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On a boundary value problem for a parabolic-hyperbolic equation of
the fourth order
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In this paper a boundary value problem for a fourth-order equation of parabolic-hyperbolic type within a
pentagonal domain was investigated. In the equation under consideration, one characteristic aligns with
the Ox axis while the other aligns with the Oy axis. Initially, the problem was examined within the lower
triangle of the specified domain. Utilizing a differential equation solution construction method, a solution
to the formulated problem was derived. Subsequently, within the rectangles of the domain, employing the
continuation method, two relationships between the solution’s traces were established. Moreover, from the
parabolic segment of the domain, two additional relationships between unknown traces will be derived.
Solving this system of four equations enables determination of these traces, thereby resolving the problem.
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Introduction

Intensive research into equations of mixed elliptic-parabolic and parabolic-hyperbolic types is mo-
tivated by the fact that, on one hand, these new types of mixed equations have been little studied
theoretically, and on the other hand, they are widely used in important issues of mechanics, physics,
and technology.

The necessity of considering conjugation problems arises when a parabolic equation is defined in one
part of the domain and a hyperbolic equation in another, as emphasized by I.M. Gelfand in 1959 [1].
He provides an example concerning the movement of gas in a channel surrounded by a porous medium:
within the channel, the gas movement is described by the wave equation, while outside it, it is governed
by the diffusion equation.

One of the earliest works dedicated to the study of boundary value problems for parabolic-hyperbolic
equations was conducted by G.M. Struchina [2]. Subsequently, Y.S. Uflyand [3] further explored the
problem of electrical oscillation propagation in composite lines, where losses are neglected in the semi-
infinite section of the line, treating the remainder of the line as a cable without leakage, through the
solution of boundary value problems for parabolic-hyperbolic equations.

Since the 1970s, research on boundary value problems for equations of third, fourth, and higher
orders of the parabolic-hyperbolic type has seen intensive development. These boundary value problems
were initially explored by T.D. Dzhuraev and his students [4, 5].

Subsequently, research on boundary value problems for third and fourth-order equations [6] and
those of higher orders in the parabolic-hyperbolic type has significantly broadened. Currently, it is
expanding into areas concerning the complexity of equations, the breadth of their application, and the
generalization of problems related to these equations. The investigation has extended to numerous
∗Corresponding author. E-mail: mirzamamajonov@gmail.com
Received: 7 June 2024; Accepted: 21 November 2024.
c© 2025 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

118 Bulletin of the Karaganda University



On a boundary value ...

boundary value problems for such equations across various domains, involving two or three lines of
change in type [7–9]. In the works [10, 11], some boundary value problems for fourth-order equations
of parabolic-hyperbolic type, similar to equations of type (1) (see below) in a pentagonal region with
two lines of type change, were studied. In the works [12, 13], considered boundary value problems for
a mixed parabolic-hyperbolic equation with known and unknown dividing lines, as well as nonlocal
boundary value problems and problems with a free boundary for parabolic, hyperbolic and mixed
parabolic-hyperbolic equations. Work [14] is devoted to the study of boundary value problems and
their spectral properties for equations of mixed parabolic-hyperbolic and mixed-composite types. In
[15], boundary value problems for linear loaded differential and third-order integro-differential equations
of mixed type were posed and studied. Then the study began of a number of different boundary value
problems for mixed parabolic-hyperbolic equations of the third and fourth orders in various domains
with two and three lines of change of type see, for example, [16–28].

1 Formulation of the problem

In the work [29], an equation of the form(
a1

∂

∂x
+ b1

∂

∂y

)(
a2

∂

∂x
+ b2

∂

∂y

)
(Lu) = 0 (1)

in the pentagonal areaG, indicated below, where a1, b1, a2, b2 ∈ R, and a2i+b2i 6= 0 (i = 1, 2). Depending
on the value of the coefficients a1, b1, a2, b2, a number of boundary value problems are posed for
equation (1). In this work, boundary value problems are posed for 21 cases separately. In this present
work, we consider the case of 3◦ (a1 = 1, b1 = 0, a2 = 0, b2 = 1). Then equation (1) has the form

