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The notions of almost quasi-Urbanik structures and theories, and studied possibilities for the degrees of
quasi-Urbanikness, both for existential and universal cases were introduced. Links of these characteristics
and their possible values are described. These values for structures of unary predicates, equivalence rela-
tions, linearly ordered, preordered and spherically ordered structures and theories as well as for strongly
minimal ones, and for some natural operations including disjoint unions and compositions of structures and
theories were studied. A series of examples illustrates possibilities of these characteristics.
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Introduction

The property of quasi-Urbanikness allows to clarify and describe structural properties in various
classes of structures and theories, including strongly minimal ones [1,2]. These properties can be
classified using natural semantic and syntactic characteristics. A series of results on these characteristics
are obtained in general [3], for abelian groups [4], for variations of rigidity in general [5] and for ordered
structures [6], etc.

In the present paper we continue to study related characteristics introducing the notions of almost
quasi-Urbanik structures and theories, and their existential and universal degrees. Possibilities of
these degrees are described both in general and for a series of natural structures and theories including
structures and theories of unary predicates, equivalence relations, ordered structures and theories,
strongly minimal structures and theories, disjoint unions and compositions of structures and theories.
We illustrate possibilities of degrees by a series of examples.

The paper is organized as follows. The notions of almost quasi-Urbanik structures and theories,
degrees and their spectra are described in general, for unary predicates, and equivalence relations are
described in Section 1. In Section 2, degrees of quasi-Urbanikness are described for ordered theories
including spherically ordered and some preordered ones. Degrees of quasi-Urbanikness and links for
dimensions are studied in Section 3. In Sections 4 and 5, we describe possibilities of degrees of quasi-
Urbanikness for disjoin unions and FE-definable compositions, respectively. In Section 6, we discuss
some general operators transforming a given structure into quasi-Urbanik one.
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1 Almost quasi-Urbanik structures, their theories and degrees

Let L be a countable first-order language. Throughout we consider L-structures and their complete
elementary theories; and we use standard model-theoretic notions and notations [7-10].

Following [1], a theory T is called strongly minimal if for any formula ¢(z,a) of language obtained
by adding parameters of @ (in a model M = T') to the language of T, either ¢(x,a), or —p(z,a) has
finitely many solutions.

Following [11], for n € w \ {0} and a set A, an element b is called n-algebraic over A if a € acl(A)
and it is witnessed by a formula ¢(x, @), for @ € A, with at most n solutions. The set of all n-algebraic
elements over A is denoted by acl,(A). If A = acl,,(A), then A is called n-algebraically closed. A type
p is n-algebraic if it is realized by at most n tuples only, i.e., deg(p) < n. The complete n-algebraic
types p(x) € S(A) are exactly ones of the form tp(a/A), where a is n-algebraic over A, i.e., with
deg(a/A) < n. Here deg(a/A) = k < n defines the n-degree deg,,(a/A) of tp(a/A) and of a over A.
If acl(A) = acl,,(A) then minimal such n is called the degree of algebraization over the set A and it is
denoted by deg,.(A). If that n does not exist, then we put deg, (A) = co. The supremum of values
deg, (A) with respect to all sets A of given theory T is denoted by deg,(T") and called the degree of
algebraization of the theory T'.

Following [2], theories T" with deg,(T") = 1, i.e., with defined cl; (A) for any set A of T, are called

quasi- Urbanik, and the models M of T" are quasi- Urbanik, too.
Remark 1. Notice that if a structure M is quasi-Urbanik it does not guarantee that its theory

T = Th(M) is quasi-Urbanik, too. Indeed, let M be a strongly minimal structure consisting of
infinitely many two-element equivalence classes E(a). Marking one element a in each E-class by a
constant ¢,, we obtain a syntactically rigid structure M’, with definable b € E(a) \ {a} by formulae
E(z,cq) N 7z &~ c¢4. At the same time M’ has an elementary extension A with some unmarked

FE-classes. These F-classes fail the quasi-Urbanikness of T'.
Definition 1. A theory T is called almost quasi-Urbanik, if some expansion of T' by finitely many

constants is quasi-Urbanik, and the models M of T are almost quasi- Urbanik, too. If a finite set A of
constants produces a quasi-Urbanik expansion T4 of T" then we say that A witnesses that T' is almost
quasi-Urbanik.

The least cardinality of the witnessing set A is called the quasi-Urbanik 3-degree of T and it is
denoted by deggU(T). If these finite sets A do not exist, we put deggU(T) = 00. The minimal
cardinality n € w such that each set A of cardinality n produces the quasi-Urbanik theory T4 is called
the quasi-Urbanik V-degree of T' and it is denoted by degZU(T ). If such n does not exist, then we

put degZU (T') = oo. Similarly it is transformed to the models M of T with quasi-Urbanik 3-degrees
deggU(./\/l) and V-degrees degZU (M).

