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The notions of almost quasi-Urbanik structures and theories, and studied possibilities for the degrees of
quasi-Urbanikness, both for existential and universal cases were introduced. Links of these characteristics
and their possible values are described. These values for structures of unary predicates, equivalence rela-
tions, linearly ordered, preordered and spherically ordered structures and theories as well as for strongly
minimal ones, and for some natural operations including disjoint unions and compositions of structures and
theories were studied. A series of examples illustrates possibilities of these characteristics.
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Introduction

The property of quasi-Urbanikness allows to clarify and describe structural properties in various
classes of structures and theories, including strongly minimal ones [1, 2]. These properties can be
classified using natural semantic and syntactic characteristics. A series of results on these characteristics
are obtained in general [3], for abelian groups [4], for variations of rigidity in general [5] and for ordered
structures [6], etc.

In the present paper we continue to study related characteristics introducing the notions of almost
quasi-Urbanik structures and theories, and their existential and universal degrees. Possibilities of
these degrees are described both in general and for a series of natural structures and theories including
structures and theories of unary predicates, equivalence relations, ordered structures and theories,
strongly minimal structures and theories, disjoint unions and compositions of structures and theories.
We illustrate possibilities of degrees by a series of examples.

The paper is organized as follows. The notions of almost quasi-Urbanik structures and theories,
degrees and their spectra are described in general, for unary predicates, and equivalence relations are
described in Section 1. In Section 2, degrees of quasi-Urbanikness are described for ordered theories
including spherically ordered and some preordered ones. Degrees of quasi-Urbanikness and links for
dimensions are studied in Section 3. In Sections 4 and 5, we describe possibilities of degrees of quasi-
Urbanikness for disjoin unions and E-definable compositions, respectively. In Section 6, we discuss
some general operators transforming a given structure into quasi-Urbanik one.
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Almost quasi-Urbanik structures and theories

1 Almost quasi-Urbanik structures, their theories and degrees

Let L be a countable first-order language. Throughout we consider L-structures and their complete
elementary theories; and we use standard model-theoretic notions and notations [7–10].

Following [1], a theory T is called strongly minimal if for any formula ϕ(x, ā) of language obtained
by adding parameters of a (in a modelM |= T ) to the language of T , either ϕ(x, ā), or ¬ϕ(x, ā) has
finitely many solutions.

Following [11], for n ∈ ω \ {0} and a set A, an element b is called n-algebraic over A if a ∈ acl(A)
and it is witnessed by a formula ϕ(x, a), for a ∈ A, with at most n solutions. The set of all n-algebraic
elements over A is denoted by acln(A). If A = acln(A), then A is called n-algebraically closed. A type
p is n-algebraic if it is realized by at most n tuples only, i.e., deg(p) ≤ n. The complete n-algebraic
types p(x) ∈ S(A) are exactly ones of the form tp(a/A), where a is n-algebraic over A, i.e., with
deg(a/A) ≤ n. Here deg(a/A) = k ≤ n defines the n-degree degn(a/A) of tp(a/A) and of a over A.
If acl(A) = acln(A) then minimal such n is called the degree of algebraization over the set A and it is
denoted by degacl(A). If that n does not exist, then we put degacl(A) =∞. The supremum of values
degacl(A) with respect to all sets A of given theory T is denoted by degacl(T ) and called the degree of
algebraization of the theory T .

Following [2], theories T with degacl(T ) = 1, i.e., with defined cl1(A) for any set A of T , are called
quasi-Urbanik, and the modelsM of T are quasi-Urbanik, too.

Remark 1. Notice that if a structure M is quasi-Urbanik it does not guarantee that its theory
T = Th(M) is quasi-Urbanik, too. Indeed, let M be a strongly minimal structure consisting of
infinitely many two-element equivalence classes E(a). Marking one element a in each E-class by a
constant ca, we obtain a syntactically rigid structure M′, with definable b ∈ E(a) \ {a} by formulae
E(x, ca) ∧ ¬x ≈ ca. At the same time M′ has an elementary extension N with some unmarked
E-classes. These E-classes fail the quasi-Urbanikness of T .

Definition 1. A theory T is called almost quasi-Urbanik, if some expansion of T by finitely many
constants is quasi-Urbanik, and the modelsM of T are almost quasi-Urbanik, too. If a finite set A of
constants produces a quasi-Urbanik expansion TA of T then we say that A witnesses that T is almost
quasi-Urbanik.

The least cardinality of the witnessing set A is called the quasi-Urbanik ∃-degree of T and it is
denoted by deg∃qU(T ). If these finite sets A do not exist, we put deg∃qU(T ) = ∞. The minimal
cardinality n ∈ ω such that each set A of cardinality n produces the quasi-Urbanik theory TA is called
the quasi-Urbanik ∀-degree of T and it is denoted by deg∀qU(T ). If such n does not exist, then we
put deg∀qU(T ) = ∞. Similarly it is transformed to the models M of T with quasi-Urbanik ∃-degrees
deg∃qU(M) and ∀-degrees deg∀qU(M).

Clearly, for any theory T , deg∃qU(T ) = 0 iff deg∀qU(T ) = 0, and iff T is quasi-Urbanik. Thus, by the
definition, any quasi-Urbanik theory is almost quasi-Urbanik.

