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Introduction

The Sturm-Liouville Problems (SLPs), or eigenvalue problems, for ordinary differential equations
play a very important role in theory and applications. These problems have been used to describe
a large number of physical, biological and chemical phenomena. Among others, we can refer to the
Sturm-Liouville analytical model of dirt transport in industrial washing of wool, which was developed
by Caunce et al. [1], the one-dimensional heat and mass diffusion modeling software provided by
Barouh and Mikhailov [2] as well as a set of boundary value models [3–6]. However, there are many
phenomena in nature that cannot be characterized by classical derivative models [7, 8].

Fractional calculus is a theory that unifies and generalizes the notions of integer order differenti-
ation and integration to any real or complex order. Various types of fractional derivative definitions
were introduced in history, which the most popular definitions of fractional derivatives among them are
Grünwald-Letnikov, Riemann-Liouville, Dzherbashyan-Caputo, Riesz-Fischer, two-scale fractal deriva-
tive [9] which is conformable with the traditional differential derivatives and a new fractional derivative
with non-local and no-singular kernel is Atangana-Baleanu’s fractional derivative [10] which is presented
and applied to solve the fractional heat transfer model. Over the last decade, it has been demonstrated
that many systems in science and engineering can be modeled more accurately by employing fractional
order rather than integer order derivatives [11–16]. Along with developing the research area of frac-
tional differential equations and applications, many studies have focused on the class of well-known
fractional Sturm-Liouville problems (FSLPs). These types of FSLPs, due to their importance, have
been a subject of numerous investigations, especially in various areas of science and in engineering
fields, for example, chemistry, electricity, mechanics, biology, control theory, and economics [17, 18].

Since it is generally challenging to find analytical solutions for these problems and also FSLPs
contain the composition of the left and right-sided derivative. Consequently, several numerical methods
have been devoted to seeking approximate solutions, such as the Adomain decomposition method [19],
Homotopy analysis method [20] and Fourier series [21].
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On the other hand, recently the FSLPs were studied by Kilmek and Agrawal in [22] and Rivero
et al. in [23]. We refer the reader for the higher order of SLPs to [24–26]. Similarly, Dehghan and
Mingarelli [27] obtained for the first time, asymptotic formulas of eigenvalues and eigenfunctions of 2α-
order FSLP. Also Erdal Bas et al. investigated the conformable SLPs by spectral analysis in [28] and
SLPs with a new generalized fractional derivative in [29], and Mortazaasl H. introduced two classes of
conformable fractional Sturm-Liouville problem [30]. Significant research on fractional derivatives and
numerical solutions of Sturm-Liouville problems can be mentioned by Babak Shiri [31, 32]. Moreover,
Jafari et al. in [33], studied the SLPs with a generalized fractional derivative.

It should be noted that since finding analytical solutions for transcendental function is a challenging
task, after studying, we realized that we can apply the asymptotic form of Mittag-Leffler’s function
to get the roots. The asymptotic behavior of Mittag-Leffler functions plays a very important role in
the interpretation of the solution of various problems of physics connected with fractional reaction,
fractional relaxation, fractional diffusion, and fractional reaction-diffusion, and so forth, in complex
systems. The asymptotic expansion of Eα,β(z) is based on the integral representation of the Mittag-
Leffler function in the form

Eα,β(z) =
1

2πi

∫
C

sα−β

sα − z
esds, <(α) > 0, <(β) > 0, s, α, β ∈ C, (1)

where the path of integration C is a loop which starts and ends at −∞ and encircles the circular disc
|s| ≤ |z|

1
α in the positive sense and −π ≤ arg s ≤ π on C (this curve is also the Hankel path). The

integral representation (1) is used to obtain the asymptotic expansion of the Mittag-Leffler function
at infinity [34].

In this work, the inverse Laplace transform method and the Asymptotic formula of the Mittag-
Leffler function are applied to obtain analytical solutions of FSLPs. Using the introduced method, we
obtained eigenvalues of the fractional Sturm-Liouville problems in three features. The results, show
the simplicity and efficiency of this method. This paper’s aim is to get an asymptotic formula for the
eigenvalues of fourth-order FSLPs.