Clearly, for any theory T, deggU(T) =0 iff degZU(T) = 0, and iff T is quasi-Urbanik. Thus, by the
definition, any quasi-Urbanik theory is almost quasi-Urbanik.

Besides, for any theory T,
degiu(T) < degZU(T) (1)

implying that if T is not almost quasi-Urbanik then deggU (T) = degZU (T') = o0, and vice versa.

The following example shows that the difference in the inequality (1) can be arbitrary:

Ezample 1. Let M be a structure of an equivalence relation £, T'= Th(M). Clearly, T is quasi-
Urbanik iff M has 0, 1 or infinitely many one-element FE-classes, 0 or infinitely many two-element
E-classes, and does not have finite E-classes with at least three elements, producing degf'lU(T) =
degZU(T) = 0. In particular, M with zero, one or infinitely many one-element FE-classes, zero or
infinitely many two-element FE-classes, and without n-element E-classes, for n > 3, is quasi-Urbanik.

A finite value degéU(T) means that we can collect a finite set A containing m — 1 elements in
singletons E(a), if there are m € w \ {0,1} these singletons, a finite set B containing m elements
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in pairwise distinct two-element E-classes E(b), if there are m € w \ {0} these E-classes, and a
finite set C' containing n — 1 elements in each FE-class F(a) of finite cardinality n > 3, obtaining
deg?lU(T) = |A| + |B| + |C|. Here deggU(T) = |C| if there are 0, 1 or infinitely many one-element
FE-classes, and there are 0 or infinitely many two-element E-classes.

At the same time, if M is not quasi-Urbanik, then degZU(T ) is finite iff M is finite. In such a case
if M contains k singletons E(a) and m two-element E-classes, then degZU(T ) =k — 1, if M consists
of E-singletons, and degZU (T) = k+2m — 1, if M consists of one-element and two-element E-classes,
and if M contains n-element E-classes, for n > 3, then degZU(T) =|M|—-1.

In view of Example 1 we have the following theorem describing possibilities of quasi-Urbanik de-
grees:

Theorem 1. For any p, v € (w\{0})U{oo} with u < v there is a theory T}, , such that deggU (Tup) =p
and degZU(Tu,V) =v.

For a theory T' we denote by deg, ,(7') the pair (deg?lU(T), degZU (T))) of quasi-Urbanik degrees

for T'.
In view of the inequality (1) and Theorem 1 the set

DEG2,qu = {(0,0)} U {(n,v) € (w\{0}) U{oc})* | p < v} (2)

collects the spectrum of all possibilities for degy (7).
For a family 7 of theories we denote by DEGg qu(7) the restriction of DEG qu to the family of
theories in T:

DEGo,qu(T) = {dega qu(T) | T € T}

The operator DEGs qu(-): T + DEGgqu(7) is monotone: indeed, if 71 C 7, then we have
DEG2 qu(7T1) € DEG2 qu(72). Hence, if DEGg qu(71) = DEGg qu and DEG2 qu(71) = DEGg qu then

DEGs 4u(72) = DEGa qu.

A natural question arises on a description of spectra DEGg qu(7) for various families of theories.
Below we will give partial answers to this question.

Similarly to theories, for any structure M, deggU(M) =0 iff degZU(M) = 0, and iff M is quasi-
Urbanik. Thus, by the definition any quasi-Urbanik structure is almost quasi-Urbanik.
Besides, for any structure M,

degiy (M) < degly(M) (3)

implying that if M is not almost quasi-Urbanik then deggU(M) = degZU(./\/l) = oo. Example 1 also
illustrates that the difference in the inequality (3) can be arbitrary.
For any model M of a theory T" we have:

degqy(M) < degqy(T) (4)

and
degZU(M) < degZU(T)' (5)

Indeed, if a set A of constants produces quasi-Urbanik theory T4 then its model M4 is quasi-
Urbanik, too. At the same time, as the following example shows, the inequalities (4) and (5) can be
strict.
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Example 2. Let M be a strongly minimal structure of an equivalence relation E consisting of
infinitely many n-element E-classes such that there is an F-class E(a) elements of which are not marked
by constants and all elements in M \ E(a) are marked by constants. We have deggU(/\/l) =n-1,
witnessed by the set E(a)\ {a}, whereas deggU(Th(M)) = oo since new F-classes in strict elementary
extensions of M fail the quasi-Urbanikness.

If My is an elementary substructure of M which does not contain E(a) then My is quasi-Urbanik,
with degZU(Mo) = deggU(Mo) = 0, whereas for T' = Th(M) = Th(M,), degZU(T) = deggU(T) = 0.

Example 2 illustrates that there are (almost) quasi-Urbanik structures theories of which are not
almost quasi-Urbanik.
The list of inequalities (4) and (5) is extended by the following:

degiy(M) < degt ™ (M). (6)

Indeed, the inequality (6) holds for any structure M since dcl(A) = M implies that dcl(B) = M =
acl(B) for any B D M, i.e. My is quasi-Urbanik, with deggU(M) < |A|l = degi—gsynt(/\/l), where A
witnesses the value degi_gSynt (M).

