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Approximation of a singular boundary value problem for a linear
differential equation
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This paper addresses the approximation of a bounded (on the entire real axis) solution of a linear ordinary
differential equation, where the matrix approaches zero as t→ ∓∞ and the right-hand side is bounded with
a weight. We construct regular two-point boundary value problems to approximate the original problem,
assuming the matrix and the right-hand side, both weighted, are constant in the limit. An approximation
estimate is provided. The relationship between the well-posedness of the singular boundary value problem
and the well-posedness of an approximating regular problem is established.
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Introduction

In many fields of applied mathematics, systems of ordinary differential equations that involve sin-
gularities or are defined over an infinite interval frequently occur. Numerous studies (see, for example,
[1–8]) have explored the existence of bounded solutions for these types of problems and the approxi-
mation of these solutions.

In the present paper, we consider the differential equation

dx

dt
= A(t)x+ f(t), x ∈ Rn, t ∈ (−∞,∞), (1)

where the matrix function A(t) is continuous on R and ‖A(t)‖ := max
j

n∑
k=1

|ajk(t)| ≤ α(t). We assume

that α(t) > 0 is a continuous function such that

0∫
−∞

α(t)dt =∞, lim
t→−∞

α(t) = 0,

∞∫
0

α(t)dt =∞, lim
t→∞

α(t) = 0.

As is known (see, e.g. [9]), the above assumption implies that equation (1) has a bounded solution
not for any function f(t) continuous and bounded on the whole axis. For this reason, in [10] the
existence and uniqueness of a bounded solution of equation (1) was investigated under the assumption
that f(t) is continuous and bounded with a weight.

We will use the following notation:
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C̃(R,Rn) is the space of continuous and bounded functions x : R → Rn equipped with the norm
‖x‖1 = sup

t∈R
‖x(t)‖;

C̃1/α(R,Rn) is the space of functions f : R→ Rn that are continuous and bounded with the weight
1/α(t), i.e. f(t)/α(t) ∈ C̃(R,Rn), equipped with the norm ‖f‖α = sup

t∈R
‖f(t)/α(t)‖.

Problem 1 is the problem of finding a bounded on the whole axis solution of equation (1) with
f(t) ∈ C̃1/α(R,Rn).

We say that Problem 1 is well-posed with constant K if it has a unique solution x(t) ∈ C̃(R,Rn)
for any f(t) ∈ C̃α(R,Rn), and

‖x‖1 ≤ K‖f‖α,

where K is a constant independent of f(t).
In [10], Problem 1 was studied by the parameterization method [11] with nonuniform partition

R =
∞⋃

s=−∞
[ts−1, ts). For a fixed number θ > 0, the partition points ts ∈ R, s ∈ Z, are determined as

t0 = 0,

ts∫
ts−1

α(t)dt = θ.

Let h̃(θ) denote a bilaterally infinite sequence of partition step sizes hs(θ) = ts − ts−1, s ∈ Z, i.e.
h̃(θ) = (. . . , hs(θ), hs+1(θ), . . .). We will use the following spaces:

mn is the space of bilaterally infinite sequences of λs ∈ Rn equipped with the norm

‖λ‖2 = ‖(. . . , λs, λs+1, . . .)‖2 = sup
s
‖λs‖, s ∈ Z;

L(mn) is the space of bounded linear operators mapping mn to itself, equipped with the induced
norm;

mn(h̃(θ)) is the space of bounded bilaterally infinite sequences of functions xs(t), each of which is
continuous and bounded on its domain [ts−1, ts), equipped with the norm

‖x[t]‖3 = ‖(. . . , xs(t), xs+1(t), . . .)‖3 = sup
s

sup
t∈[ts−1,ts)

‖xs(t)‖, s ∈ Z.

Well-posedness criteria for Problem 1 were obtained in [10] in terms of a bilaterally infinite block-
diagonal matrix Q

ν,h̃(θ)
: mn → mn of the form

Q
ν,h̃(θ)

=

∥∥∥∥∥∥∥∥
. . . . . . . . . . . . . . . . . . . . .
. . . 0 I +Dν,s(hs(θ)) −I 0 0 . . .
. . . 0 0 I +Dν,s+1(hs+1(θ)) −I 0 . . .
. . . . . . . . . . . . . . . . . . . . .