The paper is organized as follows: In Section 1, we have introduced some necessary definitions and
preliminaries of fractional calculus theory. Three illustrative features are discussed in Section 2. The
last section includes our conclusion.

1 Preliminaries

In this section, we recall some definitions and properties of fractional calculus theory used in this
paper. The reader can refer for details to [35–37].

Definition 1. Let α ∈ R with α 6∈ N and α > 0. The left and the right Riemann-Liouville fractional
integrals Iαa+ and Iαb− of order α are defined by

Iαa+f(x) :=
1

Γ(α)

∫ x

a
(x− τ)α−1f(τ)dτ, x ∈ (a, b], (2)

and

Iαb−f(x) :=
1

Γ(α)

∫ b

x
(τ − x)α−1f(τ)dτ, x ∈ [a, b).

Γ(.) denotes the Euler Gamma function. The following property can be easily obtained.

Property 1. We have Iαa+C = (x−a)α

Γ(α+1)C and Iαb−C = (b−x)α

Γ(α+1)C. C is a constant.
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Definition 2. The left and the right Caputo fractional derivatives cDα
a+ and cDα

b− of order α are
defined by

cDα
a+f(x) :=

1

Γ(1− α)

∫ x

a
(x− τ)−αf ′(τ)dτ, x > a, (3)

and
cDα

b−f(x) :=
−1

Γ(1− α)

∫ b

x
(τ − x)αf ′(τ)dτ, x < b,

where f is differentiable and 0 ≤ α < 1.

Definition 3. The left and the right Riemann-Liouville fractional derivatives Dα
a+ and Dα

b− of order
0 ≤ α < 1 are defined by

Dα
a+f(x) :=

1

Γ(1− α)

d

dx

∫ x

a
(x− τ)−αf(τ)dτ, x > a, (4)

and

Dα
b−f(x) :=

−1

Γ(1− α)

d

dx

∫ b

x
(τ − x)−αf(τ)dτ, x < b. (5)

Property 2. If 0 < γ < 1 and g ∈ AC[a, b] and h ∈ Lq(a, b)(1 ≤ q <∞). Then we have∫ b

a
g(x)Dγ

a+
h(x)dx =

∫ b

a
h(x)cDγ

a+
g(x)dx+ g(x)I1−γ

a+
h(x) |x=b

x=a .

Property 3. Let 0 < α < β, then the following identities hold:

Iαa+(x− a)β−1 =
Γ(β)

Γ(β + α)
(x− a)β+α−1,

Dα
a+(x− a)β−1 =

Γ(β)

Γ(β − α)
(x− a)β−α−1,

Iαb−(b− x)β−1 =
Γ(β)

Γ(β + α)
(b− x)β+α−1,

Dα
b−(b− x)β−1 =

Γ(β)

Γ(β − α)
(b− x)β−α−1.

Property 4. For a ≤ x < b, 0 < α < 1, we have

Iαa+(b− x)α−1 =
(b− x)2α−1

Γ(α)

∫ 1

b−a
b−x

(1− w)α−1wα−1dw,

= −(b− x)2α−1

Γ(α)

(
B
( b− a
b− x

;α, α
)
−B(1;α, α)

)
,

where B(z;α, β) is the “Incomplete Beta function” defined by

B(z;α, β) =

∫ z

0
wα−1(1− w)β−1dw.

Property 5. If γ > 0 and g ∈ Lq(a, b) (1 ≤ q ≤ ∞), then the following equalities

Dγ
a+
◦ Iαa+g(x) = g(x),

Dγ
b− ◦ I

γ
b−g(x) = g(x),

hold on [a, b].
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Property 6. If 0 < α < 1, f ∈ L1(a, b) and I1−α
a+

f, I1−α
b− f ∈ AC[a, b], then the following equalities

Iαa+ ◦D
α
a+f(x) = f(x)− (x− a)α−1

Γ(α)
I1−α
a+

f(x) |x=a,

Iαb− ◦D
α
b−f(x) = f(x)− (b− x)α−1

Γ(α)
I1−α
b− f(x) |x=b,

hold on [a, b].

Property 7. Let <(α) > 0 and f(x) ∈ L∞(a, b) or f(x) ∈ C[a, b]. If <(α) /∈ N or α ∈ N, then

cDα
a+ ◦ I

α
a+f(x) = f(x),

cDα
b− ◦ I

α
b−f(x) = f(x).