The inequality (6) can be arbitrarily strict since any unar M with a successor function s(z) is

quasi-Urbanik, with deggU (M), whereas that unar can have arbitrarily many connected components.
J-synt

The finite number of connected components equals degrig (M), and if there are infinitely many

connected components, then degi_gsynt (M) = .
Similarly to the inequality (6) we have the inequality:

degZU (M) < d(—:'gfi_gsynt (M).

The following assertion shows that if a theory T is almost quasi-Urbanik, with finite degrees, then
the equalities in (4) and (5) hold:

Proposition 1. If a theory T is almost quasi-Urbanik, then each model M of T is almost quasi-
Urbanik, too, with deggU(/\/l) = deggU(T). Moreover, if degZU(T) is finite, then we have degZU(M) is
finite, too, with degZU(M) = degZU(T).

Proof. Let degiU(T) =n € w. Then T admits an expansion T4 by a set A of constants, with
minimal cardinality n, such that T4 is quasi-Urbanik: deggU(TA) = 0. Since a model M of T is
expansible till a model M 4 of T4 and the property deggU(T ) = n is expressed syntactically containing a
description that (n—1)-element sets do not produce the quasi-Urbanikness, it is satisfies in M implying
deg?lU(M) = n. Similar arguments witness that if degZU(T) =n € w, then degZU(M) = degZU(T) for
any M =1T. O

Let X1 be a signature of both unary predicate symbols and constant symbols.

The following theorem describes the behavior of almost quasi-Urbanikness of theories in the signa-
ture Xq.

Theorem 2. Let T be a theory of a signature 31, M = T. Then the following conditions hold:
1) T is quasi-Urbanik iff each algebraic 1-type over () has a unique realization;
2) T is almost quasi-Urbanik iff T has finitely many algebraic 1-types p1,...,p, over () with at

n

least two realizations; here degéU(T) = z%(\pl(Mﬂ —1);
1=
3) degZU(T) > 0 is finite iff M is finite and has an algebraic 1-type p € S(0)) with at least two
realizations; here degZU(T) = |M|—1.
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Proof. Without loss of generality we assume that constant symbols are replaced by unary pred-
icates with unique solutions. In view of the signature 3; there are no links between elements and
algebraic sets are defined by Boolean combinations of given unary predicates such that these Boolean
combinations have finitely many solutions. Thus, the quasi-Urbanikness means that these complete
Boolean combinations defining acl(()) defines singletons producing Item 1.

The almost quasi-Urbanikness of T" means that algebraic 1-types p become definable after fixing
all their realizations except one for each type p. It confirms Item 2.

If degZU (T) € w\ {0}, then T is almost quasi-Urbanik and is not quasi-Urbanik. Using 1) and 2)
we find an algebraic 1-type p € S(0) with at least two realizations. Now M is finite and the (|M|—1)-
element subsets of M confirm the value deg?lU(T) since the smaller quantity can not cover universally
|p(M)] — 1 realizations of p. O

In view of the equality (2) and Theorem 2, we have the following;:

Corollary 1. Let T be the family of theories in signatures of the form ;. Then

DEG,qu(T) = DEGa qu.

Clearly, any theory of a finite structure is almost quasi-Urbanik. At the same time, as the following
example shows, there are almost quasi-Urbanik theories of infinite structures which are not quasi-
Urbanik.

Example 3. Let M be a countable structure of an equivalence relation F with one two-element
E-class Eyg = {a,b} and two infinite E-classes E, and Ej such that M is supplied by a binary relation
R={(a,d") | d € E,}U{(b,V) |V € Ep}. For T = Th(M), we have degZU(T) = 1 since del(() = 0,
Ey = acl(), and M = dcl({d}) for any element d € M, producing dcl(A) = acl(A) for any nonempty
AC M. degéU(T) = 1, too. Thus, degy (7)) = (1,1). The theory T is w-categorical and w-stable
with Morley rank 1 and Morley degree 2: MR(T") = 1, deg(7T') = 2.

Below we will show that natural values degZU(T) > 1 can not be realized in the class of strongly
minimal theories, i.e. Morley characteristics in Example 3 are minimally possible.

2 Spectra of almost quasi-Urbanikness for ordered structures and their theories

Example 4. Let M be a structure of an equivalence relation F expanded by a linear order on the
quotient M/FE, i.e., M is a preordered set by a preorder < such that maximal antichains form the
equivalence relation F such that elements in distinct F-classes are <-comparable. Besides, F =< N >.

Clearly, T' = Th(M) is quasi-Urbanik iff £ has either one-element or infinite E-classes. Moreover,
any linearly ordered structure M is quasi-Urbanik, i.e. degy ,u(T") = (0,0).

Since elements of each E-class E(a) are connected by automorphisms over sets of elements in other
E-classes, the possibilities of values deggU (M) and degZU (M) repeat ones in Example 1. Here, if M
has finitely many one-element E-classes then all these E-classes are contained in dcl(0).