∂2

∂x∂y
(Lu) = 0, (2)

where G = G1 ∪G2 ∪G3 ∪G4 ∪ J1 ∪ J2 ∪ J3; G1, G3, G4 are rectangles with vertices at points A (0, 0),
A0 (0, 1), B0 (1, 1), B (1, 0); A, A0, D0 (−1, 1), D (−1, 0); B, B0, C0 (2, 1), C (2, 0) respectively, G2 is
a triangle with vertices at points C, D, E (1/2 ,−3/2 ); J1, J2, J3 are open segments with vertices at
points C, D; A, A0; B, B0 respectively, which are lines of change like equation (2); u = u (x, y) is an
unknown function,

Lu =

{
u1xx − u1y, (x, y) ∈ G1,

uixx − uiyy, (x, y) ∈ Gi (i = 2, 3, 4) .

For equation (2), the following problem is formulated:
Problem M . It is required to find a function u (x, y), satisfying the following conditions:
1) it is continuous in G and in the domain G\J1\J2\J3 has continuous derivatives involved in

equation (2), and ux, uy, uxx, uxy and uyy are continuous up to part of the boundary of the domain
G, indicated in the boundary conditions;

2) it satisfies the equation (2) in the domain G\J1\J2\J3;
3) it satisfies the following boundary conditions:

u(2, y) = ϕ1 (y) , 0 ≤ y ≤ 1, (3)

u(−1, y) = ϕ2 (y) , 0 ≤ y ≤ 1, (4)

ux (−1, y) = ϕ4 (y) , 0 ≤ y ≤ 1, (5)

u|CE = ψ1 (x) , 1/2 ≤ x ≤ 2, (6)
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u|DP = ψ2 (x) , −1 ≤ x ≤ −1/2, (7)

u|QE = ψ3 (x) , 0 ≤ x ≤ 1/2, (8)

∂u

∂n

∣∣∣∣
DE

= ψ4 (x) , −1 ≤ x ≤ 1/2, (9)

∂2u

∂n2

∣∣∣∣
DE

= ψ5 (x) , −1 ≤ x ≤ 1/2, (10)

∂u

∂n

∣∣∣∣
CE

= ψ6 (x) , 1/2 ≤ x ≤ 2; (11)

and
4) the following continuous gluing conditions:

u (x, +0) = u (x,− 0) = T (x) , −1 ≤ x ≤ 2, (12)

uy (x, +0) = uy (x, −0) = N (x) , −1 ≤ x ≤ 2, (13)

uyy (x, +0) = uyy (x, −0) = M (x) , x ∈ (−1, 0) ∪ (0, 1) ∪ (1, 2) , (14)

u (+0, y) = u (−0, y) = τ4 (y) , 0 ≤ y ≤ 1, (15)

ux (+0, y) = ux (−0, y) = ν4 (y) , 0 ≤ y ≤ 1, (16)

uxx (+0, y) = uxx (−0, y) = µ4 (y) , 0 < y < 1, (17)

u (1 + 0, y) = u (1− 0, y) = τ5 (y) , 0 ≤ y ≤ 1, (18)

ux (1 + 0, y) = ux (1− 0, y) = ν5 (y) , 0 ≤ y ≤ 1, (19)

uxx (1 + 0, y) = uxx (1− 0, y) = µ5 (y) , 0 < y < 1. (20)

Here ϕ1, ϕ2, ϕ4 and ψj
(
j = 1, 6

)
are given sufficiently smooth functions, n is the internal normal to

the line x− y = 2 (CE) or x+ y = −1 (DE), and P (−1/2 ,−1/2 ), Q (0,−1). Besides,

T (x) =


τ2 (x) , −1 ≤ x ≤ 0,

τ1 (x) , 0 ≤ x ≤ 1,

τ3 (x) , 1 ≤ x ≤ 2,

N (x) =


ν2 (x) , −1 ≤ x ≤ 0,

ν1 (x) , 0 ≤ x ≤ 1,

ν3 (x) , 1 ≤ x ≤ 2,

M (x) =


µ2 (x) , −1 < x < 0,

µ1 (x) , 0 < x < 1,

µ3 (x) , 1 < x < 2,

where τi, νi, µi
(
i = 1, 5

)
are temporarily unknown sufficiently smooth functions.