∥∥∥∥∥∥∥∥ ,

where Dν,s(hs(θ)) =
ts∫

ts−1

A(τ1)dτ1+ . . .+
ts∫

ts−1

A(τ1) . . .
τν−1∫
ts−1

A(τν)dτν . . . dτ1, s ∈ Z, and I is the identity

matrix of order n.

1 Statement of the problem of approximation. A criterion for the well-posedness of Problem 1

In this paper we consider the issue of approximation of Problem 1 by regular two-point boundary
value problems. For this purpose, we pose the following problem.
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Problem 2. For a given ε > 0 find numbers T1, T2 > 0, real n × n matrices B, C, and vector
d ∈ Rn, such that a solution xT1,T2(t) of the two-point boundary value problem

dx

dt
= A(t)x+ f(t), t ∈ (−T1, T2), (2)

Bx(−T1) + Cx(T2) = d (3)

satisfies the inequality
max

t∈[−T1,T2]
||xT1,T2(t)− x∗(t)|| < ε,

where x∗(t) is a solution of Problem 1.
Problem 2 is considered under the following assumptions.

Assumption 1. lim
t→∓∞

A(t)
α(t) = A(∓), and Re ξ∓j 6= 0, where ξ∓j are the eigenvalues of the matrices

A(∓), j = 1, 2, . . . , n.

Assumption 2. lim
t→∓∞

f(t)
α(t) = f(∓).

We introduce the following functions:

δ−1 (T ) := sup
t∈(−∞,−T ]

∥∥∥∥A(t)α(t)
−A(−)

∥∥∥∥ , δ+1 (T ) := sup
t∈[T,∞)

∥∥∥∥A(t)α(t)
−A(+)

∥∥∥∥ ,
δ−2 (T ) := sup

t∈(−∞,−T ]

∥∥∥∥f(t)α(t)
− f(−)

∥∥∥∥ , δ+2 (T ) := sup
t∈[T,∞)

∥∥∥∥f(t)α(t)
− f(+)

∥∥∥∥ .
Obviously, δ∓r (T )→ 0 as T →∞, r = 1, 2.

There exist nonsingular real n × n matrices S(∓) that transform the matrices A(∓) into the real
Jordan canonical form [12]

Ã(∓) = S(∓)A(∓)S
−1
(∓) =

∥∥∥∥ A∓11 0
0 A∓22

∥∥∥∥ , (4)

where A∓11 and A∓22 consist of generalized Jordan blocks associated with the eigenvalues of A(∓) that
have negative and positive real parts, the numbers of which we denote by n∓1 and n∓2 , respectively. We
form the n× n matrices

P1 =

∥∥∥∥ In1 0
0 0

∥∥∥∥ , P2 =

∥∥∥∥ 0 0
0 In2

∥∥∥∥ ,
where Inr are the identity matrices of orders nr, r = 1, 2.

The following statement establishes the interrelation between the well-posedness of Problem 1 and
that of a two-point boundary value problem.

Theorem 1. Under Assumption 1, Problem 1 is well-posed if and only if:
(i) n−1 = n+1 = n1 and n−2 = n+2 = n2;
(ii) there exist T 1

0 , T 2
0 > 0 such that for any T1 > T 1

0 , T2 > T 2
0 the boundary value problem (2), (3)

with B = −P1S(−) and C = P2S(+), is well-posed with a constant K1 independent of T1, T2.

Proof. Necessity. Let Assumption 1 be fulfilled and let Problem 1 be well-posed. Then, by
Theorem 3 [10], there exist θ0 > 0 such that the matrix Q

1,h̃(θ)
has an inverse for all θ ∈ (0, θ0],

and the estimate ‖Q−1
1,h̃(θ)

‖L(mn) ≤ γ/θ holds, where γ is a constant independent of h̃(θ). For a fixed
θ > 0 we choose T1 and T2, so that t−N1 = −T1 and tN2 = T2, and construct the matrix Q

1,h̃(θ)
.