In particular, Th(M) is almost quasi-Urbanik with degaU (Th(M)) > 0 iff M has a finite E-class
with at least two elements and there are finitely many these E-classes, and deggU (Th(M)) € w\ {0}
iff M is quasi-Urbanik, or M is finite with some E-class containing at least two elements.

In view of Example 4 we have the following modification of Theorem 1:
Theorem 3. Let Ty, be the family of theories of preordered structures. Then

DEG2,qu(Tpo) = DEGa qu-

Definition 2. [12,13]. The following generalization of linear and circular orders produces an n-ball,
or n-spherical, or n-circular order relation, for n > 2, which is described by an n-ary relation K,
satisfying the following conditions:
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(nsol) for any even permutation o on {1,2,...,n},

V... a0 (Kn(zn, 22, 20) — Ky (930(1),1:0(2) e ,:Ug(n))) ;

(nso2) Vayq,...,x, <(Kn(xl,...,xi,...,xj,...,xn)/\

AN (1,0 Ty Ty, X)) \/ T le>
1<k<l<n

forany 1 <i < j < mn;

(nso3) Vzq,...,zn | Kp(z1,...,2,) —

n
— Vi <\/ Ko(x1,. .o, xi-1,t, Tig1, - - ,:En)> );

(nsod) Vai,...,xn(Kp(21, ..., Tiy oo, &, ..., Zn)V
VEp (1, T, Ty, X)), 1 <i<j <.

The axioms above produce linear orders K5 and circular orders Kj.

Structures M = (M, K,) with n-spherical orders K, are called n-spherically ordered sets, or
n-spherical orders, too. If a structure M contains a n-spherical order, then M is called a n-spherically
ordered structure, or simply spherically ordered structure if n is known.

An n-spherically ordered set (A, K,,), where n > 2, is called dense if it contains at least two elements
and for each (a1, a9,as,...,a,) € K, with a; # ag there is b € A\ {aj,a2,...,a,} such that

E Ky(ai,b,as3,...,a,) N Ky(b,az,as,...,ay).

Following [14], n-spherical orders K, on infinite sets M witness the strict order property producing
unstable structures (M, K,,), since fixing n — 2 distinct coordinates aq, ..., a,—2 in the relation K,, we
obtain a linear order on M \ {ay,...,an—2}.

As any linearly ordered structure is quasi-Urbanik, we obtain the following;:

Theorem 4. Any n-spherically ordered structure M has an almost quasi-Urbanik theory T with
degly(T) < n—2.

Remark 2. The inequality in Theorem 4 can be strict and can produce the equality. Indeed, if M is
a dense spherical order, then M is quasi-Urbanik, with degZU (Th(M)) = 0, since dcl(A) = acl(4) = A
since the theory Th(M) has quantifier elimination [13| without possibilities to define new algebraic
elements, outside A.

At the same time if M’ is an expansion of M by a unary predicate P, containing m > 1 elements,
then we have to fix n — 2 arbitrary elements in M producing a quasi-Urbanik expansion that implies
degZU(Th(M’)) = n — 2. Here the value deggU(Th(M’)) can vary depending on m: it is equal m — 1
form—1<n—2,andequalsn—2ifm—1>n—2.

In view of the equality (2), Theorem 4 and Remark 2, we have:

Theorem 5. Let Ty be the family of theories of spherically ordered structures. Then
DEG2,qu(7s0) = {(0,0)} U {(m,n) | m,n € w\ {0}, m <n} =

— DEGaqu \ {(1,50) | 4 € (w) {0}) U {s0}}.
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The following examples illustrate possibilities for degy (;(7') = (m, n) for extensions of spherically
ordered structures by two new elements.

Ezample 5. Let M 5 be a countable structure of an equivalence relation E with one two-element
E-class Ey = {a1, a2} and one infinite E-class F; such that Ej is supplied by a binary relation < of
dense linear order without endpoints, and M is supplied by a ternary relation Rs consisting of triples
(a1,b1,b2) and (ag.ba.by) for any by < by. For the theory 772 = Th(M;2), we have deggU(Tw) =1
and degZU(Tl,g) = 2 since dcl() = 0, Ey = acl(D), Ey = dcl({a;}) = del({a;,b1}) = del({b1,b2}),
i = 1,2, by,by € Eq, by # by, producing dcl(A) = acl(A) for any A C Mo with |A] > 2. Thus
degy qu(T12) = (1,2).