Besides, for any theory T ,
deg∃qU(T ) ≤ deg∀qU(T ) (1)

implying that if T is not almost quasi-Urbanik then deg∃qU(T ) = deg∀qU(T ) =∞, and vice versa.
The following example shows that the difference in the inequality (1) can be arbitrary:
Example 1. LetM be a structure of an equivalence relation E, T = Th(M). Clearly, T is quasi-

Urbanik iff M has 0, 1 or infinitely many one-element E-classes, 0 or infinitely many two-element
E-classes, and does not have finite E-classes with at least three elements, producing deg∃qU(T ) =

deg∀qU(T ) = 0. In particular, M with zero, one or infinitely many one-element E-classes, zero or
infinitely many two-element E-classes, and without n-element E-classes, for n ≥ 3, is quasi-Urbanik.

A finite value deg∃qU(T ) means that we can collect a finite set A containing m − 1 elements in
singletons E(a), if there are m ∈ ω \ {0, 1} these singletons, a finite set B containing m elements
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in pairwise distinct two-element E-classes E(b), if there are m ∈ ω \ {0} these E-classes, and a
finite set C containing n − 1 elements in each E-class E(a) of finite cardinality n ≥ 3, obtaining
deg∃qU(T ) = |A| + |B| + |C|. Here deg∃qU(T ) = |C| if there are 0, 1 or infinitely many one-element
E-classes, and there are 0 or infinitely many two-element E-classes.

At the same time, ifM is not quasi-Urbanik, then deg∀qU(T ) is finite iffM is finite. In such a case
ifM contains k singletons E(a) and m two-element E-classes, then deg∀qU(T ) = k − 1, ifM consists
of E-singletons, and deg∀qU(T ) = k+ 2m− 1, ifM consists of one-element and two-element E-classes,
and ifM contains n-element E-classes, for n ≥ 3, then deg∀qU(T ) = |M | − 1.

In view of Example 1 we have the following theorem describing possibilities of quasi-Urbanik de-
grees:

Theorem 1. For any µ, ν ∈ (ω\{0})∪{∞} with µ ≤ ν there is a theory Tµ,ν such that deg∃qU(Tµ,ν) = µ

and deg∀qU(Tµ,ν) = ν.

For a theory T we denote by deg2,qU(T ) the pair
(
deg∃qU(T ),deg∀qU(T )

)
of quasi-Urbanik degrees

for T .
In view of the inequality (1) and Theorem 1 the set

DEG2,qU = {(0, 0)} ∪ {(µ, ν) ∈ ((ω \ {0}) ∪ {∞})2 | µ ≤ ν} (2)

collects the spectrum of all possibilities for deg2,qU(T ).
For a family T of theories we denote by DEG2,qU(T ) the restriction of DEG2,qU to the family of

theories in T :
DEG2,qU(T ) = {deg2,qU(T ) | T ∈ T }.

The operator DEG2,qU(·): T 7→ DEG2,qU(T ) is monotone: indeed, if T1 ⊆ T2 then we have
DEG2,qU(T1) ⊆ DEG2,qU(T2). Hence, if DEG2,qU(T1) = DEG2,qU and DEG2,qU(T1) = DEG2,qU then

DEG2,qU(T2) = DEG2,qU.

A natural question arises on a description of spectra DEG2,qU(T ) for various families of theories.
Below we will give partial answers to this question.

Similarly to theories, for any structure M, deg∃qU(M) = 0 iff deg∀qU(M) = 0, and iff M is quasi-
Urbanik. Thus, by the definition any quasi-Urbanik structure is almost quasi-Urbanik.

Besides, for any structureM,
deg∃qU(M) ≤ deg∀qU(M) (3)

implying that if M is not almost quasi-Urbanik then deg∃qU(M) = deg∀qU(M) = ∞. Example 1 also
illustrates that the difference in the inequality (3) can be arbitrary.

For any modelM of a theory T we have:

deg∃qU(M) ≤ deg∃qU(T ) (4)

and
deg∀qU(M) ≤ deg∀qU(T ). (5)

Indeed, if a set A of constants produces quasi-Urbanik theory TA then its model MA is quasi-
Urbanik, too. At the same time, as the following example shows, the inequalities (4) and (5) can be
strict.
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Example 2. Let M be a strongly minimal structure of an equivalence relation E consisting of
infinitely many n-element E-classes such that there is an E-class E(a) elements of which are not marked
by constants and all elements in M \ E(a) are marked by constants. We have deg∃qU(M) = n − 1,
witnessed by the set E(a) \ {a}, whereas deg∃qU(Th(M)) =∞ since new E-classes in strict elementary
extensions ofM fail the quasi-Urbanikness.

IfM0 is an elementary substructure ofM which does not contain E(a) thenM0 is quasi-Urbanik,
with deg∀qU(M0) = deg∃qU(M0) = 0, whereas for T = Th(M) = Th(M0), deg∀qU(T ) = deg∃qU(T ) =∞.

Example 2 illustrates that there are (almost) quasi-Urbanik structures theories of which are not
almost quasi-Urbanik.

The list of inequalities (4) and (5) is extended by the following:

deg∃qU(M) ≤ deg∃-syntrig (M). (6)

Indeed, the inequality (6) holds for any structureM since dcl(A) = M implies that dcl(B) = M =

acl(B) for any B ⊇ M , i.e. MA is quasi-Urbanik, with deg∃qU(M) ≤ |A| = deg∃-syntrig (M), where A
witnesses the value deg∃-syntrig (M).