In this matrix we then replace A(t) by α(t)A(−) in the block rows numbered −N1,−N1 − 1, . . . , and
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by α(t)A(+) in the block rows numbered N2, N2 + 1, . . . , and denote the resulting matrix by Qθ,T1,T2 .
Assumption 1 implies that ‖Q

1,h̃(θ)
−Qθ,T1,T2‖L(mn) ≤ max{δ−1 (T1), δ

+
1 (T2 − hN (θ))}θ. Hence, by the

theorem on small perturbations of boundedly invertible linear operators, if we choose T 1
0 , T 2

0 satisfying
γmax{δ−1 (T 1

0 ), δ
+
1 (T

2
0 − hN (θ))} ≤ 1/2, we obtain that the matrix Qθ,T1,T2 : mn → mn has an inverse

for all T1 ≥ T 1
0 and T2 ≥ T 2

0 , and the estimate

‖Q−1θ,T1,T2‖L(mn) ≤
γT1,T2
θ
≤ 2γ

θ

holds. Here γT1,T2 =
γ

1− γmax{δ−1 (T1), δ
+
1 (T2)}

→ γ as T1 →∞, T2 →∞.

We form a bilaterally infinite matrix D = diag(dss), where dss = S(−) for s = 0,−1,−2, . . . , and
dss = S(+) for s = 1, 2, . . . . The matrix Q̃θ,T1,T2 = DQθ,T1,T2D

−1 has a bounded inverse and

‖Q̃−1θ,T1,T2‖L(mn) ≤ ‖D
−1‖L(mn)‖Q

−1
θ,T1,T2

‖L(mn)‖D‖L(mn) ≤ ζ1γT1,T2ζ2/θ.

Here ζ1 = ‖D−1‖L(mn) = max
(
‖S−1(−)‖, ‖S

−1
(+)‖

)
and ζ2 = ‖D‖L(mn) = max

(
‖S(−)‖, ‖S(+)‖

)
. In the

matrix Q̃θ,T1,T2 the block rows numbered s : s ≤ −N1, s ≥ N2, are of the form∥∥∥∥ . . . 0 I +

∥∥∥∥ A∓11 0
0 A∓22

∥∥∥∥ θ − I 0 . . .

∥∥∥∥ .
Rearranging the blocks in Q̃θ,T1,T2 , we obtain the matrix

Mθ,T1,T2 =

∥∥∥∥∥∥∥∥∥∥
M11(θ) 0 0 0 0

0 M22(θ) M23(θ) 0 0
M31(θ) 0 M33(θ) 0 M35(θ)

0 0 M43(θ) M44(θ) 0
0 0 0 0 M55(θ)

∥∥∥∥∥∥∥∥∥∥
.

The one-sided infinite matrices Mkk(θ), k = 1, 2, 4, 5, are of the form

M11(θ) =

∥∥∥∥∥∥∥
. . . . . . . . . . . . . . .
. . . 0 In−

1
+A−11θ −In−

1
0

. . . 0 0 In−
1
+A−11θ −In−

1

∥∥∥∥∥∥∥ ,

M22(θ) =

∥∥∥∥∥∥∥∥∥
. . . . . . . . . . . . . . .
. . . 0 In−

2
+A−22θ −In−

2
0

. . . 0 0 In−
2
+A−22θ −In−

2

. . . 0 0 0 In−
2
+A−22θ

∥∥∥∥∥∥∥∥∥ ,

M44(θ) =

∥∥∥∥∥∥∥∥∥
−In+

1
0 0 0 . . .

In+
1
+A+

11θ −In+
1

0 0 . . .

0 In+
1
+A+

11θ −In+
1

0 . . .

. . . . . . . . . . . . . . .

∥∥∥∥∥∥∥∥∥ ,

M55(θ) =

∥∥∥∥∥∥∥
In+

2
+A+

22θ −In+
2

0 0 . . .

0 In+
2
+A+

22θ −In+
2

0 . . .

. . . . . . . . . . . . . . .

∥∥∥∥∥∥∥ .

190 Bulletin of the Karaganda University



Approximation of a singular boundary ...

The matrix M33(θ) of dimension [(N1 +N2 − 1)n+ n−1 + n+2 ]× (N1 +N2)n is of the form

M33(θ) =

∥∥∥∥∥∥∥∥∥∥∥

−P (−)
1 0 0 . . . 0 0 0

I + Ã−N1+1(θ) −I 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . I + ÃN2−1(θ) −I
0 0 0 . . . 0 0 P

(+)
2 (I + Ã(+)θ)

∥∥∥∥∥∥∥∥∥∥∥
,

where P (−)
1 = (In−

1
, 0) is a matrix of dimension, n−1 × n, P

(+)
2 = (0, In+

2
) is a matrix of dimension

n+2 × n,

Ãp(θ) =


S(−)

tp∫
tp−1

A(t)dtS−1(−), p = −N1 + 1,−N1 + 2, . . . , 1, 0,

S(+)

tp∫
tp−1

A(t)dtS−1(+), p = 1, 2, . . . , N2 − 1.