Now we modify the theory 712 replacing in M o the linear order < by a dense n-spherical order
K, [13], n > 3, reduced to the strict one K, i.e. the reduction of the spherical order to the set of
tuples with pairwise distinct coordinates. The relation K, divides the set of n-tuples with pairwise
distinct coordinates in E; into two parts such that the complement K, of K,, in E} equals the set of
odd permutations of tuples in K. Instead of R3 we consider the (n 4 1)-ary relation R, 41 collecting
tuples (a1,b), b € K}, and tuples (az,b), b € K,,. For the obtained structure My ,, and its theory T} ,,
we have deggU(TLn) =1 and degZU(TLn) = n since del() = 0, Ey = acl((), Eg = dcl({a;}) = dcl(b),
i = 1,2, b € By with pairwise distinct coordinates, I(b) = n, producing dcl(4) = acl(A) for any
A C My, with |[A] > n. Thus, degy qu(T1,n) = (1,1).

8 Spectra of almost quasi-Urbanikness and relative dimensions of algebraic closures for strongly
minimal theories

Theorem 6. For any strongly minimal theory T either degZU(T) =0or degZU(T) = 0.

Proof. Let degZU(T) =m > 0, m € w. Taking a big saturated model M, we find an algebraic
set A C M with |A] = n > 1 such that A is definable by a complete formula ¢(z,a) such that for
any m-tuple b C M, A is divided into singletons by formulae v;(z,b), i = 1,...,n. Since the tuples
b are arbitrary, we can fix m — 1 coordinates and take one mobile coordinate, say m-th one, realizing
the unique non-algebraic type p(y) over A. Moreover, as the model M is big enough, elements of A
are connected by @-automorphisms and realizations of p(y) are connected by A-automorphisms. Since
A is finite and its elements are connected by a@-automorphisms we can connect elements of A by a
fixed formula v; with infinitely many realizations of p(y) such that 1;-images with respect to these
realizations are unique. As T is strongly minimal, M can not be divided into two infinite definable
parts. Thus, v;-preimages of elements of A should be intersected contradicting the uniqueness of
Yi-images. ]

In view of the equality (2), Theorem 6 and strongly minimal realizations of quasi-Urbanik degrees
in Example 1, we obtain the following:

Corollary 2. Let T be the family of strongly minimal theories. Then

DEG2 qu(Tsm) = {(0,0)} U {(1, ) | p € (w \ {0}) U {oo}}.

Ezample 6. Let M = (M, s') be a structure, where s(z) is the successor function, and Th(M) has
the following axioms:
Ay :=Vz3lt s(z) =+,

Ag = Jz1Jzofz1 # 2 AVY1 8(Y1) # 1 AVY2 $(y2) # w2 AVt # 21 ANt # 290 — T2 5(2) = t)],
Ag = V$1V$2Vt1vt2[8(l‘1) =11 A S(SUQ) =1y — (951 %+ T9 > 1 75 tg)].

Thus, M consists of two disjoint copies of N, where N is the set of natural numbers. It can be
established that Th(M) is a strongly minimal theory. Further, we have: dcl(0) = 0, acl(0) = M,
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and dcl(A) = acl(A) for any non-empty A C M. Thus, acl(@) \ dcl(() is infinite, Th(M) is almost
quasi-Urbanik and non-quasi-Urbanik.

We say that a set A is definably independent if a ¢ dcl(A\ {a}) for any a € A. Denote by dimg.(A)
the cardinality of maximal definably independent subset of A.
Observe that in Example 6 dimge(acl(0) \ del(0)) = 1.

Consider for every m > 2 the following sentence:
By =321 . e [N<ici<m®i # x5 AN VY s(y) # 2 AVEND t # 2 — T2 s(2) = 1))

If we consider the structure M = (M, s') with axioms A;, B, and Az, then we have dimg.(acl(())\
del(9)) =m — 1.

Consider for every m > 2 the following sentence:
Cp, =321 ... Elxm[/\lgi<j§m$i ?é A /\?;Ny S(y) # :L'Z]

If we consider the structure M = (M, s!) with axioms Ay, A3 and {C,,, | m > 1}, then we lose the
strong minimality, and Th(M) is an w-stable quasi-Urbanik theory of Morley rank 2 with acl(@) = 0.
Thus, we have the following proposition:

Proposition 2. For every natural m > 1 there exists an almost quasi-Urbanik strongly minimal
theory such that acl(@) \ dcl(@) is infinite and dimgy(acl(@) \ del(@)) = m.

The following example shows that if T" is not almost quasi-Urbanik, then dimgg(acl(0)\dcl(0)) = m
can be infinite.

Ezample 7. Let M = (M, E?) be a strongly minimal structure, where E is an equivalence relation
partitioning M into infinitely many n-element FE-classes for some n > 3. Let M’ be an expansion
of M by marking exactly one element from each FE-class by a constant. Then we have that both
aclye (0) \ delpg (0) and dimge (aclye (0) \ delpyy (D)) are infinite, but Th(M') is not almost quasi-
Urbanik, c¢f. Example 1. At the same time, following Example 5, the theory Th(M’) admits a
cyclification producing a quasi-Urbanik expansion.

The following example produces a similar effect, as in Example 7, in the class of simple unstable
theories.