2 The solution of the problem

The following theorem holds:

Theorem 1. Let ϕ1 ∈ C4 [0, 1], ϕ2 ∈ C4 [0, 1], ϕ4 ∈ C3 [0, 1], ψ1 ∈ C4 [1/2 , 2], ψ2 ∈ C4 [−1, −1/2 ],
ψ3 ∈ C4 [0, 1/2 ], ψ4 ∈ C3 [−1, 1/2 ], ψ5 ∈ C2 [−1, 1/2 ], ψ6 ∈ C3 [ 1/2 , 2], and the matching
conditions ϕ1 (0) = ψ1 (2), ϕ2 (0) = ψ2 (−1), τ1 (0) = τ2 (0) = τ4 (0), τ1 (1) = τ3 (1) = τ5 (0),
ν1 (0) = ν2 (0) = τ ′4 (0), ν1 (1) = ν3 (1) = τ ′5 (0), τ ′1 (0) = ν4 (0), τ ′1 (1) = ν5 (0) are satisfied, then the
problem M has a unique solution.
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Proof. We shall prove the theorem by the method of constructing a solution. To do this, we rewrite
equation (2) as

u1xx − u1y = ω11 (x) + ω12 (y) , (x, y) ∈ G1, (21)

uixx − uiyy = ωi1 (x) + ωi2 (y) , (x, y) ∈ Gi (i = 2, 3, 4) , (22)

where the notation u (x, y) = ui (x, y) , (x, y) ∈ Gi
(
i = 1, 4

)
is introduced, and ωi1 (x), ωi2 (y)

(i = 1, 4) are unknown sufficiently smooth functions.
First, consider problem M in the domain G2. The solution to equation (22) (i = 2), satisfying

conditions (12), (13), is represented in the form

u2 (x, y) =
1

2
[T (x+ y) + T (x− y)] +

1

2

x+y∫
x−y

N (t) dt

− 1

2

y∫
0

dη

x+y−η∫
x−y+η

ω21 (ξ) dξ −
y∫

0

(y − η)ω22 (η) dη. (23)

Substituting (23) into conditions (9) and (10) after some calculations, we obtain the following
system of equations

ω21 (x) + ω22 (−1− x) =
√

2ψ′4 (x) , −1 ≤ x ≤ 1/2,

ω21 (x)− ω22 (−1− x) = 2ψ5 (x)− 2T ′′ (−1)− 2N ′ (−1)− 2ω21 (−1) , −1 ≤ x ≤ 1/2.

From this system after some transformations, we find

ω21 (x) = ψ5 (x) +

√
2

2
ψ′4 (x)− T ′′ (−1)−N ′ (−1)− ω21 (−1) , −1 ≤ x ≤ 1/2, (24)

ω22 (y) = −ψ5 (−1− y) +

√
2

2
ψ′4 (−1− y) + T ′′ (−1) +N ′ (−1) + ω21 (−1) , −3/2 ≤ y ≤ 0. (25)

Adding (24) and (25), we find

ω21 (x) + ω22 (y) = [ψ5 (x)− ψ5 (−1− y)] +
√
2
2 [ψ′4 (x) + ψ′4 (−1− y)] ,

−1 ≤ x ≤ 1/2 , −3/2 ≤ y ≤ 0.
(26)

Now substituting (23) into condition (11), we have

ω21 (x) + ω22 (x− 2) = −
√

2ψ′6 (x) , 1/2 ≤ x ≤ 2.

Setting in (25) y = x− 2 and substituting the obtained equality into the last equality, we find

ω21 (x) = −
√

2ψ′6 (x)+ψ5 (1− x)−
√

2

2
ψ′4 (1− x)−T ′′ (−1)−N ′ (−1)−ω21 (−1) , 1/2 ≤ x ≤ 2. (27)

Hence, adding (25) and (27), we get

ω21 (x) + ω22 (y) = −
√

2ψ′6 (x) + [ψ5 (1− x)− ψ5 (−1− y)]

−
√
2
2 [ψ′4 (1− x)− ψ′4 (−1− y)] , 1/2 ≤ x ≤ 2, −3/2 ≤ y ≤ 0.