In the block row of M33(θ) corresponding to p = 0, the term −I is replaced by −S(−)S−1(+).
The off-diagonal nonzero blocks of the matrix Mθ,T1,T2 satisfy the relations

‖M31(θ)‖ = ‖In−
1
+A−11θ‖, ‖M23(θ)‖ = 1, ‖M43(θ)‖ = ‖In+

1
+A+

11θ‖, ‖M35(θ)‖ = 1.

Due to the invertibility of Q̃θ,T1,T2 , the matrix Mθ,T1,T2 is also invertible, and its inverse satisfies
the estimate

‖M−1θ,T1,T2‖L(mn) = ‖Q̃
−1
θ,T1,T2

‖L(mn) ≤
ζ1γT1,T2ζ2

θ
=
γ̃T1,T2
θ

.

Following the proof scheme in [13], we establish the invertibility of the matrices Mkk(θ), k = 1, 5,
and the estimates

‖[Mkk(θ)]
−1‖ ≤

[
max
r=1,2

(
‖Sr,∓‖, ‖S−1r,∓‖

)]2 2

ξθ
=
β

θ
, k = 1, 2, 4, 5, (5)

‖[M33(θ)]
−1‖ ≤

γ̃T1,T2
θ

. (6)

Here ξ = min
{
|Re ξ∓j |, j = 1, 2, . . . , n

}
and Sr,∓ (r = 1, 2) are nonsingular complex matrices of or-

der n∓r reducing A∓rr to Jordan form with the eigenvalues on the diagonal and ξ/4 or zeros on the
superdiagonal.

Since the matrixM33(θ) of dimension [(N1+N2−1)n+n−1 +n
+
2 ]×(N1+N2)n is invertible, it follows

that n−1 +n+2 = n. In view of the structure of the matrices Ã(∓), we also have n−1 +n−2 = n+1 +n+2 = n.
Hence, n−1 = n+1 = n1, n−2 = n+2 = n2.

By rearranging of terms in the matrix M33(θ), we obtain the invertible matrix

N33(θ) =

∥∥∥∥∥∥∥∥∥
−P1 0 0 . . . 0 0 P2(I + Ã(+)θ)

I + Ã−N1+1(θ) −I 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 I + ÃN2−1(θ) −I

∥∥∥∥∥∥∥∥∥ ,
inverse of which, by (6), satisfies the estimate

‖[N33(θ)]
−1‖ = ‖[M33(θ)]

−1‖ ≤
γ̃T1,T2
θ
≤ 2γ̃

θ
.
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Let DN1,N2 denote the block diagonal matrix consisting of blocks D numbered s = −N1,−N1 + 1,
. . . , N2− 2, N2− 1. By premultiplying each but the first block row of N33(θ)DN1,N2 with S−1(−) or S

−1
(+),

respectively, we obtain the matrix V1(θ). Its inverse satisfies the estimate

‖[V1(θ)]−1‖ ≤ max(1, ζ1)ζ2‖[N33(θ)]
−1‖ ≤ 2γ̃max(1, ζ1)ζ2

θ
=
γ1
θ
,

where γ1 is independent of T1 and T2. Hence, by following the proof scheme of Theorem 3 in [13]
and considering the specifics of our partitioning, it can be shown that for all T1 ≥ T 1

0 and T2 ≥ T 2
0 ,

the two-point boundary value problem (2), (3) with B = −P1S(−) and C = P2S(+) is well-posed with
constant K1 independent of T1 and T2.

