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Let G = (V,E) be a finite, simple, and undirected graph without an isolated vertex. A dominating subset
D ⊆ V (G) is a restrained pitchfork dominating set if 1 ≤ |N(u) ∩ V −D| ≤ 2 for every u ∈ D and every
vertex not in D is adjacent to at least one vertex in the same set. The cardinality of a minimum restrained
pitchfork dominating set is the restrained pitchfork domination number γrpf (G). In the course of this
investigation, we undertake an examination of the restrained pitchfork domination number within various
path-related graphs. This analysis encompasses a range of graph structures, including the coconut tree,
double star, banana tree, binomial tree, thorn path, thorn graph, and the square of the path denoted as Pn.
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Introduction

Graph theory provides a fundamental framework for understanding and analyzing various systems
and networks, ranging from social networks to biological pathways to communication networks. A
graph G = (V,E) comprises a set V of vertices (or nodes) and a set E of edges (or connections) that
link pairs of vertices. The order of a graph, denoted as n, represents the number of vertices in the
graph, while the size, denoted as m, indicates the number of edges. For basic and detailed concepts,
we refer [1, 2].

Dominating sets play a crucial role in graph theory, offering insights into the structure and connec-
tivity of graphs. A dominating set D ⊆ V (G) within a graph G ensures that every vertex not in D is
adjacent to at least one vertex in D. A dominating set D is considered minimal if no proper subset of D
retains the dominating property. The cardinality of the smallest dominating set in a graph G is known
as the domination number γ(G), representing a fundamental parameter of the graph’s structure.

In certain contexts, such as when studying path-related graphs or tree structures [3, 4], additional
constraints on dominating sets may be considered. A dominating subset D is deemed restrained if each
vertex outside of D is adjacent to at least one vertex within D. Furthermore, a specialized form of
dominating set, known as a pitchfork dominating set, imposes stricter conditions: each vertex within
the dominating set must dominate at least one vertex and at most two vertices outside of the set [5,6].

The concept of restrained domination has garnered attention [7,8], particularly in the study of path-
related graphs, as explored by Vaidya [9, 10]. Additionally, research on restrained domination in tree
structures has been well-documented. These investigations highlight the significance of understanding
and characterizing various types of dominating sets in different graph structures, shedding light on
their properties and implications in diverse applications.
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1 Restrained pitchfork domination in paths

Definition 1. Let G = (V,E) be a finite, simple, undirected graph without isolated vertices. A
dominating subset D of V (G) is a restrained pitchfork dominating set if 1 ≤ |N(u)∩ (V −D)| ≤ 2 for
every u ∈ D, and every vertex in V −D is adjacent to at least one vertex in V −D. D is minimal if it
has no proper restrained pitchfork dominating subset. The restrained pitchfork domination number is
denoted by γrpf (G), which is the minimum cardinality of a minimal restrained pitchfork dominating
set.

Observation 1. Let G be a graph with restrained pitchfork domination number γrpf (G) and a
restrained pitchfork dominating set D. Then:

(i) γrpf ≥ 1.
(ii) The degree of each vertex is greater than or equal to 1 for every u ∈ D.
(iii) Each restrained pitchfork dominating set has a vertex of degree one that belongs to it.

Definition 2. [11] (see Fig. 1) For any positive integers n and m greater than 2, the coconut tree
graph CT (m,n) is constructed by appending n additional pendant edges at the final vertex of the path
Pm.

Definition 3. [3] The double star graph ST (m,n) is formed by connecting the centres of two stars,
ST (m) and ST (n), thereby creating an edge between them.

Definition 4. [3] (see Fig. 2) A banana tree, denoted as B(m,n), is obtained by linking one leaf
from each of m copies of an n-star network to a new single root vertex, represented by v.

Definition 5. [3](see Fig. 3) The binomial tree Bn of order zero consists of a single node R if n = 0.
For n > 0, Bn includes the root R and n subtrees B0, B1, . . . , Bn−1.

Definition 6. [3](see Fig. 4) A thorn path Pn,p,k is created by adding p neighbors to each non-
terminal vertex of the path Pn, and k neighbors to each terminal vertex.

Definition 7. [3](see Fig. 5) A thorn rod Pn,m consists of terminal vertices of degree m at both ends
and a linear network with n vertices in between.

Definition 8. [3](see Fig. 6) The square of a graph G, denoted as G2, shares the same vertex set as
G and includes an edge between any two vertices u and v if the distance between them in G is less
than 3.