The inequality (6) can be arbitrarily strict since any unar M with a successor function s(x) is
quasi-Urbanik, with deg∃qU(M), whereas that unar can have arbitrarily many connected components.
The finite number of connected components equals deg∃-syntrig (M), and if there are infinitely many
connected components, then deg∃-syntrig (M) =∞.

Similarly to the inequality (6) we have the inequality:

deg∀qU(M) ≤ deg∀-syntrig (M).

The following assertion shows that if a theory T is almost quasi-Urbanik, with finite degrees, then
the equalities in (4) and (5) hold:

Proposition 1. If a theory T is almost quasi-Urbanik, then each model M of T is almost quasi-
Urbanik, too, with deg∃qU(M) = deg∃qU(T ). Moreover, if deg∀qU(T ) is finite, then we have deg∀qU(M) is
finite, too, with deg∀qU(M) = deg∀qU(T ).

Proof. Let deg∃qU(T ) = n ∈ ω. Then T admits an expansion TA by a set A of constants, with
minimal cardinality n, such that TA is quasi-Urbanik: deg∃qU(TA) = 0. Since a model M of T is
expansible till a modelMA of TA and the property deg∃qU(T ) = n is expressed syntactically containing a
description that (n−1)-element sets do not produce the quasi-Urbanikness, it is satisfies inM implying
deg∃qU(M) = n. Similar arguments witness that if deg∀qU(T ) = n ∈ ω, then deg∀qU(M) = deg∀qU(T ) for
anyM |= T . �

Let Σ1 be a signature of both unary predicate symbols and constant symbols.
The following theorem describes the behavior of almost quasi-Urbanikness of theories in the signa-

ture Σ1.

Theorem 2. Let T be a theory of a signature Σ1,M |= T . Then the following conditions hold:
1) T is quasi-Urbanik iff each algebraic 1-type over ∅ has a unique realization;
2) T is almost quasi-Urbanik iff T has finitely many algebraic 1-types p1, . . . , pn over ∅ with at

least two realizations; here deg∃qU(T ) =
n∑
i=1

(|pi(M)| − 1);

3) deg∀qU(T ) > 0 is finite iff M is finite and has an algebraic 1-type p ∈ S(∅) with at least two
realizations; here deg∀qU(T ) = |M | − 1.
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Proof. Without loss of generality we assume that constant symbols are replaced by unary pred-
icates with unique solutions. In view of the signature Σ1 there are no links between elements and
algebraic sets are defined by Boolean combinations of given unary predicates such that these Boolean
combinations have finitely many solutions. Thus, the quasi-Urbanikness means that these complete
Boolean combinations defining acl(∅) defines singletons producing Item 1.

The almost quasi-Urbanikness of T means that algebraic 1-types p become definable after fixing
all their realizations except one for each type p. It confirms Item 2.

If deg∀qU(T ) ∈ ω \ {0}, then T is almost quasi-Urbanik and is not quasi-Urbanik. Using 1) and 2)
we find an algebraic 1-type p ∈ S(∅) with at least two realizations. NowM is finite and the (|M |− 1)-
element subsets of M confirm the value deg∃qU(T ) since the smaller quantity can not cover universally
|p(M)| − 1 realizations of p. �

In view of the equality (2) and Theorem 2, we have the following:
Corollary 1. Let T be the family of theories in signatures of the form Σ1. Then

DEG2,qU(T ) = DEG2,qU.

Clearly, any theory of a finite structure is almost quasi-Urbanik. At the same time, as the following
example shows, there are almost quasi-Urbanik theories of infinite structures which are not quasi-
Urbanik.

Example 3. Let M be a countable structure of an equivalence relation E with one two-element
E-class E0 = {a, b} and two infinite E-classes Ea and Eb such thatM is supplied by a binary relation
R = {(a, a′) | a′ ∈ Ea} ∪ {(b, b′) | b′ ∈ Eb}. For T = Th(M), we have deg∀qU(T ) = 1 since dcl(∅) = ∅,
E0 = acl(∅), and M = dcl({d}) for any element d ∈ M , producing dcl(A) = acl(A) for any nonempty
A ⊆ M . deg∃qU(T ) = 1, too. Thus, deg2,qU(T ) = (1, 1). The theory T is ω-categorical and ω-stable
with Morley rank 1 and Morley degree 2: MR(T ) = 1, deg(T ) = 2.

Below we will show that natural values deg∀qU(T ) ≥ 1 can not be realized in the class of strongly
minimal theories, i.e. Morley characteristics in Example 3 are minimally possible.

2 Spectra of almost quasi-Urbanikness for ordered structures and their theories

Example 4. LetM be a structure of an equivalence relation E expanded by a linear order on the
quotient M/E, i.e., M is a preordered set by a preorder ≤ such that maximal antichains form the
equivalence relation E such that elements in distinct E-classes are ≤-comparable. Besides, E =≤ ∩ ≥.

Clearly, T = Th(M) is quasi-Urbanik iff E has either one-element or infinite E-classes. Moreover,
any linearly ordered structureM is quasi-Urbanik, i.e. deg2,qU(T ) = (0, 0).

Since elements of each E-class E(a) are connected by automorphisms over sets of elements in other
E-classes, the possibilities of values deg∃qU(M) and deg∀qU(M) repeat ones in Example 1. Here, ifM
has finitely many one-element E-classes then all these E-classes are contained in dcl(∅).

In particular, Th(M) is almost quasi-Urbanik with deg∃qU(Th(M)) > 0 iffM has a finite E-class
with at least two elements and there are finitely many these E-classes, and deg∃qU(Th(M)) ∈ ω \ {0}
iffM is quasi-Urbanik, orM is finite with some E-class containing at least two elements.