(28)

From (26) and (28), it follows that ψ′4 (1/2) = −ψ′6 (1/2).
Thus, we have found the function ω21 (x) + ω22 (y) for −1 ≤ x ≤ 2, −3/2 ≤ y ≤ 0 completely. It

is determined by formulas (26), (28).
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Now, substituting (23) into the condition (6), we arrive at the relation

T ′ (x) +N (x) = α1 (x) , −1 ≤ x ≤ 2, (29)

where

α1 (x) = ψ′1

(
x+ 2

2

)
+

x−2
2∫

0

ω21 (x− η) dη +

x−2
2∫

0

ω22 (η) dη.

And substituting (23) into condition (7), we get

τ ′2 (x)− ν2 (x) = δ1 (x) , −1 ≤ x ≤ 0, (30)

where

δ1 (x) = ψ′2

(
x− 1

2

)
−

−x+1
2∫

0

ω21 (x+ η) dη −

−x+1
2∫

0

ω22 (η) dη.

Next, substituting (23) into condition (8), we have

τ ′3 (x)− ν3 (x) = δ2 (x) , 1 ≤ x ≤ 2, (31)

where

δ2 (x) = ψ′3

(
x− 1

2

)
−

−x+1
2∫

0

ω21 (x+ η) dη −

−x+1
2∫

0

ω22 (η) dη.

a) For 0 ≤ x ≤ 1 the relation (29) has the form

τ ′1 (x) + ν1 (x) = α1 (x) , 0 ≤ x ≤ 1; (32)

b) for −1 ≤ x ≤ 0,
τ ′2 (x) + ν2 (x) = α1 (x) , −1 ≤ x ≤ 0; (33)

c) and when 1 ≤ x ≤ 2,
τ ′3 (x) + ν3 (x) = α1 (x) , 1 ≤ x ≤ 2. (34)

Solving the system {(30), (33)}, we find

τ ′2 (x) =
1

2
[α1 (x) + δ1 (x)] , ν2 (x) =

1

2
[α1 (x)− δ1 (x)] . (35)

Integrating the first of equalities (35) from −1 to x, we obtain

τ2 (x) =
1

2

x∫
−1

[α1 (t) + δ1 (t)] dt+ ψ2 (−1) , −1 ≤ x ≤ 0. (36)

And solving system (31), (34), we get

τ ′3 (x) =
1

2
[α1 (x) + δ2 (x)] , ν3 (x) =

1

2
[α1 (x)− δ2 (x)] . (37)

Integrating the first of equalities (37) from 2 to x, we have

τ3 (x) =
1

2

x∫
2

[α1 (t) + δ2 (t)] dt+ ψ1 (2) , 1 ≤ x ≤ 2. (38)
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Now, by differentiating the equation (21) with respect to y passing to the limit at y → 0 in the
resulting equation and in equation (22) (i = 2), we obtain

ν ′′1 (x)− µ1 (x) = ω′12 (0) , τ ′′1 (x)− µ1 (x) = ω21 (x) + ω22 (0) .

Eliminating the function µ1(x) from these relations and integrating the resulting equation twice
from 0 to x, we arrive at the relation

ν1 (x)− τ1 (x) = −
x∫

0

(x− t) [ω21 (t) + ω22 (0)] dt+
1

2
ω′12 (0)x2 + k1x+ k2,

where ω′12 (0), k1 and k2 are unknown constants.
Excluding the function ν1 (x) from the last relation and from (32), we have

τ ′1 (x) + τ1 (x) = α2 (x) +
1

2
ω′12 (0)x2 + k1x+ k2, 0 ≤ x ≤ 1, (39)

where

α2 (x) = α1 (x) +

x∫
0

(x− t) [ω21 (t) + ω22 (0)] dt.