2 Main Results

Theorem 1. Let CT (m,n) be a coconut tree where m ⩾ 2, n ⩾ 3 then

γrpfCT (m,n) =


m+ [n3 ] for n ≡ 0 (mod 3),

m+ ⌊n−2
3 ⌋+ 1 for n ≡ 1 (mod 3),

m+ ⌊n−3
3 ⌋+ 3 for n ≡ 2 (mod 3).

Proof. Let CT (m,n) be a coconut tree with the dominating set D. As it is a restrained dominating
set all the pendent vertices are in D. Since it has m pendent edges that are adjacent to the nth vertex
of pn. It has m pendent vertices and all of m are in D. Now we consider only Pn. There are three
cases in D. Hence D is of any one of the forms. Let V (Pn) = {v1, v2, ..., vn} be the set of vertices.
Hence
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D =


v3i+1 i = 0, 1, . . . , n3 − 1 for n ≡ 0 (mod 3),

v3i+1 i =
{
0, 1, . . . , ⌈n3 ⌉ − 2

}
∪ {vn−2} for n ≡ 1 (mod 3),

v3i+1 i =
{
0, 1, . . . , ⌈n3 ⌉ − 3

}
∪ {vn−2, vn−3, vn−6} for n ≡ 2 (mod 3).

Case (i): If n ≡ 0 (mod 3).
Let us divide the vertex sets into n

3 subsets. It contains n
3 subsets, each containing 3 elements.

From that, we take the first element. Hence, we get m+ [n3 ].
Case (ii): If n ≡ 1 (mod 3).
Let us divide the vertex sets into n

3 subsets. It contains ⌊n−2
3 ⌋ subsets, each contains 3 elements.

From that, we take the first vertex. Since vn cannot be in D, from the remaining subsets, we take
vn−2. Hence, we get m+ ⌊n−2

3 ⌋+ 1.
Case (iii): If n ≡ 2 (mod 3).
Let us divide the vertex sets into n

3 subsets. It contains ⌊n−3
3 ⌋ subsets, each contains 3 elements.

From that, we take the first vertex. Since vn cannot be in D, from the remaining subsets we take vn−2,
vn−3, vn−6. Hence, we get m+ ⌊n−3

3 ⌋+ 3.

v1
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v4

v5

v6

v7

v8

v9

v10

v11

Figure 1. γrpfCT (7, 4)

Theorem 2. Let ST (m,n) be a double star graph with m,n ⩾ 1, then γrpfST (m,n) = m+ n.
Proof. Since this graph contains m+ n pendent vertices, hence the result.

Theorem 3. Let B(m,n) be a banana graph, then γrpfB(m,n) = m(n−2)+1 if and only if m = 2.
Proof. Let the banana tree comprise star graphs and its root vertex v0. Let the vertex set of

each (m) star graph be {v1, v2, . . . , vn}. Suppose that one of the vertices, say v3, has degree n, and
all other vertices have degree one. Among them, one pendent vertex, say (v1), is adjacent to the root
vertex v0 whose degree is two. Hence each star graph has (n− 2) pendent vertices and these belong to
D. Moreover, v0 is in D. Hence m(n− 2) + 1.
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Figure 2. γrpfB(2, 5)

Theorem 4. Let Bn be a binomial tree with n ⩾ 2, then γrpfBn = 2(n− 1).

Proof. Let {v1, v2, . . . , vn} be the set of vertices in Bn. Since Bn can be formed from two copies
of Bn−1, each with (n − 1) children at the root, all of which have degree one. Obviously, these two
(n− 1) vertices belong to D. Hence, 2(n− 1).

v1

v2 v3 v4

v5v6v7

v8

Figure 3. γrpfB3

Theorem 5. Let Pn,p,k be a thorn path graph then

γrpf (Pn,p,k) =


2k for n = 2,

2k + (n− 2)p for n ⩾ 3.

Proof. Case (i): If n = 2.
Let Pn,p.k be a thorn path graph. Now we are adding k vertices to the terminal vertices. Hence,

we get 2k pendent vertices which are all in D.
Case (ii): If n ⩾ 3.
In this case, there are (n− 2) non terminal vertices and 2 terminal vertices. Then each of (n− 2)

non terminal vertices has p pendent vertices, and each of two terminal vertices is attached to k pendent
vertices. Thus it contains 2k + (n− 2)p vertices in D.
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Figure 4. γrpfP5,3,2
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Theorem 6. Let (Pn,m) be Thorn rod graph then

γrpf (Pn,m) =



2m for n = 2,

2m+ ⌊n−1
3 ⌋+ 1 for n ≡ 0 (mod 3),

2m+ ⌊n−5
3 ⌋+ 3 for n ≡ 1 (mod 3),

2m+ ⌊n3 ⌋ for n ≡ 2 (mod 3).