In view of Example 4 we have the following modification of Theorem 1:
Theorem 3. Let Tpo be the family of theories of preordered structures. Then

DEG2,qU(Tpo) = DEG2,qU.

Definition 2. [12,13]. The following generalization of linear and circular orders produces an n-ball,
or n-spherical, or n-circular order relation, for n ≥ 2, which is described by an n-ary relation Kn

satisfying the following conditions:
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(nso1) for any even permutation σ on {1, 2, . . . , n},

∀x1, . . . , xn
(
Kn(x1, x2, . . . , xn)→ Kn

(
xσ(1), xσ(2) . . . , xσ(n)

))
;

(nso2) ∀x1, . . . , xn
(

(Kn(x1, . . . , xi, . . . , xj , . . . , xn)∧

∧Kn(x1, . . . , xj , . . . , xi, . . . , xn))↔
∨

1≤k<l≤n
xk ≈ xl

)
for any 1 ≤ i < j ≤ n;

(nso3) ∀x1, . . . , xn

(
Kn(x1, . . . , xn)→

→ ∀t

(
n∨
i=1

Kn(x1, . . . , xi−1, t, xi+1, . . . , xn)

) )
;

(nso4) ∀x1, . . . , xn(Kn(x1, . . . , xi, . . . , xj , . . . , xn)∨

∨Kn(x1, . . . , xj , . . . , xi, . . . , xn)), 1 ≤ i < j ≤ n.

The axioms above produce linear orders K2 and circular orders K3.
Structures M = 〈M,Kn〉 with n-spherical orders Kn are called n-spherically ordered sets, or

n-spherical orders, too. If a structureM contains a n-spherical order, thenM is called a n-spherically
ordered structure, or simply spherically ordered structure if n is known.

An n-spherically ordered set 〈A,Kn〉, where n ≥ 2, is called dense if it contains at least two elements
and for each (a1, a2, a3, . . . , an) ∈ Kn with a1 6= a2 there is b ∈ A \ {a1, a2, . . . , an} such that

|= Kn(a1, b, a3, . . . , an) ∧Kn(b, a2, a3, . . . , an).

Following [14], n-spherical orders Kn on infinite setsM witness the strict order property producing
unstable structures 〈M,Kn〉, since fixing n− 2 distinct coordinates a1, . . . , an−2 in the relation Kn, we
obtain a linear order on M \ {a1, . . . , an−2}.

As any linearly ordered structure is quasi-Urbanik, we obtain the following:
Theorem 4. Any n-spherically ordered structure M has an almost quasi-Urbanik theory T with

deg∀qU(T ) ≤ n− 2.
Remark 2. The inequality in Theorem 4 can be strict and can produce the equality. Indeed, ifM is

a dense spherical order, thenM is quasi-Urbanik, with deg∀qU(Th(M)) = 0, since dcl(A) = acl(A) = A
since the theory Th(M) has quantifier elimination [13] without possibilities to define new algebraic
elements, outside A.

At the same time ifM′ is an expansion ofM by a unary predicate Pm containing m > 1 elements,
then we have to fix n− 2 arbitrary elements in M producing a quasi-Urbanik expansion that implies
deg∀qU(Th(M′)) = n− 2. Here the value deg∃qU(Th(M′)) can vary depending on m: it is equal m− 1
for m− 1 < n− 2, and equals n− 2 if m− 1 ≥ n− 2.

In view of the equality (2), Theorem 4 and Remark 2, we have:

Theorem 5. Let Tso be the family of theories of spherically ordered structures. Then

DEG2,qU(Tso) = {(0, 0)} ∪ {(m,n) | m,n ∈ ω \ {0},m ≤ n} =

= DEG2,qU \ {(µ,∞) | µ ∈ (ω \ {0}) ∪ {∞}}.
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The following examples illustrate possibilities for deg2,qU(T ) = (m,n) for extensions of spherically
ordered structures by two new elements.

Example 5. LetM1,2 be a countable structure of an equivalence relation E with one two-element
E-class E0 = {a1, a2} and one infinite E-class E1 such that E1 is supplied by a binary relation < of
dense linear order without endpoints, andM is supplied by a ternary relation R3 consisting of triples
(a1, b1, b2) and (a2.b2.b1) for any b1 < b2. For the theory T1,2 = Th(M1,2), we have deg∃qU(T1,2) = 1

and deg∀qU(T1,2) = 2 since dcl(∅) = ∅, E0 = acl(∅), E0 = dcl({ai}) = dcl({ai, b1}) = dcl({b1, b2}),
i = 1, 2, b1, b2 ∈ E1, b1 6= b2, producing dcl(A) = acl(A) for any A ⊆ M1,2 with |A| ≥ 2. Thus
deg2,qU(T1,2) = (1, 2).

Now we modify the theory T1,2 replacing inM1,2 the linear order < by a dense n-spherical order
Kn [13], n ≥ 3, reduced to the strict one K∗n, i.e. the reduction of the spherical order to the set of
tuples with pairwise distinct coordinates. The relation Kn divides the set of n-tuples with pairwise
distinct coordinates in E1 into two parts such that the complement Kn of Kn in En1 equals the set of
odd permutations of tuples in K∗n. Instead of R3 we consider the (n+ 1)-ary relation Rn+1 collecting
tuples (a1, b), b ∈ K∗n, and tuples (a2, b), b ∈ Kn. For the obtained structureM1,n and its theory T1,n,
we have deg∃qU(T1,n) = 1 and deg∀qU(T1,n) = n since dcl(∅) = ∅, E0 = acl(∅), E0 = dcl({ai}) = dcl(b),
i = 1, 2, b ∈ E1 with pairwise distinct coordinates, l(b) = n, producing dcl(A) = acl(A) for any
A ⊆M1,n with |A| ≥ n. Thus, deg2,qU(T1,n) = (1, n).