Solving equation (39) under the conditions (see (35), (36), (37), (38))

τ1 (0) = ψ2 (−1) +
1

2

0∫
−1

[α1 (t) + δ1 (t)] dt, τ ′1 (0) =
1

2
[α1 (0) + δ1 (0)] ,

τ ′1 (1) =
1

2
[α1 (1) + δ2 (1)] , τ1 (1) = ψ1 (2)− 1

2

2∫
1

[α1 (t) + δ2 (t)] dt,

we find the function τ1 (x) as

τ1 (x) =

x∫
0

et−xα2 (t) dt+
ω′12 (0)

2

(
x2 − 2x+ 2− 2e−x

)
+ k1

(
x− 1 + e−x

)
+ k2

(
1− e−x

)
+ k3e

−x,

where

k3 =
1

2

0∫
−1

[α1 (t) + δ1 (t)] dt+ ψ2 (−1) ,

k2 =
1

2
[α1 (0) + δ1 (0)]− α2 (0) + k3,

k1 =
e− 2

2 (e− 3)
[α1 (1) + δ2 (1)] +

e− 2

3− e
α2 (1) +

2

3− e
ψ1 (2) +

+
3e− 4

e (3− e)
k2 +

4− e
e (3− e)

k3 −
1

3− e

1∫
0

etα2 (t) dt− 1

3− e

2∫
1

[α1 (t) + δ2 (t)] dt,

ω′12 (0) =
e

2
[α1 (1) + δ2 (1)]− α2 (1) e+

1∫
0

etα2 (t) dt− k2 + k3 − k1 (e− 1) .
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Thus, we have defined the functions ν1 (x), µ1 (x) and u2 (x, y).
Now, let us consider the problem in the domain G3. Passing to the limit at y → 0 in equations

(22) (i = 2) and (22) (i = 3), we find

ω31 (x) = ω21 (x) , −1 ≤ x ≤ 0,

where it should be ω32 (0) = ω22 (0).
Consider the following problem:

u3xx − u3yy = Ω31 (x) + ω32 (y) ,

u3 (x, 0) = T2 (x) , u3y (x, 0) = N2 (x) , −2 ≤ x ≤ 1,

u3 (−1, y) = ϕ2 (y) , u3x (−1, y) = ϕ4 (y) , u3 (0, y) = τ4 (y) , 0 ≤ y ≤ 1.

Here we used (4), (5) in the form u3(−1, y) = φ2(y), u3x(−1, y) = φ4(y).
We will seek a solution to this problem satisfying all conditions except the condition

u3x(−1, y) = ϕ4(y), in the form

u3 (x, y) = u31 (x, y) + u32 (x, y) + u33 (x, y) , (40)

where u31 (x, y) is the solution of the problem
u31xx − u31yy = 0,

u31 (x, 0) = T2 (x) , u31y (x, 0) = 0, −2 ≤ x ≤ 1,

u31 (−1, y) = ϕ2 (y) , u31 (0, y) = τ4 (y) , 0 ≤ y ≤ 1,

(41)

u32 (x, y) is the solution of the problem
u32xx − u32yy = ω32 (y) ,

u32 (x, 0) = 0, u32y (x, 0) = N2 (x) , −2 ≤ x ≤ 1,

u32 (−1, y) = 0, u32 (0, y) = 0, 0 ≤ y ≤ 1,

(42)

u33 (x, y) is the solution of the problem
u33xx − u33yy = Ω31 (x) ,

u33 (x, 0) = 0, u33y (x, 0) = 0, −2 ≤ x ≤ 1,

u33 (−1, y) = 0, u33 (0, y) = 0, 0 ≤ y ≤ 1.

(43)

Using the continuation method, we find solutions to problems (41), (42) and (43). They have the
following forms

u31 (x, y) =
1

2
[T2 (x+ y) + T2 (x− y)] , (44)

u32 (x, y) =
1

2

x+y∫
x−y

N2 (t) dt−
y∫

0

(y − η)ω32 (η) dη, (45)

u33 (x, y) = −1

2

y∫
0

dη

x+y−η∫
x−y+η

Ω31 (ξ) dξ, (46)
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where

T2 (x) =


2ϕ2 (−1− x)− τ2 (−2− x) , −2 ≤ x ≤ −1,

τ2 (x) , −1 ≤ x ≤ 0,

2τ4 (x)− τ2 (−x) , 0 ≤ x ≤ 1,

Ω31 (x) =


− ω31 (−2− x) , −2 ≤ x ≤ −1,

ω31 (x) , −1 ≤ x ≤ 0,

− ω31 (−x) , 0 ≤ x ≤ 1,

N2 (x) =



− ν2 (−2− x) + 2

−1−x∫
0

ω32 (η) dη, −2 ≤ x ≤ −1,

ν2 (x) , −1 ≤ x ≤ 0,

− ν2 (−x) + 2

x∫
0

ω32 (η) dη, 0 ≤ x ≤ 1.