Property 8. Let 0 < α ≤ 1. If f ∈ AC[a, b], then

Iαa+ ◦
cDα

a+f(x) = f(x)− f(a),

Iαb− ◦
cDα

b−f(x) = f(b)− f(x).

Next, we will review the Mittag-Leffler function. The function Eα(z) defined by

Eα(z) :=
∞∑
k=0

zk

Γ(αk + 1)
, (z ∈ C, <(α) > 0),

was introduced by Mittag-Leffler [36]. The generalized Mittag-Leffler function Eα,β(z) is defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, z ∈ C,

where β ∈ C and <(α) > 0.

Definition 4. The Laplace transform L of a function f(x), is the function F (s) which is defined by

F (s) = L{f(x)} :=

∫ ∞
0

e−sxf(x)dx,

where x ≥ 0 and s is the frequency parameter.

Definition 5. If L{f(x)} = F (s) then f(x) is The inverse Laplace transform of F (s) that is given
by the complex integral

f(x) = L−1{F (s)} :=
1

2πi
lim
T→∞

∫ γ+iT

γ−iT
esxF (s)ds.

Definition 6. Convolution of two functions f(x) and g(x) over on a finite rang [0, x] is defined by

(f ∗ g)(x) =

∫ x

0
f(s)g(x− s)ds, f, g : [0,∞)→ R.

Property 9. For <(α) > −1, then

L{tp} =
Γ(p+ 1)

sp+1
, (6)

L−1{sp} =
1

sp+1Γ(p)
.
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Property 10. Suppose f(t) is a differentiable function of exponential order, then

L{f ′(t)} = s{f(t)} − f(0).

Property 11. L{f ∗ g}(x) = L{f(x)} · L{g(x)}.
Property 12. L−1{ sα−βsα+λ} = xβ−1Eα,β(−λtα).

Property 13. According to the definition of the left fractional integral (2), we have

Iα0+f(x) =
1

Γ(α)

(
f(x) ∗ 1

x1−α

)
.

So, by (6) and Property 11, we get

L{Iα0+f(x)} =
1

Γ(α)
· L{f(x)}L{ 1

x1−α }

=
1

sα
L{f(x)}.

Property 14. According to the definition of the left Caputo fractional derivative (3) and Proper-
ties 13 and 10, we have, for 0 < α < 1,

L{cDα
0+f(x)} = sαL{f(x)} − sα−1f(0).

Property 15. According to the definition of the left Riemann-Liouville fractional derivative (4), for
0 < α < 1 by using Properties 13 and 10, we can write

L{Dα
0+f(x)} = sαL{f(x)} − I1−α

0+
f(x) |x=0 L{DI1−α

0+
f(x)}.

2 Eigenvalues of fourth order FSLP

In this section, we consider three features of a differently defined fourth order fractional Sturm-
Liouville operator. This operator is a composition of right Caputo fractional derivative with a left
Riemann-Liouville fractional derivative as follows:

Feature 3.1.
cDα

b− ◦D
α
a+ ◦

cDα
b− ◦D

α
a+y(x) = 0, 0 < α < 1. (7)

Applying the right fractional integral on (7), and using Property 8, we obtain

Dα
a+ ◦

cDα
b− ◦D

α
a+y(x)−Dα

a+ ◦
cDα

b− ◦D
α
a+y(t)|x=b = 0.

Now, by taking the left fractional integral of the above equation and also by using the Properties 1
and 6, we get

cDα
b− ◦D

α
a+y(x) − I1−α

a+
cDα

b− ◦D
α
a+y(x)|x=a

(x− a)α−1

Γ(α)

− Dα
a+ ◦

cDα
b− ◦D

α
a+y(x)|x=b

(x− a)α

Γ(α+ 1)
= 0.