3 Spectra of almost quasi-Urbanikness and relative dimensions of algebraic closures for strongly
minimal theories

Theorem 6. For any strongly minimal theory T either deg∀qU(T ) = 0 or deg∀qU(T ) =∞.

Proof. Let deg∀qU(T ) = m > 0, m ∈ ω. Taking a big saturated model M, we find an algebraic
set A ⊂ M with |A| = n > 1 such that A is definable by a complete formula ϕ(x, a) such that for
any m-tuple b ⊂ M , A is divided into singletons by formulae ψi(x, b), i = 1, . . . , n. Since the tuples
b are arbitrary, we can fix m− 1 coordinates and take one mobile coordinate, say m-th one, realizing
the unique non-algebraic type p(y) over A. Moreover, as the model M is big enough, elements of A
are connected by a-automorphisms and realizations of p(y) are connected by A-automorphisms. Since
A is finite and its elements are connected by a-automorphisms we can connect elements of A by a
fixed formula ψi with infinitely many realizations of p(y) such that ψi-images with respect to these
realizations are unique. As T is strongly minimal, M can not be divided into two infinite definable
parts. Thus, ψi-preimages of elements of A should be intersected contradicting the uniqueness of
ψi-images. �

In view of the equality (2), Theorem 6 and strongly minimal realizations of quasi-Urbanik degrees
in Example 1, we obtain the following:

Corollary 2. Let Tsm be the family of strongly minimal theories. Then

DEG2,qU(Tsm) = {(0, 0)} ∪ {(µ,∞) | µ ∈ (ω \ {0}) ∪ {∞}}.

Example 6. LetM = 〈M, s1〉 be a structure, where s(x) is the successor function, and Th(M) has
the following axioms:

A1 := ∀z∃! t s(z) = t,

A2 := ∃x1∃x2[x1 6= x2 ∧ ∀y1 s(y1) 6= x1 ∧ ∀y2 s(y2) 6= x2 ∧ ∀t(t 6= x1 ∧ t 6= x2 → ∃z s(z) = t)],

A3 := ∀x1∀x2∀t1∀t2[s(x1) = t1 ∧ s(x2) = t2 → (x1 6= x2 ↔ t1 6= t2)].

Thus, M consists of two disjoint copies of N, where N is the set of natural numbers. It can be
established that Th(M) is a strongly minimal theory. Further, we have: dcl(∅) = ∅, acl(∅) = M ,
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and dcl(A) = acl(A) for any non-empty A ⊆ M . Thus, acl(∅) \ dcl(∅) is infinite, Th(M) is almost
quasi-Urbanik and non-quasi-Urbanik.

We say that a set A is definably independent if a 6∈ dcl(A\{a}) for any a ∈ A. Denote by dimdcl(A)
the cardinality of maximal definably independent subset of A.

Observe that in Example 6 dimdcl(acl(∅) \ dcl(∅)) = 1.
Consider for every m ≥ 2 the following sentence:

Bm := ∃x1 . . . ∃xm[∧1≤i<j≤mxi 6= xj ∧ ∧mi=1∀y s(y) 6= xi ∧ ∀t(∧mi=1t 6= xi → ∃z s(z) = t)].

If we consider the structureM = 〈M, s1〉 with axioms A1, Bm and A3, then we have dimdcl(acl(∅)\
dcl(∅)) = m− 1.

Consider for every m ≥ 2 the following sentence:

Cm := ∃x1 . . . ∃xm[∧1≤i<j≤mxi 6= xj ∧ ∧mi=1∀y s(y) 6= xi].

If we consider the structureM = 〈M, s1〉 with axioms A1, A3 and {Cm | m ≥ 1}, then we lose the
strong minimality, and Th(M) is an ω-stable quasi-Urbanik theory of Morley rank 2 with acl(∅) = ∅.

Thus, we have the following proposition:

Proposition 2. For every natural m ≥ 1 there exists an almost quasi-Urbanik strongly minimal
theory such that acl(∅) \ dcl(∅) is infinite and dimdcl(acl(∅) \ dcl(∅)) = m.

The following example shows that if T is not almost quasi-Urbanik, then dimdcl(acl(∅)\dcl(∅)) = m
can be infinite.

Example 7. LetM = 〈M,E2〉 be a strongly minimal structure, where E is an equivalence relation
partitioning M into infinitely many n-element E-classes for some n ≥ 3. Let M′ be an expansion
of M by marking exactly one element from each E-class by a constant. Then we have that both
aclM′(∅) \ dclM′(∅) and dimdcl(aclM′(∅) \ dclM′(∅)) are infinite, but Th(M′) is not almost quasi-
Urbanik, cf. Example 1. At the same time, following Example 5, the theory Th(M′) admits a
cyclification producing a quasi-Urbanik expansion.

The following example produces a similar effect, as in Example 7, in the class of simple unstable
theories.