Substituting (44), (45) and (46) into (40), we have

u3 (x, y) =
1

2
[T2 (x+ y) + T2 (x− y)] +

1

2

x+y∫
x−y

N2 (t) dt

−1

2

y∫
0

dη

x+y−η∫
x−y+η

Ω31 (ξ) dξ −
y∫

0

(y − η)ω32 (η) dη.

Differentiating this solution with respect to x, we obtain

u3x (x, y) =
1

2

[
T ′2 (x+ y) + T ′2 (x− y)

]
+

1

2
[N2 (x+ y)−N2 (x− y)]

− 1

2

y∫
0

[Ω31 (x+ y − η)− Ω31 (x− y + η)] dη. (47)

Passing to the limit in (47) at x→ −1 and considering the condition u3x(−1, y) = ϕ4(y), we find

ω32 (y) = τ ′′2 (y − 1) + ν ′2 (y − 1)− ϕ′′2 (y)− ϕ′4 (y)− ω31 (y − 1) .

Similarly, from (47) using the conditions (15), (16), we have

ν4 (y) = τ ′4 (y) + β1 (y) , (48)

where

β1 (y) = τ ′2 (−y)− ν2 (−y) +

y∫
0

ω31 (η − y) dη +

y∫
0

ω32 (η) dη.

Now let us move to the domain G4. Passing in equations (22) (i = 4), (22) (i = 2) to the limit at
y → 0 and considering (12) and (14) for 0 ≤ x ≤ 1, we have ω41 (x) +ω42 (0) = ω21 (x) +ω22 (0) . Let’s
assume that ω42 (0) = ω22 (0). Then, we have ω41 (x) = ω21 (x).
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Next, passing in equations (22) (i = 4), (22) (i = 2) to the limit at x→ 1 due to (18) and (20), we
find

ω12 (y) = τ ′′5 (y)− τ ′5 (y) + ω42 (y) + ω41 (1)− ω11 (1) . (49)

Passing in equations (22) (i = 3) and (21) to the limit at x→ 0 due to (15) and (17), we obtain

ω12 (y) = τ ′′4 (y)− τ ′4 (y) + ω32 (y) + ω31 (0)− ω11 (0) . (50)

Eliminating function ω12 (y) from (49) and (50), we find

ω42 (y) =
[
τ ′′4 (y)− τ ′4 (y)

]
−
[
τ ′′5 (y)− τ ′5 (y)

]
+ ω32 (y) + ω31 (0)− ω41 (1)− ω11 (0) + ω11 (1) .

Consider the following problem:
u4xx − u4yy = Ω41 (x) + ω42 (y) ,

u4 (x, 0) = T3 (x) , u4y (x, 0) = N3 (x) , 0 ≤ x ≤ 3,

u4 (2, y) = ϕ1 (y) , u4 (1, y) = τ5 (y) , 0 ≤ y ≤ 1.

Here we used condition (3) in the form u4(2, y) = φ1(y).
We will seek a solution to the last problem in the form

u4 (x, y) = u41 (x, y) + u42 (x, y) + u43 (x, y) , (51)

where u41 (x, y) is the solution of the problem
u41xx − u41yy = 0,

u41 (x, 0) = T3 (x) , u41y (x, 0) = 0, 0 ≤ x ≤ 3,

u41 (2, y) = ϕ1 (y) , u41 (1, y) = τ5 (y) , 0 ≤ y ≤ 1,

(52)

and u42(x, y) and u43(x, y) are the solution of the problems respectively
u42xx − u42yy = ω42 (y) ,

u42 (x, 0) = 0, u42y (x, 0) = N3 (x) , 0 ≤ x ≤ 3,

u42 (2, y) = 0, u42 (1, y) = 0, 0 ≤ y ≤ 1,

(53)


u43xx − u43yy = Ω41 (x) ,

u43 (x, 0) = 0, u43y (x, 0) = 0, 0 ≤ x ≤ 3,

u43 (2, y) = 0, u43 (1, y) = 0, 0 ≤ y ≤ 1.