Again by taking the right and left fractional integral and using Properties 1 and 6, we get it right away

y(x) = I1−α
a+

y(t)|x=a
(t− a)α−1

Γ(α)
+Dα

a+y(x)|x=b
(x− a)α

Γ(α)
(8)

+ I1−α
a+

cDα
b−y(x)|x=aφ1(x; a, b, α) +Dα

a+ ◦
cDα

b− ◦D
α
a+y(x)|x=bφ2(x; a, b, α),
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where

φ1(x; a, b, α) =
1

Γ3(α)

∫ x

a

(τ − a)2α−1

(x− τ)1−α

(
B
( b− a
τ − a

;α, α
)
−B(1;α, α)

)
dτ,

and

φ2(x; a, b, α) =
1

Γ2(α)Γ(α+ 1)

∫ x

a

(τ − a)2α−1

(x− τ)1−α

(
B
( b− a
τ − a

;α+ 1, α
)
−B(1;α+ 1, α)

)
dτ.

It is worth noting that as α approach 1, (7) reduce y(4) = 0, and (8) becomes

y(x) = y(a) + y′(b)(x− a) + y′′(a)φ1(x; a, b, 1) + y′′′(b)φ2(x; a, b, 1),

where φ1(x; a, b, 1) and φ2(x; a, b, 1) are polynomials of degrees 2 and 3, respectively, in terms of the
variable x.

So, we can say fundamental solution is
{

(x−a)α−1

Γ(α) , (x−a)α

Γ(α) , φ1(x; a, b, α), φ2(x; a, b, α)
}
, since all four

of them satisfy the equation (7) separately and one can see that their Wronskian is not identically zero
in [a, b], having discontinuities at a and b. Associated to (7) is another similar but quite different
composition.

Feature 3.2.
Dα
b− ◦

cDα
a+ ◦D

α
b− ◦

cDα
a+y(x) = 0, 0 < α < 1. (9)

Applying the right fractional integral on (9) and using Property 6, we have

cDα
a+ ◦D

α
b− ◦

cDα
a+y(x)− I1−α

b−
cDα

a+ ◦D
α
b− ◦

cDα
a+y(x)|x=b

(b− x)α−1

Γ(α)
= 0.

Now, by taking the left fractional on the above equation and using Properties 8 and 4, also introducing
the function ψ(t; a, b, α) by

ψ(x; a, b, α) =
(b− x)2α−1

Γ2(α)

(
B
( b− a
b− x

;α, α
)
−B(1;α, α)

)
,

we obtain

Dα
b− ◦

cDα
a+y(x)−Dα

b− ◦
cDα

a+y(x)|x=a − I1−α
b−

cDα
a+ ◦D

α
b− ◦

cDα
a+y(x)|x=b · ψ(x; a, b, α) = 0.

Again, by taking the right fractional on the above equation, we have

cDα
a+y(t) − I1−α

b−
cDα

b−y(x)|x=b
(b− x)α−1

Γ(α)
−Dα

b−
cDα

b−y(x)|x=a
(b− x)α

Γ(α+ 1)

− I1−α
b−

cDα
a+ ◦D

α
b− ◦

cDα
a+y(x)|x=b · ξ(x; a, b, α) = 0,

where

ξ(x; a, b, α) =
1

Γ(α)

∫ b

x
(τ − x)α−1ψ(τ ; a, b, α)dτ.

Finally

y(x) = y(a) + I1−α
b−

cDα
b−y(x)|x=b

(b− x)2α−1

Γ2(α)
·
(
B
( b− a
b− x

;α, α
)
−B(1;α, α)

)
+ Dα

b− ◦
cDα

a+ ◦ y(x)|x=b
(b− x)2α

Γ2(α)
·
(
B
( b− a
b− x

;α+ 1, α
)
−B(1;α+ 1, α)

)
+ I1−α

b−
cDα

a+ ◦D
α
b− ◦

cDα
a+y(x)|x=b ·

∫ x

a
(x− τ)α−1ξ(τ ; a, b, α)dτ.
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We see that ψ(a; a, b, α) and consequently ξ(x; a, b, α) = 0. Also if 1
2 < α < 1, we have

lim
x→b

ψ(x; a, b, α) =
(b− a)2α−1

(2α− 1)Γ2(α)
.

The functions ψ(x; a, b, α) and consequently ξ(x; a, b, α) have a discontinuity at x = b, when 0 < α ≤ 1
2 .