Example 8. Consider a predicate language L consisting of two unary predicate symbols P and Q,
two binary predicate symbols E and R, expanded by countably many constant symbols cn, n ∈ ω. We
construct a countable structure M with M = P ∪̇Q, where P and Q are countable, such that E is
an equivalence relation dividing P on three-element E-classes En with cn ∈ En, n ∈ ω, and having
one-element E-classes on Q. Now we interpret R as a random symmetric binary relation connecting
each element of Q with one element in each E(cn) \ {cn}, n ∈ ω.

We have dclM(∅) = {cn | n ∈ ω}, aclM(∅) =
⋃
n∈ω

E(cn), with infinite aclM(∅) \ dclM(∅). Thus the

structureM is not quasi-Urbanik. At the same timeM is almost quasi-Urbanik, since for any element
a ∈ Q the expansionM′ ofM by the constant ca for this element allows to define all elements of P :
dclM′(∅) = aclM′(∅) = P∪{ca}. Moreover, for any A ⊆M , dclM′(A) = aclM′(A) = dclM′(∅)∪(Q∩A).

Finally we observe that the theory Th(M) is not almost quasi-Urbanik, since M has elementary
extensions with three-element E-classes which are not marked by constants, and finitely many new
constants can not reduce algebraic closures to definable ones for these E-classes.

4 Degrees of quasi-Urbanikness for disjoint unions of structures and their theories

In this section we describe possibilities for degrees of quasi-Urbanikness for disjoint unions of struc-
tures and their theories. This description correlates with similar description for degrees of rigidity [5].
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Definition 3. [15] The disjoint union
⊔
n∈ω
Mn of pairwise disjoint structuresMn for pairwise disjoint

predicate languages Σn, n ∈ ω, is the structure of language
⋃
n∈ω

Σn ∪ {P (1)
n | n ∈ ω} with the universe⊔

n∈ω
Mn, Pn = Mn, and interpretations of predicate symbols in Σn coinciding with their interpretations

inMn, n ∈ ω. The disjoint union of theories Tn for pairwise disjoint languages Σn accordingly, n ∈ ω,
is the theory ⊔

n∈ω
Tn 
 Th

(⊔
n∈ω
Mn

)
,

whereMn |= Tn, n ∈ ω.
Clearly, the theory

⊔
n∈ω

Tn does not depend on choice of models Mn |= Tn. Besides, the notion

of disjoint union admits reductions to finitely many structures and theories, obtaining the structures
M1 t . . . tMn and their theories T1 t . . . t Tn.

Theorem 7. For any disjoint predicate structuresM1 andM2 the following conditions hold:
1. deg∃qU(M1 t M2) = deg∃qU(M1) + deg∃qU(M2), in particular, deg∃qU(M1 t M2) is finite iff

deg∃qU(M1) and deg∃qU(M2) are finite.
2. deg∀qU(M1 tM2) = 0 iff deg∀qU(M1) = 0 and deg∀qU(M2) = 0, i.e. M1 tM2 is quasi-Urbanik

iffM1 andM2 are quasi-Urbanik.
3. If deg∀qU(M1 t M2) > 0 then it is finite iff deg∀qU(M1) > 0 is finite and M2 is finite, or

deg∀qU(M2) > 0 is finite andM1 is finite. Here,

deg∀qU(M1 tM2) = max{|M1|+ deg∀qU(M2), |M2|+ deg∀qU(M1)}.

Proof word by word repeats the proof of Theorem 2 in [5] replacing degrees of rigidity by degrees
of quasi-Urbanikness. �

Theorem 7 immediately implies the following corollaries.

Corollary 3. For any disjoint predicate structures M1 and M2 and their theories T1 and T2,
respectively, the following conditions hold:

1. deg∃qU(T1 tT2) = deg∃qU(T1) + deg∃qU(T2), in particular, deg∃qU(T1 tT2) is finite iff deg∃qU(T1) and
deg∃qU(T2) are finite.

2. deg∀qU(T1 t T2) = 0 iff deg∀qU(T1) = 0 and deg∀qU(T2) = 0, i.e. T1 t T2 is quasi-Urbanik iff T1 and
T2 are quasi-Urbanik.

3. If deg∀qU(T1tT2) > 0, then it is finite iff deg∀qU(T1) > 0 is finite andM2 is finite, or deg∀qU(T2) > 0
is finite andM1 is finite. Here,

deg∀qU(T1 t T2) = max{|M1|+ deg∀qU(T2), |M2|+ deg∀qU(T1)}.

Corollary 4. Let T be the family of all theories of form T1 t T2. Then DEG2,qU(T ) = DEG2,qU.

5 Degrees of quasi-Urbanikness for compositions of structures and their theories

Recall the notions of composition for structures and theories.

Definition 4. [16] LetM and N be structures of relational languages ΣM and ΣN respectively. We
define the compositionM[N ] ofM and N satisfying the following conditions:

1) ΣM[N ] = ΣM ∪ ΣN ;
2) M [N ] = M ×N , where M [N ], M , N are universes ofM[N ],M, and N respectively;
3) if R ∈ ΣM\ΣN , µ(R) = n, then ((a1, b1), . . . , (an, bn)) ∈ RM[N ] if and only if (a1, . . . , an) ∈ RM;
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4) if R ∈ ΣN \ ΣM, µ(R) = n, then ((a1, b1), . . . , (an, bn)) ∈ RM[N ] if and only if a1 = . . . = an
and (b1, . . . , bn) ∈ RN ;

5) if R ∈ ΣM∩ΣN , µ(R) = n, then ((a1, b1), . . . , (an, bn)) ∈ RM[N ] if and only if (a1, . . . , an) ∈ RM,
or a1 = . . . = an and (b1, . . . , bn) ∈ RN .