Example 8. Consider a predicate language L consisting of two unary predicate symbols P and Q,
two binary predicate symbols E and R, expanded by countably many constant symbols ¢, n € w. We
construct a countable structure M with M = PUQ, where P and @ are countable, such that E is
an equivalence relation dividing P on three-element F-classes E,, with ¢, € E,, n € w, and having
one-element E-classes on ). Now we interpret R as a random symmetric binary relation connecting
each element of @ with one element in each E(cy,) \ {cp}, n € w.

We have dclp(0) = {c, | n € w}, acly(0) = U E(en), with infinite aclag(0) \ delag(@). Thus the

new
structure M is not quasi-Urbanik. At the same time M is almost quasi-Urbanik, since for any element

a € @ the expansion M’ of M by the constant ¢, for this element allows to define all elements of P:
delpg (0) = aclyy (0) = PU{ca}. Moreover, for any A C M, dclyy (A) = aclpy (A) = delagy (0)U(QNA).

Finally we observe that the theory Th(M) is not almost quasi-Urbanik, since M has elementary
extensions with three-element FE-classes which are not marked by constants, and finitely many new
constants can not reduce algebraic closures to definable ones for these F-classes.

4 Degrees of quasi-Urbanikness for disjoint unions of structures and their theories

In this section we describe possibilities for degrees of quasi-Urbanikness for disjoint unions of struc-
tures and their theories. This description correlates with similar description for degrees of rigidity [5].
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Definition 3. [15] The disjoint union | | M, of pairwise disjoint structures M,, for pairwise disjoint

new

predicate languages ¥, n € w, is the structure of language (J %, U {Pél) | n € w} with the universe
new

|| M,, P, = M,, and interpretations of predicate symbols in ¥,, coinciding with their interpretations

new

in My, n € w. The disjoint union of theories T, for pairwise disjoint languages ¥,, accordingly, n € w,

is the theory
|_|Tn:Th<|_| Mn>,

new new

where M,, ET),, n € w.
Clearly, the theory || 7T), does not depend on choice of models M,, = T,,. Besides, the notion

new
of disjoint union admits reductions to finitely many structures and theories, obtaining the structures

MiU...UM, and their theories 77 U ... T,.

Theorem 7. For any disjoint predicate structures M; and Moy the following conditions hold:

1. deggU(Ml UMsp) = deggU(Ml) + deggU(Mg), in particular, deggU(M1 L My) is finite iff
deggy(M1) and deglyy(My) are finite.

2. degZU(Ml UMy) =0 iff degZU(Ml) =0 and degZU(Mg) =0, i.e. My U My is quasi-Urbanik
iff My and Mj are quasi-Urbanik.

3. If degZU(Ml LI M) > 0 then it is finite iff degZU(Ml) > 0 is finite and My is finite, or
degZU(Mg) > 0 is finite and M is finite. Here,

degZU(Ml U Ma) = max{| M| + degZU(M2)7 | Ms| + degZU(Ml)}-

Proof word by word repeats the proof of Theorem 2 in [5] replacing degrees of rigidity by degrees
of quasi-Urbanikness. O
Theorem 7 immediately implies the following corollaries.

Corollary 3. For any disjoint predicate structures M; and Ms and their theories 77 and T3,
respectively, the following conditions hold:

L. deggU (hUTy) = deg?lU (Th) + deggU(Tg), in particular, deggU(Tl UTy) is finite iff deg?lU (T1) and
deggU(Tg) are finite.

2. degly(Ty UT) = 0 iff degl;(T1) = 0 and deg{y(T2) = 0, i.e. Ty U T, is quasi-Urbanik iff 71 and
T, are quasi-Urbanik.

3. If degZU(Tl LT5) > 0, then it is finite iff degZU(Tl) > 0 is finite and M is finite, or degZU(Tg) >0
is finite and M is finite. Here,

degqy(T1 U To) = max{|Mi| + degiy(T2), | Ma| + deggy: (Th)}-

Corollary 4. Let T be the family of all theories of form 77 U T5. Then DEGy qu(7) = DEG2 qu.

&5 Degrees of quasi-Urbanikness for compositions of structures and their theories

Recall the notions of composition for structures and theories.

Definition 4. [16] Let M and N be structures of relational languages ¥, and X respectively. We
define the composition M[N] of M and N satisfying the following conditions:

jU ZA4Mﬂ =XmUXN;

2) M[N] = M x N, where M[N], M, N are universes of M[N], M, and N respectively;

3)if R € Bm\En, u(R) = n, then ((a1,b1), ..., (an,bn)) € Raqn if and only if (a1, ..., an) € Rag;
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4) if R € Y\ X m, p(R) = n, then ((a1,b1),...,(an,bn)) € Ryqpnq if and only if a1 = ... = ay,
and (b1,...,b,) € Ryr;

5)if R € X mNEpr, u(R) = n, then ((a1,b1), ..., (an,bn)) € Rpyqpq if and only if (a1, ..., an) € R,
ora; =...=ay and (by,...,b,) € Ry

The theory T = Th(M[N]) is called the composition Ti[T»] of the theories T} = Th(M) and
Ty = Th(N).