Proof. Case (i): If n = 2.

It is obvious, that all the pendent vertices belong to D.

Case (ii): If n ≡ 0 (mod 3).

Let {v1, v2, v3, . . . , vn} be the set of vertices in Pn. Moreover, v1 and vn are adjacent to m pendent
vertices. Then it has 2m pendent vertices. Hence, v1 and vn are not in D. Therefore vn−2 is in D.
Thus, D is in any one of the form

D =


v3i+3 i =

{
0, 1, . . . , n3 − 1

}
∪ {vn−2} for n ≡ 0 (mod 3),

v3i+3 i =
{
0, 1, . . . , ⌊n−5

3 ⌋ − 1
}
∪ {vn−2, vn−3, vn−6} for n ≡ 1 (mod 3),

v3i+3 i =
{
0, 1, . . . , ⌊n3 ⌋

}
for n ≡ 2 (mod 3).

Let us divide the vertex set into n
3 subsets. Since vn−2 is in D, from ⌊n−1

3 ⌋ subsets we take the last
vertex. Hence D becomes 2m+ ⌊n−1

3 ⌋+ 1.

Case (iii): If n ≡ 1 (mod 3).

Let us divide the vertex set into n
3 subsets. Since vn−2 is always included in D, we can consider

only ⌊n−5
3 ⌋ subsets. From that set, we take one (the last) vertex. Still, it does not satisfy our condition,

so we also take vn−3, vn−6. Then we get D = 2m+ ⌊n−5
3 ⌋+ 3.

Case (iv): If n ≡ 2 (mod 3).

Let us divide P (Vn) into n
3 subsets. It has ⌊n3 ⌋ subsets. From each subset, we take one (the last)

vertex. Hence, D is 2m+ ⌊n3 ⌋.
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Figure 5. γrpfP5,3
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Theorem 7. Let the square of the path graph be P 2
n with n ⩾ 3, then

γrpf (P
2
n) =



1 for n = 3,

2 for n = 4, 5, 6,

3 for n = 7,

4 for n = 8,

4[n8 ] for n ≡ 0, 1 (mod 8),

4⌊n8 ⌋ for n ≡ 2 (mod 8),

4⌊n8 ⌋+ 1 for n ≡ 1, 3, 4, 5 (mod 8),

4⌊n8 ⌋+ 2 for n ≡ 1, 6 (mod 8),

4⌊n8 ⌋+ 3 for n ≡ 1, 7 (mod 8).

Proof. Case (i): If n = 3. It is obvious.
Case (ii): If n = 4, 5, 6. Then v1 and vn are in the dominating set.
Case (iii): If n = 7. Here v1, vn−1, and vn are vertices, which satisfy our conditions and hence,

they belong to D.
Case (iv): If n = 7. Here v1, v2, vn−1, and vn are vertices, which satisfy our conditions and hence,

they belong to D.
Case (v): If n ≡ 1 (mod 8).
Let {v1, v2, v3, . . . , vn} be the set of vertices. Let us divide the vertex set into n

8 subsets. Here ⌊n8 ⌋
subsets contain 4 dominating vertices and the remaining subsets may be P1, P2, P3, P4, P5, P6 or P7.
Now we consider the following cases:

Case (a): If n ≡ 1 (mod 8) and the remaining subset is either P1 or P2, then each ⌊n8 ⌋ has 4
vertices. Therefore D is of the form v8i+1, v8i+5, v8i+6, v8i+7, i = 0, 1, . . . , ⌊n−1

8 ⌋− 1. Hence, D is 4⌊n8 ⌋.
Case (b): If n ≡ 1 (mod 8) and the remaining subset is P3, then each ⌊n8 ⌋ has 4 vertices. Therefore

D is of the form v8i+1, v8i+5, v8i+6, v8i+7 ∪ {vn}, i = 0, 1, . . . , ⌊n−1
8 ⌋ − 1. Hence, D is 4⌊n8 ⌋+ 1.