The theory T = Th(M[N ]) is called the composition T1[T2] of the theories T1 = Th(M) and
T2 = Th(N ).

By the definition, the compositionM[N ] is obtained replacing each element ofM by a copy of N .

Definition 5. [16]. The compositionM[N ] is called E-definable ifM[N ] has an ∅-definable equiv-
alence relation E E-classes of which are universes of the copies of N formingM[N ].

Proposition 3. Let M[N ] be an E-definable composition consisting of copies Ni, i ∈ I, of the
structure N , A ⊆M [N ]. Then:

1) aclM[N ](A) =
⋃
i

aclNi(A ∩Ni) ∪
⋃

Nj/E∈aclM[N ]/E(A/E)

aclNj (∅);

2) dclM[N ](A) =
⋃
i

dclNi(A ∩Ni) ∪
⋃

Nj/E∈dclM[N ]/E(A/E)

dclNj (∅).

Proof. 1. By the definition of E-definable composition, formulae define both E-classes by means of
the language forM and subsets of E-classes by means of the language for N . Therefore formulae in
the language forM[N ] define both algebraic sets of E-classes in the quotientM[N ]/E and algebraic
sets inside copies Ni of N . Thus aclM[N ](A) is composed by algebraic sets inside copies Ni containing
elements of A and defined by restrictions A∩Ni, and by algebraic sets of E-classes with respect to the
quotient A/E in M[N ]/E. In the latter case defining finitely many E-classes containing copies Nj ,
we collect aclNj (∅), obtaining the required equality.

2. We repeat the arguments above replacing algebraic closures by definable ones. �

The following theorem describes possibilities of deg∃qU(M[N ]) with respect to characteristics of
given predicate structuresM and N .

Theorem 8. For any E-definable compositionM[N ] the following conditions hold:
1) if N is finite and deg∃qU(N ) = 0, then deg∃qU(M[N ]) = deg∃qU(M);
2) if N is finite and deg∃qU(N ) > 0, then deg∃qU(M[N ]) = deg∃qU(N ) · |M | for finite M and

deg∃qU(M[N ]) = ∞ for infinite M; these equalities stay valid for infinite N with positive natural
deg∃qU(N );

3) if N is infinite and deg∃qU(N ) = 0, then deg∃qU(M[N ]) = 0;
4) if N is infinite and deg∃qU(N ) =∞, then deg∃qU(M[N ]) =∞.

Proof. 1. Let N be finite and deg∃qU(N ) = 0. It implies that for any set A ⊆ N , its algebraic closure
equals definable one. Now taking elements in each copy of N laying inM[N ] such that these copies
correspond to elements inM witnessing deg∃qU(M), we obtain algebraic closures composed by copies
of N correspondent to elements of algebraic closures inM and reduced to definable ones. Thus, using
algebraic sets in algebraic closures described in Proposition 3, we obtain deg∃qU(M[N ]) = deg∃qU(M).

2. Let deg∃qU(N ) = n ∈ ω \ {0}. Since copies of N in M[N ] become quasi-Urbanik marking
independently appropriate n elements, we have to mark these elements by constants all together
obtaining deg∃qU(M[N ]) = n · |M |. If deg∃qU(N ) =∞, then each copy of N inM[N ] can not become
quasi-Urbanik after marking by finitely many constants implying deg∃qU(M[N ]) =∞.

3. Let N be infinite and deg∃qU(N ) = 0. Then algebraic closures are definable inside any copy of
N inM[N ] and, as N be infinite, this property is preserved for links between distinct copies of N in
M[N ] in view of Proposition 3. Thus deg∃qU(M[N ]) = 0.
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4. We repeat arguments for Item 2 with infinite N : if deg∃qU(N ) = ∞, then no finite set can
transform an algebraic closure into a definable one implying deg∃qU(M[N ]) =∞. �

Remark 3. It is shown in [16] thatE-definable compositionsM[N ] uniquely define theories Th(M[N ])
by theories Th(M) and Th(N ) and types of elements in copies of N are defined by types in these
copies and types for connections between these copies.

In view of Theorem 8 and Remark 3 we have the following:

Corollary 5. For any E-definable compositionM[N ] and the theories T1 ofM, T2 of N , and T1[T2]
ofM[N ] the following conditions hold:

1) if N is finite and deg∃qU(T ) = 0, then deg∃qU(T1[T2]) = deg∃qU(T1);
2) if N is finite and deg∃qU(T2) > 0, then deg∃qU(T1[T2]) = deg∃qU(T2) · |M | for finite M and

deg∃qU(T1[T2]) = ∞ for infinite M; these equalities stay valid for infinite N with positive natural
deg∃qU(T2);

3) if N is infinite and deg∃qU(T2) = 0, then deg∃qU(T1[T2]) = 0;
4) if N is infinite and deg∃qU(T2) =∞, then deg∃qU(T1[T2]) =∞.

The following theorem describes possibilities of deg∀qU(M[N ]) with respect to characteristics of
given predicate structuresM and N .