Feature 3.3. For 3
4 < α ≤ 1, consider the following fractional eigenvalue problem on [0, 1]

− cDα
0+ ◦D

α
0+ ◦

cDα
0+ ◦D

α
0+y(x) = λy(x), (10)

with the boundary conditions

a) I1−α
0+

y(x)|x=0 = 0,

b) I1−α
0+

y(x)|x=1 = 0,

c) I1−α
0+

CDα
0+ ◦D

α
0+y(x)|x=0 = 0,

d) I1−α
0+

CDα
0+ ◦D

α
0+y(x)|x=1 = 0. (11)

By taking Laplace transformation on both side (10) and using Properties 7 and 8, we have

L(y(x)) =
s3α

s4α + λ
I1−α

0+
y(x)|x=0 +

s3α−1

s4α + λ
Dα

0+y(x)|x=0

+
sα

s4α + λ
I1−α

0+
cDα

0+ ◦D
α
0+y(x)|x=0

+
sα−1

s4α + λ
Dα

0+ ◦
cDα

0+ ◦D
α
0+y(x)|x=0.

Now by taking inverse Laplace transformation in order to get y(x), one can easily see that

y(x) = c1x
α−1E4α,α(−λx4α) + c2x

αE4α,α+1(−λx4α) + c3x
3α−1E4α,3α(−λx4α)

+c4x
3αE4α,3α+1(−λx4α). (12)

Remark 1. When α approaches 1, equation (10) turns into −y(4) = λy and its fundamental set of
solution is{
cos
(

4√
λx√
2

)
cosh

(
4√
λx√
2

)
,

cos(
4√
λx√
2

) sinh(
4√
λx√
2

)
√

2
4√
λx

+
sin(

4√
λx√
2

) cosh(
4√
λx√
2

)
√

2
4√
λx

,
sin(

4√
λx√
2

) sinh(
4√
λx√
2

)
√
λx2

,
sin(

4√
λx√
2
−π

4
) sinh(

4√
λx√
2

)

(
√
λx)3

}
.

Now by imposing the boundary conditions (11) on (12) and with the following formula

Dγ
0+

{
xβ−1Eα,β(−λxα)

}
= xβ−γ−1Eα,β−γ(−λxα),

finally we have {
c2xE4α,2(−λx4α) + c4x

−2α+1E4α,2α+2(−λx4α)|x=1 = 0,

c2x
−2α+1E4α,−2α+2(−λx4α) + c4xE4α,2(−λx4α))|x=1 = 0.

Now in order to obtain eigenvalues of above system, the coefficient determinant of boundary con-
ditions must be zero, i.e,

E2
4α,2(−λ)− E4α,−2α+2(−λ)E4α,2α+2(−λ) = 0. (13)
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This is characteristic equations for eigenvalues, and we note that E4α,2(−λ), E4α,−2α+2(−λ) and
E4α,2α+2(−λ) are entire functions of order 1

4α . For solving (13), from the Mittag-Leffler integral
representation (1), we have

E4α,2(−λ) =
1

2πi

∫
C

s4α−2

s4α + λ
esds.

For solving this integral, we use Cauchy’s residue theorem

s4α + λ = 0 =⇒ sk = λ
1
4α ei(

2kπ+π
4α ).

On the other hand
3

4
< α ≤ 1 =⇒ (2k + 1)π

4
<

(2k + 1)π

4α
≤ (2k + 1)π

3
.

Acceptable poles are

s−2 = λ
1
4α e−i(

3π
4α

) , s−1 = λ
1
4α e−i(

π
4α

) , s0 = λ
1
4α ei(

π
4α

) , s1 = λ
1
4α ei(

3π
4α

).

Thus

E4α,2(−λ) =
1

2πi

∫
C

s4α−2

s4α + λ
esds =

1

2πi

{
2πi

1∑
i=−2

esi

4αsi

}
=

1

4α

1∑
i=−2

esi

si

=
1

4α

{
eλ

1
4α ei

−3π
4α

λ
1
4α ei

−3π
4α

+
eλ

1
4α ei

−π
4α

λ
1
4α ei

−π
4α

+
eλ

1
4α ei

π
4α

λ
1
4α ei

π
4α

+
eλ

1
4α ei

3π
4α

λ
1
4α ei

3π
4α

}
.