Case (c): If n ≡ 1 (mod 8) and the remaining subset is either P4 or P5, then each ⌊n8 ⌋ has 4
vertices. Therefore D is of the form v8i+1, v8i+5, v8i+6, v8i+7 ∪ {vn, vn−3}, i = 0, 1, . . . , ⌊n−1

8 ⌋ − 1.
Hence, D is 4⌊n8 ⌋+ 2.

Case (d): If n ≡ 1 (mod 8) and the remaining subset is either P6 or P7, then each ⌊n8 ⌋ has 4
vertices. Therefore D is of the form v8i+1, v8i+5, v8i+6, v8i+7 ∪ {vn, vn−1, vn−5}, i = 0, 1, . . . , ⌊n−1

8 ⌋ − 1.
Hence, D is 4⌊n8 ⌋+ 3.

Case (vi): If n ≡ 0 (mod 8), let us divide V (Pn) into n
8 subsets, each containing 8 vertices. From

each subset, we take 4 vertices of the form v8i+1, v8i+2, v8i+7, v8i+8, i = 0, 1, . . . , n8 − 1.
Hence, D is 4⌊n8 ⌋.

Case (vii): If n ≡ 2 (mod 8), let us divide V (Pn) into n
8 subsets, each containing 8 vertices.

From each subset, we take 4 vertices of the form v8i+1, v8i+6, v8i+7, v8i+8, i = 0, 1, . . . , n−2
8 − 1.

Hence, D is 4⌊n8 ⌋.
Case (viii): If n ≡ 3 (mod 8), let us divide V (Pn) into n

8 subsets each containing 8 vertices.
From each subset, we take 4 vertices of the form v8i+1, v8i+6, v8i+7, v8i+8 ∪ {vn}, i = 0, 1, . . . , n−3

8 − 1.
Hence, D is 4⌊n8 ⌋+ 1.
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Case (ix): If n ≡ 4 (mod 8), let us divide V (Pn) into n
8 subsets each containing 8 vertices. From

each subset, we take 4 vertices of the form v8i+1, v8i+6, v8i+7, v8i+8 ∪ {vn}, i = 0, 1, . . . , n−4
8 − 1.

Hence, D is 4⌊n8 ⌋+ 1.
Case (ix): If n ≡ 5 (mod 8), let us divide V (Pn) into n

8 and each containing 8 vertices. From
each subset, we take 4 vertices of the form v8i+1, v8i+6, v8i+7, v8i+8 ∪ {vn}, i = 0, 1, . . . , n−5

8 − 1.
Hence, D is 4⌊n8 ⌋+ 1.

Case (x): If n ≡ 6 (mod 8), let us divide V (Pn) into n
8 subsets each containing 8 vertices. From

each subset, we take 4 vertices of the form v8i+1, v8i+6, v8i+7, v8i+8 ∪ {vn, vn−1}, i = 0, 1, . . . , n−6
8 − 1.

Hence, D is 4⌊n8 ⌋+ 2.
Case (xi): If n ≡ 7 (mod 8), let us divide V (Pn) into n

8 subsets each containing 8 vertices. From
each subset, take 4 vertices of the form v8i+1, v8i+6, v8i+7, v8i+8∪{vn, vn−1, vn−5}, i = 0, 1, . . . , n−6

8 −1.
Hence, D is 4⌊n8 ⌋+ 3.

a b c d e f g

Figure 6. γrpfP7
2

Conclusion

In this study, we examined the concept of restrained pitchfork domination across various path-
related graph structures, establishing key results for their domination numbers. Through rigorous
mathematical analysis, we derived explicit formulations for the restrained pitchfork domination number
in structures such as the coconut tree, double star, banana tree, binomial tree, thorn path, thorn rod,
and the square of a path. The results obtained contribute to the broader understanding of domination
in graph theory, particularly in specialized graph classes.

The findings presented in this paper not only provide theoretical insights but also hold potential
for applications in network optimization, communication systems, and combinatorial optimization
problems where controlled domination constraints are relevant. The scientific novelty of this work lies
in the extension of existing domination parameters by incorporating restrained pitchfork constraints,
thereby refining structural characterizations of these graphs.

Future research in this area can explore variations of restrained pitchfork domination in more
complex graph families, including weighted graphs and directed graphs. Additionally, investigating
algorithmic approaches to efficiently compute restrained pitchfork domination numbers in large-scale
graphs remains an open direction for further study.
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