(54)

By using the continuation method, it is easy to see that the solutions to the problems (52), (53)
and (54) have the forms

u41 (x, y) =
1

2
[T3 (x+ y) + T3 (x− y)] , (55)

u42 (x, y) =
1

2

x+y∫
x−y

N3 (t) dt−
y∫

0

(y − η)ω42 (η) dη, (56)

u43 (x, y) = −1

2

y∫
0

dη

x+y−η∫
x−y+η

Ω41 (ξ) dξ, (57)
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where

T3 (x) =


2ϕ1 (x− 2)− τ3 (4− x) , 2 ≤ x ≤ 3,

τ3 (x) , 1 ≤ x ≤ 2,

2τ5 (1− x)− τ3 (2− x) , 0 ≤ x ≤ 1,

Ω41 (x) =


− ω41 (4− x) , 2 ≤ x ≤ 3,

ω41 (x) , 1 ≤ x ≤ 2,

− ω41 (2− x) , 0 ≤ x ≤ 1,

N3 (x) =



− ν3 (4− x) + 2

x−2∫
0

ω42 (η) dη, 2 ≤ x ≤ 3,

ν3 (x) , 1 ≤ x ≤ 2,

− ν3 (2− x) + 2

1−x∫
0

ω42 (η) dη, 0 ≤ x ≤ 1.

Substituting (55), (56) and (57) into (51), we have

u4 (x, y) =
1

2
[T3 (x+ y) + T3 (x− y)] +

1

2

x+y∫
x−y

N3 (t) dt

− 1

2

y∫
0

dη

x+y−η∫
x−y+η

Ω41 (ξ) dξ −
y∫

0

(y − η)ω42 (η) dη.

Differentiating this solution with respect to x, we obtain

u41x (x, y) =
1

2

[
T ′3 (x+ y) + T ′3 (x− y)

]
+

1

2
[N3 (x+ y)−N3 (x− y)]

− 1

2

y∫
0

Ω41 (x+ y − η) dη +
1

2

y∫
0

Ω41 (x− y + η) dη. (58)

Passing to the limit at x→ 1 in (58) after some calculations and transformations by virtue of (18),
(19), we obtain the relation

ν5 (y) = −τ ′4(y) + τ4 (y)− τ5 (y) + β2 (y) , (59)

where
β2 (y) = ν1 (0)− τ1 (0)− ν1 (1) + τ1 (1) + γ1 (y) ,

γ1 (y) = τ ′3(1 + y) + ν3 (1 + y)−
y∫

0

ω41 (1 + y − η) dη+

+

y∫
0

ω32 (η) dη +
[
ω31 (0)− ω41 (1) + τ ′′1 (1)− ν1 (1)− µ1 (0) + ν1 (0)− ω31 (0)− ω32 (0)

]
y.
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Finally, we consider the problem in the domain G1. Passing to the limit in equation (21) at y → 0,
we find

ω11 (x) = τ ′′1 (x)− ν1 (x)− ω12 (0) .

Next, we write down the solution to equation (21), satisfying conditions (12) for 0 ≤ x ≤ 1, (15)
and (18), differentiating this solution with respect to x after some calculations and transformations,
we obtain

u1x (x, y) = −
y∫

0

τ ′4 (η)N (x, y; 0, η) dη +

y∫
0

τ ′5 (η)N (x, y; 1, η) dη

+

1∫
0

τ ′1 (ξ)N (x, y; ξ, 0) dξ +

y∫
0

[ω11 (1) + ω12 (η)]N (x, y; 1, η) dη

+

y∫
0

[ω11 (0) + ω12 (η)]N (x, y; 0, η) dη −
y∫

0

dη

1∫
0

ω′11 (ξ)N (x, y; ξ, η) dξ, (60)

where

G (x, y; ξ, η)

N (x, y; ξ, η)

}
=

1

2
√
π (y − η)

+∞∑
n=−∞

{
exp

[
−(x− ξ − 2n)2

4 (y − η)

]
∓ exp

[
−(x+ ξ − 2n)2

4 (y − η)

