ≤ v ∣∣ξ′′ ($1)

∣∣q +m(1− v)
∣∣∣ξ′′ ($2

m

)∣∣∣q
and ∣∣ξ′′ ((1− v)$1 + v$2)

∣∣q ≤ m(1− v)
∣∣∣ξ′′ ($1

m

)∣∣∣q + v|ξ′′($2)|q.
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Utilizing the above four results, (4) becomes∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

2(α+ 1)

 1∫
0

vp(1− vα)pdt


1
p

×


|ξ′′($1)|q

1∫
0

vdv +m
∣∣∣ξ′′ ($2

m

)∣∣∣q 1∫
0

(1− v)dv


1
q

+

m ∣∣∣ξ′′ ($1

m

)∣∣∣q 1∫
0

(1− v)dv + |ξ′′($2)|q
1∫

0

vdv


1
q

 .
After using the following facts, the result of Theorem 7 is accomplished.

1∫
0

vdv =

∫ 1

0
(1− v)dv =

1

2

and
1∫

0

vp(1− vα)pdt ≤
1∫

0

vp(1− v)αpdv = β(p+ 1, αp+ 1).

Remark 5. Following well-known results would be captured as special cases of our obtained result
by varying different values of m and α:

1. If we choose m = 1 in Theorem 7, then we get Theorem 4.
2. If we choose α = m = 1 in Theorem 7, then we get Theorem 10 of [18].
Corollary 2. Under the assumptions of the Theorem 7,
1. If we put p = q = 2, then we get the result obtained by using Cauchy− Schwarz integral inequality

as: ∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

2
3
2 (α+ 1)

β
1
2 (3, 2α+ 1)

×

[(
|ξ′′($1)|2 +m

∣∣∣ξ′′ ($2

m

)∣∣∣2) 1
2

+

(
m
∣∣∣ξ′′ ($1

m

)∣∣∣2 + |ξ′′($2)|2
) 1

2

]
,

where β is the Euler Beta function.
2. If we put q = 1 and p =∞, then we get the result involving essential supremum norm as:∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

4(α+ 1)
||X||∞

[
|ξ′′($1)|+m

∣∣∣ξ′′ ($2

m

)∣∣∣+m
∣∣∣ξ′′ ($1

m

)∣∣∣+ |ξ′′($2)|
]
,
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where ||X||∞ = ess sup
v∈[0,1]

1∫
0

v(1− v)α.

3. If we choose α = 1, then we get the following Hermite-Hadamard-type inequality for twice
differentiable m−convex function:∣∣∣∣∣∣ξ($1) + ξ($2)

2
− 1

$2 −$1

$2∫
$1

ξ(ζ)dζ

∣∣∣∣∣∣ ≤ ($2 −$1)
2

4
β

1
p (p+ 1, p+ 1)

×

( |ξ′′($1)|q +m
∣∣ξ′′ ($2

m

)∣∣q
2

) 1
q

+

(
m
∣∣ξ′′ ($1

m

)∣∣q + |ξ′′($2)|q

2

) 1
q

 .
Theorem 8. Let ξ : I ⊂ [0,∞) → R be a twice differentiable function on I◦, the interior of I.

Assume that $1, $2 ∈ I◦ with $1 < $2 and ξ′′ ∈ L[$1, $2]. If |ξ′′|q is m−convex on I for some
m ∈ (0, 1] and q ≥ 1 then the following inequality for fractional integrals with α > 0 holds:∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ α($2 −$1)

2

4(α+ 1)(α+ 2)(3(α+ 3))
1
q

[(
2(α+ 2)|ξ′′($1)|q +m(α+ 5)

∣∣∣ξ′′ ($2

m

)∣∣∣q) 1
q

+
(
m(α+ 5)

∣∣∣ξ′′ ($1

m

)∣∣∣q + 2(α+ 2)|ξ′′($2)|q
) 1

q

]
.