Theorem 9. For any E-definable compositionM[N ] the following conditions hold:
1) if N is finite and deg∀qU(N ) = 0, then deg∀qU(M[N ]) = deg∀qU(M) · |N |;
2) if N is finite and deg∀qU(N ) > 0, then deg∀qU(M[N ]) = deg∀qU(N ) + (|M | − 1)|N | for finite M

and deg∀qU(M[N ]) =∞ for infiniteM;
3) if N is infinite and deg∀qU(N ) = 0, then deg∀qU(M[N ]) = 0;
4) if N is infinite and deg∀qU(N ) > 0, then deg∀qU(M[N ]) = deg∀qU(N ) for |M | = 1 and

deg∀qU(M[N ]) =∞ for |M | > 1.

Proof. 1. Let N be finite and deg∀qU(N ) = 0. Then the value deg∀qU(M[N ]) is reduced to the value
deg∀qU(M), where each element in a set witnessing this value is replaced by a copy of N . Since all
elements of these copies are involved to witness deg∀qU(M[N ]), we obtain deg∀qU(M[N ]) = deg∀qU(M) ·
|N |.

2. Let N be finite and deg∀qU(N ) > 0. In such a case each copy of N M[N ] should contain copies
of sets witnessing deg∀qU(N ). Moreover, since elements of one copy can not reduce algebraic closures to
definable ones in other copies, the set witnessing the value deg∀qU(M[N ]) has to contain all elements
in all copies of N besides one. Thus, deg∀qU(M[N ]) = deg∀qU(N ) + (|M | − 1)|N | for finite M and
deg∀qU(M[N ]) =∞ for infiniteM.

3. If N is infinite and deg∀qU(N ) = 0, then neither links between elements ofM nor links between
elements of N can give algebraic sets which are not reduced to definable ones. In view of Proposition
3, we obtain deg∀qU(M[N ]) = 0.

4. Let N be infinite and deg∀qU(N ) > 0. If |M | = 1, then M[N ] is reduced to N implying
deg∀qU(M[N ]) = deg∀qU(N ). Otherwise algebraic closures in M[N ] are reduced to algebraic clo-
sures inside copies Ni of N and finite possibility of deg∀qU(Ni) is witnessed by arbitrary subsets
in other copies of N which are infinite. Then in any case, finite or infinite deg∀qU(Ni), we obtain
deg∀qU(M[N ]) =∞. �

In view of Theorem 8 and Remark 3 we have the following:

Corollary 6. For any E-definable compositionM[N ] and the theories T1 ofM, T2 of N , and T1[T2]
ofM[N ], the following conditions hold:
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1) if N is finite and deg∀qU(T2) = 0, then deg∀qU(T1[T2]) = deg∀qU(T1) · |N |;
2) if N is finite and deg∀qU(T2) > 0, then deg∀qU(T1[T2]) = deg∀qU(T2) + (|M | − 1)|N | for finite M

and deg∀qU(T1[T2]) =∞ for infiniteM;
3) if N is infinite and deg∀qU(T2) = 0, then deg∀qU(T1[T2]) = 0;
4) if N is infinite and deg∀qU(T2) > 0, then deg∀qU(T1[T2]) = deg∀qU(T2) for |M | = 1 and

deg∀qU(T1[T2]) =∞ for |M | > 1.

6 Quasi-Urbanikization

Definition 6. An expansion M′ of a structure M is called a quasi-Urbanikization if M′ is quasi-
Urbanik. If T ′ = Th(M′) is quasi-Urbanik for a quasi-Urbanikization M′ of M, then T ′ is a quasi-
Urbanikization of the theory Th(M).

Remark 4. Let M′ be a namization, or a constantization of a structure M, i.e. naming each
element of M by constants. Clearly, M′ is a quasi-Urbanikization of M whereas this property does
not guarantee it for the theory Th(M′), as illustrated in Example 2.

Here, if M is finite, then any its namization M′ produces a quasi-Urbanikization Th(M′) of the
theory Th(M).

Remark 5. Let M be an infinite structure of an equivalence relation E each E-class of which
contains n elements. We expandM by a unary predicate R, choosing unique element in each E-class,
and by unary function f forming a cycle on each E-class E(a) and including all elements of E(a).
Thus we obtain a quasi-Urbanikization both for M and for the theory T = Th(M). The operator
producing that quasi-Urbanikization is called the R-cyclification of the structureM and its theory T .

It is essential here thatM is infinite since the considered cyclification preserves acl(∅) which is not
equal to dcl(∅) = ∅ for |M | ∈ ω \ {0, 1}.

More generally, we can define cyclifications for algebraic a-complete formulae ϕ(x, a), introducing
(l(a)+2)-ary predicates R′(x, y, z) such that R′(x, y, a) defines a cycle on ϕ(M, a) of length |ϕ(M, a)|,
as the R-cyclification for E-classes above.

These possibilities of quasi-Urbanikization can be considered as variations of almost quasi-Urba-
nikness.

In view of Remarks 4 and 5, we have the following:
Proposition 4. Any structure M admits a quasi-Urbanikization, i.e. M has a quasi-Urbanik ex-

pansionM′.
A natural question arises on the possibility of quasi-Urbanikization of an arbitrary theory T .

Conclusion

We introduced the notions of almost quasi-Urbanik structures and theories, and studied possi-
bilities for the degrees of quasi-Urbanikness, both for existential and universal cases. Links of these
characteristics and their possible values are described. We studied these values for linearly ordered,
preordered and spherically ordered structures and theories as well as for strongly minimal ones, and
for some natural operations including disjoint unions and compositions of structures and theories. A
series of examples illustrates possibilities of these characteristics. It would be interesting to continue
this research, describing possible values of degrees for natural classes of structures and their theories.
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