By the definition, the composition M[N] is obtained replacing each element of M by a copy of N.

Definition 5. [16]. The composition M[N] is called E-definable if M[N] has an (-definable equiv-
alence relation E E-classes of which are universes of the copies of N forming M[N].

Proposition 3. Let M|N| be an E-definable composition consisting of copies N;, i € I, of the
structure N, A C M[N]. Then:

1) aclyag(A4) = Uacly; (AN N;) U U acly; (0);
i NJ/EEaclM[N]/E(A/E)

2) dClM[N] (A) = U dClM (A N Nz) U U dCle (@)
i Nj/Eedclyn/ (A E)

Proof. 1. By the definition of F-definable composition, formulae define both E-classes by means of
the language for M and subsets of E-classes by means of the language for N/. Therefore formulae in
the language for M[N] define both algebraic sets of E-classes in the quotient M[N]/E and algebraic
sets inside copies N; of N. Thus acl MmN (A) is composed by algebraic sets inside copies N; containing
elements of A and defined by restrictions AN N;, and by algebraic sets of E-classes with respect to the
quotient A/E in M[N]/E. In the latter case defining finitely many E-classes containing copies N,
we collect acly;, (), obtaining the required equality.

2. We repeat the arguments above replacing algebraic closures by definable ones. (Il

The following theorem describes possibilities of deggU(M[N ]) with respect to characteristics of
given predicate structures M and N.

Theorem 8. For any E-definable composition M[N] the following conditions hold:

1) if A is finite and deggy(A) = 0, then deggy (M[N]) = deggy(M);

2) if N is finite and degiy(N) > 0, then degiy(MIN]) = deggy(N) - [M] for finite M and
deggU(./\/l [V]) = oo for infinite M; these equalities stay valid for infinite A/ with positive natural
deg?,U (N);

3) if NV is infinite and deggU(N) =0, then deggU(M[/\/']) = 0;

4) if N is infinite and deggU(/\/’) = 00, then deggU(./\/l NV]) = <.

Proof. 1. Let N be finite and deggU (N) = 0. It implies that for any set A C N, its algebraic closure
equals definable one. Now taking elements in each copy of N laying in M|N] such that these copies
correspond to elements in M witnessing deggU(M), we obtain algebraic closures composed by copies
of N correspondent to elements of algebraic closures in M and reduced to definable ones. Thus, using
algebraic sets in algebraic closures described in Proposition 3, we obtain deggy(M[N]) = degiy(M).

2. Let degf'lU(./\/' ) =n € w)\ {0}. Since copies of N in M[N] become quasi-Urbanik marking
independently appropriate n elements, we have to mark these elements by constants all together
obtaining degiU(./\/l N]) =n-|M| If deggU(N) = 00, then each copy of N in M|N] can not become
quasi-Urbanik after marking by finitely many constants implying degaU (MIN]) = .

3. Let NV be infinite and degiU (N) = 0. Then algebraic closures are definable inside any copy of
N in M|N] and, as A be infinite, this property is preserved for links between distinct copies of N in
MINT in view of Proposition 3. Thus deggy (MIN]) = 0.
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4. We repeat arguments for Item 2 with infinite A if deggy(A) = oo, then no finite set can
transform an algebraic closure into a definable one implying deggU(M N]) = 0. O
Remark 3. 1t is shown in [16] that E-definable compositions M[N] uniquely define theories Th(M[N])

by theories Th(M) and Th(N') and types of elements in copies of N are defined by types in these
copies and types for connections between these copies.

In view of Theorem 8 and Remark 3 we have the following:

Corollary 5. For any E-definable composition M[N] and the theories T} of M, T5 of N, and T} [T5]
of M[N] the following conditions hold:

1) if NV is finite and deggU(T) =0, then degiU(Tl [Ty]) = deg?lU(Tl);

2) if NV is finite and deggU(Tg) > 0, then degiU(Tl[Tg]) = deggU(Tg) - |M| for finite M and
deggU(Tl [Tz]) = oo for infinite M; these equalities stay valid for infinite A/ with positive natural

3 .
degqU (T2>7

3) if NV is infinite and deggU(Tg) =0, then degaU(Tl [T3]) = 0;

4) if N is infinite and deggU(Tg) = 00, then deggU(Tl [T3]) = oo.

The following theorem describes possibilities of degZU(M[N ]) with respect to characteristics of
given predicate structures M and N.

Theorem 9. For any E-definable composition M[N] the following conditions hold:

1) if NV is finite and degl;(A) = 0, then degly(M[N]) = degly(M) - |N|;

2) if N is finite and degly(N) > 0, then degly;(M[N]) = degly(N) + (M| — 1)|N| for finite M
and degly(M[N]) = oo for infinite M;

3) if AV is infinite and degZU(/\/') = 0, then degZU(/\/l[./\/']) =0;

4) if N is infinite and degly(N) > 0, then degly(M[N]) = degly(N) for [M| =1 and
degZU(/\/l[/\/]) = oo for [M| > 1.