Proof. By using Lemma 1 and the property of absolute value, we have∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

2(α+ 1)

1∫
0

|v(1− vα)|[|ξ′′(v$1 + (1− v)$2)|+ |ξ′′((1− v)$1 + v$2)|]dv. (5)

Applying (2) to
1∫
0

|v(1 − vα)||ξ′′(v$1 + (1 − v)$2)|dv and
1∫
0

|v(1 − vα)||ξ′′((1 − v)$1 + v$2)|dv

implies

1∫
0

|v(1− vα)||ξ′′(v$1 + (1− v)$2)|dv

≤

 1∫
0

v(1− vα)dv

1− 1
q
 1∫

0

v(1− vα)|ξ′′(v$1 + (1− v)$2)|qdv


1
q

and
1∫

0

|v(1− vα)||ξ′′((1− v)$1 + v$2)|dv

≤

 1∫
0

v(1− vα)dv

1− 1
q
 1∫

0

v(1− vα)|ξ′′((1− v)$1 + v$2)|qdv


1
q

.
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Since |ξ′′|q is an m−convex function, so we can take∣∣ξ′′ (v$1 + (1− v)$2)
∣∣q ≤ v ∣∣ξ′′ ($1)

∣∣q +m(1− v)
∣∣∣ξ′′ ($2

m

)∣∣∣q
and ∣∣ξ′′ ((1− v)$1 + v$2)

∣∣q ≤ m(1− v)
∣∣∣ξ′′ ($1

m

)∣∣∣q + v|ξ′′($2)|q.

Utilizing the above four results, (5) becomes∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

2(α+ 1)

 1∫
0

v(1− vα)dv

1− 1
q

×


|ξ′′($1)|q

1∫
0

v2(1− vα)dv +m
∣∣∣ξ′′ ($2

m

)∣∣∣q 1∫
0

v(1− v)(1− vα)dv


1
q

+

m ∣∣∣ξ′′ ($1

m

)∣∣∣q 1∫
0

v(1− vα)dv + |ξ′′($2)|q
1∫

0

v2(1− v)dv


1
q

 .
After arranging and using the following facts the result of Theorem 8 is accomplished.

1∫
0

v(1− vα)dv =
α

2(α+ 2)
,

1∫
0

v2(1− vα)dv =
α

3(α+ 3)

and
1∫

0

v(1− v)(1− vα)dv =
α(α+ 5)

6(α+ 2)(α+ 3)
.

Remark 6. Following well-known results would be captured as special cases of our obtained result
by varying different values of m and α:

1. If we choose m = 1 in Theorem 8, then we get Theorem 5.
2. If we choose α = m = 1 in Theorem 8, then we get Theorem 8 of [18].
Corollary 3. If we choose α = 1 in Theorem 8, then we get the following Hermite-Hadamard-type

inequality for twice differentiable m−convex function:∣∣∣∣∣∣ξ($1) + ξ($2)

2
− 1

$2 −$1

$2∫
$1

ξ(ζ)dζ

∣∣∣∣∣∣ ≤ ($2 −$1)
2

24(2)
1
q

×
[(
|ξ′′($1)|q +m

∣∣∣ξ′′ ($2

m

)∣∣∣q) 1
q

+
(
m
∣∣∣ξ′′ ($1

m

)∣∣∣q + |ξ′′($2)|q
) 1

q

]
.
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2 Conclusion

The fractional Hermite-Hadamard inequality stands out as one of the most renowned within the
realm of inequalities, boasting numerous generalizations across different classes of convex functions in
existing literature. In this article, we present its extension for twice differentiable m−convex functions.
Section 1 unveils three distinct findings concerning the estimated right bound of the fractional Hermite-
Hadamard inequality in an absolute sense for twice differentiablem−convex functions. Here, we employ
various methodologies, including Hölder’s and Power mean integral inequalities. While some of these
results are novel, others have been previously documented in the articles [16–18]. The final section is
dedicated to providing remarks and offering future avenues of exploration for interested readers.

Now, we are going to summarize the results of Section 1 in Table 1.

T a b l e 1

Result Summary of Section 1

S. No m α Results Found in
1 1 − FHHTI for Ordinary Convex Functions [16]
2 − 1 HHTI for m−Convex Functions This Article
3 1 1 HHTI for Ordinary Convex Functions [17,18]

In the preceding table, the abbreviations FHHTI and HHTI refer to the Fractional Hermite-
Hadamard type inequality and the Hermite-Hadamard type inequality, respectively, while the symbol
“ – ” indicates validity for any value.

Now we are going to give some remarks and future ideas related to our stated results.

3 Remarks and Future Ideas

1. All the inequalities given in this article can be stated in the reverse direction for concave functions
using the simple relation that ξ is concave if and only if ξ is convex.

2. One may also work on Fejér inequality by introducing weights in fractional Hermite-Hadamard
inequality.

3. One may do similar work by using various distinct classes of convex functions.
4. One may try to state all the results given in this article for the discrete case.
5. One may also state all the results given in this article for Multi-dimensions.
6. One can extend this work to time scale domain or Quantum Calculus.
7. One can try to attain this work for Fuzzy theory.
8. One can try to work for finding refined bounds of all results.
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