]}

are the Green’s functions of the first and second boundary value problems for the heat equation.
Passing to the limits x→ 0 and x→ 1 in (60) by virtue of (48) and (59), we obtain two Abel’s type

integral equations for the unknowns τ ′′4 (y) and τ ′5(y). Applying the Abel inversion to these equations,
we obtain a system of Volterra integral equations of the second kind for τ ′′4 (y) and τ ′5(y):

τ ′′4 (y) +

y∫
0

K1 (y, η) τ ′′4 (η) dη +

y∫
0

K2 (y, η) τ ′5 (η) dη = g1 (y) , (61)

τ ′5 (y) +

y∫
0

K3 (y, η) τ ′5 (η) dη +

y∫
0

K4 (y, η) τ ′′4 (η) dη = g2 (y) , (62)

whereK1 (y, η), K2 (y, η), K3 (y, η), K4 (y, η), g1 (y), g2 (y) are known functions, K1 (y, η) andK3 (y, η)
have a weak singularity (1/2), and the remaining functions are continuous. Therefore, system
{(61),(62)} admits a unique solution in the class of continuous functions. Solving the system {(61),(62)},
we find functions τ ′′4 (y), τ ′5(y), and thus functions τ4 (y), τ5 (y), ν4 (y), ν5 (y). Then all the functions
u3 (x, y), u4 (x, y) and u1 (x, y), will be known. So, we have found a solution to the considered problem
M in a unique way.

Conclusion

In this paper, we consider a new correct boundary value problem for a third-order parabolic-
hyperbolic equation in a pentagonal domain consisting of three rectangles and one triangle. In the
central rectangular domain the equation is parabolic, and in the two side rectangles and in the lower
triangle it belongs to hyperbolic type. Straight lines x = 0, x = 1 and y = 0 are lines of change in the
type of equation.
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When constructing a solution in the lower characteristic triangle, writing a solution to equation (22)
(i = 2) that satisfies conditions (12), (13) and substituting this solution into conditions (4) and (5),
we find the function ω2 (x).

Then, substituting this solution into conditions (6), we obtain the first functional relation between
the unknown functions T (x) and N (x) for −1 ≤ x ≤ 2. Next, substituting this solution into condition
(7), we obtain another relation between τ2 (x) and ν2 (x) for −1 ≤ x ≤ 0. From these two relations
we find the functions τ2 (x) and ν2 (x) for −1 ≤ x ≤ 0. Similarly, satisfying condition (8), we find the
functions τ3 (x) and ν3 (x) for 1 ≤ x ≤ 2.

Then, differentiating equation (21) with respect to y, in the resulting equation and in equation (22)
(i = 2) assuming y = 0, we obtain two more relations between the unknown functions τ1 (x), ν1 (x) and
µ1 (x) for 1 ≤ x ≤ 2. Eliminating from these two relations and from the relation between the functions
T (x) and N (x) for 0 ≤ x ≤ 1 the function ν1 (x) and µ1 (x), we arrive at an ordinary differential
equation of the second order with respect to τ1 (x), on the right side of which one unknown constant
is involved. Solving this equation under the known three conditions, we find the function τ1 (x), and
thus the functions ν1 (x), u2 (x, y).

Further, by the method of continuation in the left and right rectangular regions using the written
solutions, directing x to zero and to one, we obtain two relations between the unknown functions τ4 (y),
ν4 (y) and τ5 (y), ν5 (y) respectively.

Next, passing to the limit in equation (21) at y → 0, we find the unknown function ω11 (x). In
the parabolic part of the rectangular region, writing the representation of the solution in terms of
the known Green’s function of the first boundary value problem and differentiating this solution with
respect to x and assuming x → 0 and x → 1, we obtain two more relations between the unknown
functions τ4 (y), ν4 (y) and τ5 (y), ν5 (y) respectively. Excluding the functions ν4 (y) and ν5 (y) from
these four relations, we arrive at a system of Volterra integral equations of the second kind with
respect to τ ′′4 (y) and τ ′5 (y). The unique solvability of this system follows from the theory of integral
equations. Solving this system, we find traces of the solution τ ′′4 (y) and τ ′5 (y). Thus, we have proven
the unique solvability of the considered problem.
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