Finally

E4α,2(−λ) =

{
eλ

1
4α cos( 3π

4α
))

2αλ
1
4α

cos

(
λ

1
4α sin

3π

4α
− 3π

4α

)

+
eλ

1
4α cos( π

4α
)

2αλ
1
4α

cos
(
λ

1
4α sin

π

4α
− π

4α

)}
. (14)

In similarly on E4α,2α+2(−λ) and E4α,−2α+2(−λ), we have

E4α,2α+2(−λ) =
λ
−2α−1

4α

2α

{
eλ

1
4α cos( 3π

4α
) sin

(
λ

1
4α sin

3π

4α
− 3π

4α

)
−eλ

1
4α cos( π

4α
) sin

(
λ

1
4α sin

π

4α
− π

4α

)}
, (15)

and

E4α,−2α+2(−λ) =
λ

2α−1
4α

2α

{
eλ

1
4α cos( 3π

4α
) sin

(
λ

1
4α sin

3π

4α
− 3π

4α

)
−eλ

1
4α cos( π

4α
) sin

(
λ

1
4α sin

π

4α
− π

4α

)}
. (16)

With substitution (14), (15) and (16) in (13), we get{
eλ

1
4α cos( 3π

4α
)

2αλ
1
4α

cos

(
λ

1
4α sin

3π

4α
− 3π

4α

)
+
eλ

1
4α cos( π

4α
)

2αλ
1
4α

cos
(
λ

1
4α sin

π

4α
− π

4α

)}2

−
{
eλ

1
4α cos( 3π

4α
)

2αλ
1
4α

sin

(
λ

1
4α sin

3π

4α
− 3π

4α

)
− eλ

1
4α cos( π

4α
)

2αλ
1
4α

sin
(
λ

1
4α sin

π

4α
− π

4α

)}2

= 0,
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which implies

eλ
1
4α cos( 3π

4α
)

2α

[
sin

(
π

4
− λ

1
4α sin

3π

4α
+

3π

4α

)]
+
eλ

1
4α cos( 3π

4α
)

2α

[
sin
(π

4
+ λ

1
4α sin

π

4α
− π

4α

)]
= 0,

we denote above transcendental equation with hα(−λ) = fα(−λ) + gα(−λ), with

fα(−λ) =
eλ

1
4α cos( 3π

4α
))

2α

[
sin

(
π

4
− λ

1
4α sin

3π

4α
+

3π

4α

)]
,

and

gα(−λ) =
eλ

1
4α cos( 3π

4α
))

2α

[
sin
(π

4
+ λ

1
4α sin

π

4α
− π

4α

)]
. (17)

It is obvious that

gn =

(
nπ + π

4α −
π
4

sin π
4α

)4α

, n = −1, 0, 1, . . . ,

are positive zeros of gα(−λ) and gα(0) = 1
2α sin(π4 −

π
4α), and fα(0) = 1

2α sin(π4 −
π
4α).

In order to get positive eigenvalues, since cos( 3π
4α) is negative as long as 3

4 < α ≤ 1, then for all
sufficiently large λ, fα(−λ)→ o, thus

hα(−λ) ' gα(−λ).

Now from hα(−λ) = 0, it can be concluded that

sin
(π

4
+ λ

1
4α sin

π

4α
− π

4α

)
= 0.

Finally from there we obtain the following asymptotic formula

λn ∼
(
nπ − π

4α + π
4

sin π
4α

)4α

, n→∞. (18)

A glance at (17) shows that the set of all λ such that

π(1 + 2n)< sin
(π

4
+ λ

1
4α sin

π

4α
− π

4α

)
<2π(1 + n),

implies (
2nπ + 3π

4 + π
4α

sin π
4α

)4α

<λn(α)<

(
2nπ + 7π

4 + π
4α

sin π
4α

)4α

, n = 0, 1, 2, . . .

Remark 2. As the last discussion, the asymptotic formula (18) is the generalization of classic one
i.e. as α→ 1−, this corresponds exactly with the well known classical asymptotic estimate λn ∼ (2nπ√

2
)4

as n→∞.

Remark 3. The uniqueness of the answer is obtained by the fixed point theorem. For this case, as
well as the convergence of 10 with boundary conditions (11), we refer the reader to ([30], 3.2).