Proof. 1. Let NV be finite and degZU (N) = 0. Then the value degZU(/\/l [N]) is reduced to the value
degZU(./\/l), where each element in a set witnessing this value is replaced by a copy of . Since all
elements of these copies are involved to witness degZU (M[N1]), we obtain degZU(M[/\/']) = degZU(/\/l) .
N|.
| ’2. Let AV be finite and degZU (N) > 0. In such a case each copy of N' M[N] should contain copies
of sets witnessing degZU (N). Moreover, since elements of one copy can not reduce algebraic closures to
definable ones in other copies, the set witnessing the value degZU(./\/l[./\/]) has to contain all elements
in all copies of N besides one. Thus, degZU(M[N]) = degZU(j\/') + (|[M| — 1)|N| for finite M and
degy(M[N]) = oo for infinite M.

3. If NV is infinite and degZU (N) = 0, then neither links between elements of M nor links between
elements of N can give algebraic sets which are not reduced to definable ones. In view of Proposition
3, we obtain degl;(M[N]) = 0.

4. Let N be infinite and degZU(N) > 0. If |[M| = 1, then M[N] is reduced to N implying
degly(M[N]) = degly(N). Otherwise algebraic closures in M[N] are reduced to algebraic clo-
sures inside copies N; of A and finite possibility of degZU(J\/}) is witnessed by arbitrary subsets
in other copies of N' which are infinite. Then in any case, finite or infinite degZU(/\/;-), we obtain
deg?y(M[NT]) = oo. O

In view of Theorem 8 and Remark 3 we have the following:

Corollary 6. For any E-definable composition M[N] and the theories 71 of M, T5 of N, and T} (T3]
of M[N], the following conditions hold:
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1) if NV is finite and degZU(TQ) =0, then degZU(Tl [Ty]) = degZU(Tl) - |NY;

2) if N is finite and degly(7T2) > 0, then degly(T1[T%]) = degly(Th) + (|M| — 1)|N| for finite M
and degZU (T1[T3]) = oo for infinite M;

3) if AV is infinite and deg;(73) = 0, then degly (T1[T3]) = 0;

4) if N is infinite and degZU(Tg) > 0, then degZU(Tl[Tg]) = degZU(TQ) for M| =1 and
degZU(Tl[Tg]) = oo for M| > 1.

6 Quasi-Urbanikization

Definition 6. An expansion M’ of a structure M is called a quasi- Urbanikization if M’ is quasi-
Urbanik. If 7" = Th(M’) is quasi-Urbanik for a quasi-Urbanikization M’ of M, then T" is a quasi-
Urbanikization of the theory Th(M).

Remark 4. Let M’ be a namization, or a constantization of a structure M, i.e. naming each
element of M by constants. Clearly, M’ is a quasi-Urbanikization of M whereas this property does
not guarantee it for the theory Th(M’), as illustrated in Example 2.

Here, if M is finite, then any its namization M’ produces a quasi-Urbanikization Th(M’) of the
theory Th(M).

Remark 5. Let M be an infinite structure of an equivalence relation E each FE-class of which
contains n elements. We expand M by a unary predicate R, choosing unique element in each E-class,
and by unary function f forming a cycle on each E-class F(a) and including all elements of E(a).
Thus we obtain a quasi-Urbanikization both for M and for the theory 7' = Th(M). The operator
producing that quasi-Urbanikization is called the R-cyclification of the structure M and its theory T

It is essential here that M is infinite since the considered cyclification preserves acl(()) which is not
equal to dcl(P) =0 for |[M| € w\ {0,1}.

More generally, we can define cyclifications for algebraic @-complete formulae ¢(x, @), introducing
(I(@) 4 2)-ary predicates R'(x,y,z) such that R'(x,y,a) defines a cycle on (M, a) of length |p(M,a)|,
as the R-cyclification for F-classes above.

These possibilities of quasi-Urbanikization can be considered as variations of almost quasi-Urba-
nikness.

In view of Remarks 4 and 5, we have the following:

Proposition 4. Any structure M admits a quasi-Urbanikization, i.e. M has a quasi-Urbanik ex-
pansion M’.

A natural question arises on the possibility of quasi-Urbanikization of an arbitrary theory T'.

Conclusion

We introduced the notions of almost quasi-Urbanik structures and theories, and studied possi-
bilities for the degrees of quasi-Urbanikness, both for existential and universal cases. Links of these
characteristics and their possible values are described. We studied these values for linearly ordered,
preordered and spherically ordered structures and theories as well as for strongly minimal ones, and
for some natural operations including disjoint unions and compositions of structures and theories. A
series of examples illustrates possibilities of these characteristics. It would be interesting to continue
this research, describing possible values of degrees for natural classes of structures and their theories.
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