For the equation (10), Table 1 and Figures 1, 2 show the eigenvalues and eigenfunctions (EFs) for
different α = 0.75, α = 0.86 and α = 1, respectively.
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T a b l e 1

The eigenvalues λn

α=0.76 α= 0.86 α=1.0
λ1=13334.95 λ1=83.59 λ1=97.41
λ2=192878.31 λ2=654.87 λ2= 1558.54
λ3= 979175.49 λ3=3098.92 λ3=7890.14

λ4=6255.26 λ4= 24936.72
λ5=60880.68
...

Figure 1. Figure 2.

Here, for the purpose of comparison, we present an example from reference [38].
Example 1. Consider the following fourth order fractional eigenvalue problem

Dαy(x) = λy(x), x ∈ (0, 1), (19)

with the boundary conditions:

y(0) = y′(0) = 0, y(1) = y′(1) = 0, (20)

where 3 < α = p
q ≤ 4.

By the Laplace transform of the Caputo derivative, we have:

y(x) = AEα,1(λxα) +BxEα,2(λxα) + Cx2Eα,3(λxα) +Dx3Eα,4(λxα).

Notice that the first derivative of y is given by

y′(x) =
A

α
Eα,0(λxα) +BEα,1(λxα) + CxEα,2(λxα) +Dx2Eα,3(λxα).

By applying the boundary conditions, to obtain the non-trivial eigenvalues, we set the determinant
of the coefficient matrix equal to zero, thus we get

(Eα,3(λ))2 − Eα,2(λ)Eα,4(λ) = 0,

a result that was obtained in [38] using a different method, while we applied the asymptotic method
introduced in this paper in order to determine the eigenvalues.
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Conclusions

In this article, the eigenvalues and the eigenfunctions were derived by studying three features of
fractional Sturm-Liouville equations of mixed Riemann-Liouville and Caputo fractional derivatives
type. The focus of the paper is on the asymptotic distribution of the eigenvalues obtained from
transcendental equation under the assumption the potential function is considered to be zero.

On the other hand in order to get eigenvalues, we studied transcendental equation based on asymp-
totic behavior of the Mittag-Leffler function rather than numerical method. Also our results showed
that it is consistent with the classical one as α→ 1−.
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34 Erdélyi, A. (Ed.). (1955). Higher transcendental functions (Vol. 3). McGraw-Hill book company,
INC.

35 Kilbas, A.A., Srivastava, H.M., & Trujillo, J.J. (2006). Theory and applications of fractional
differential equations. Elsevier.

36 Mittag-Leffler, G.M. (1903). Sur la nouvelle fonction Eα. Comptes Rendus de l’Academie des
Sciences Paris, 137, 554–558.

37 Klimek, M., Odzijewicz, T., & Malinowska, A.B. (2014). Variational methods for the fractional
Sturm-Liouville problem. Journal of Mathematical Analysis and Applications, 416 (1), 402–426.
https://doi.org/10.1016/j.jmaa.2014.02.009

38 Al-Mdallal, Q., Al-Refai, M., Syam, M., & Al-Srihin, M.K. (2018). Theoretical and computational
perspectives on the eigenvalues of fourth-order fractional Sturm-Liouville problem. International
Journal of Computer Mathematics, 95 (8), 1548–1564. https://doi.org/10.1080/00207160.2017.
1322690

Author Information∗

Mohammad Jafari — Doctor of Physical and Mathematical Sciences, Instructor of Faculty mem-
ber, Department of Science, Payame Noor University, Nakhl St, Lashkarak Highway, Tehran, Iran;
e-mail: m_jafari@pnu.ac.ir ; https://orcid.org/0000-0002-5928-3290

Farhad Dastmalchi Saei (corresponding author) — Doctor of Physical and Mathematical Sci-
ences, Assistant Professor, Department of Mathematics, Faculty of Science, Pasdaran Highway, Tabriz
Islamic Azad University, Tabriz, Iran; e-mail: dastmalchi@iaut.ac.ir ; https://orcid.org/0000-0001-
9829-2141

∗The author’s name is presented in the order: First, Middle, and Last Names.

Mathematics Series. No. 2(118)/2025 105

https://doi.org/10.1080/00207160.2017.1322690
https://doi.org/10.1080/00207160.2017.1322690