Sufficiency. Let conditions (i) and (ii) be fulfilled and let Q̃1(θ) denote the matrix N33(θ) with the
first block row scaled by θ > 0. Then, adapting Theorem 3 in [13] to our partitioning, we obtain that
for any ε > 0 there exists θ1 = θ1(ε) > 0 such that the matrix Q̃1(θ) is invertible for all θ ∈ (0, θ1], and

‖[Q̃1(θ)]
−1‖ ≤ (1 + ε)ζ1ζ2K1

θ
≤ (1 + ε)K1

θ
. (7)

The invertibility of Q̃1(θ) implies that of M33(θ). Taking into account the bounded invertibility of
the matrices Mkk(θ), k = 1, 2, 4, 5, and the structure of the matrix Mθ,T1,T2 , we obtain that the last
one has a bounded inverse. Let us show that

‖M−1θ,T1,T2‖L(mn) ≤
γ̃

θ
, (8)

where γ̃ is constant independent of θ. To this end, we consider the equation

Mθ,T1,T2µ = b, µ, b ∈ mn, (9)

which can be rewritten as the system

M11(θ)µ
(1) = b(1),

M22(θ)µ
(2) +M23(θ)µ

(3) = b(2), (10)

M31(θ)µ
(1) +M33(θ)µ

(3) +M35(θ)µ
(5) = b(3), (11)

M43(θ)µ
(3) +M44(θ)µ

(4) = b(4), (12)

M55(θ)µ
(5) = b(5).

Here µ = (µ(1), µ(2), µ(3), µ(4), µ(5)) and b = (b(1), b(2), b(3), b(4), b(5)).

The bounded invertibility of M11(θ), M55(θ) and estimate (5) imply the existence of
µ(1) = [M11(θ)]

−1b(1) and µ(5) = [M55(θ)]
−1b(5), as well as the estimates

‖µ(1)‖ ≤ β

θ
‖b(1)‖, ‖µ(5)‖ ≤ β

θ
‖b(5)‖. (13)

Let us now multiply by θ the first (from the bottom) block row in equation (10), the first (of
dimension n1) and the last (of dimension n2) block rows in (11), and the first (from the top) block row
in (12). We denote the matrices transformed in this way by M22,θ, M23,θ, M31,θ, M33,θ, M35,θ, M43,θ,

M44,θ, the vectors by b
(2)
θ , b

(3)
θ , b

(4)
θ and the equations by (10)′, (11)′ and (12)′. Substituting the obtained
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sequences µ(1) and µ(5) into (11)′, we determine µ(3). Taking into account ‖M−133,θ‖ = ‖[Q̃1(θ)]
−1‖ and

estimate (7), we obtain

‖µ(3)‖ = ‖M−133,θ

{
b
(3)
θ −M31,θ[M11(θ)]

−1b(1) −M35,θ[M55(θ)]
−1b(5)

}
‖ ≤

≤ (1 + ε)K̃1

θ

[
‖b(3)θ ‖+ (1 + ζθ)β‖b(1)‖+ β‖b(5)‖

]
≤ (1 + ε)K̃1

θ
[1 + (2 + ζθ)β] max

k=1,3,5
‖b(k)‖,

(14)
where ζ = [max(ζ1, ζ2)]

2. The one-sided infinite matrices M22,θ and M44,θ have bounded inverses, and

‖M−122,θ‖ ≤ β
ξ

2
max

(
2

ξ
, 1

)
1

θ
, ‖M−144,θ‖ ≤ β

ξ

2
max

(
2

ξ
, 1

)
1

θ
.

Substituting µ(3) into (10) and (12), we determine µ(2) and µ(4) and obtain the estimates

‖µ(2)‖ ≤ β ξ

2θ
max

(
2

ξ
, 1

)
(‖b(2)θ ‖+ θ‖µ(3)‖) ≤

≤ β ξ

2θ
max

(
2

ξ
, 1

)
{1 + (1 + ε)K̃1[1 + (2 + ζθ)β]} max

k=1,2,3,5
‖b(k)‖,

(15)

‖µ(4)‖ ≤ β ξ

2θ
max

(
2

ξ
, 1

)
(‖b(4)θ ‖+ (1 + ζθ)θ‖µ(3)‖) ≤

≤ β ξ

2θ
max

(
2

ξ
, 1

)
{1 + (1 + ε)K̃1(1 + ζθ)[1 + (2 + ζθ)β]} max

k=2,3,4,5
‖b(k)‖.

(16)

Thus, for any b ∈ mn equation (9) has a unique solution µ ∈ mn, and, by (13)–(16), the estimate

‖µ‖2 ≤
K

θ
‖b‖2

holds, where

K = max{β, (1 + ε)K̃1[1 + (2 + ζθ)β], (βξ/2)max(2/ξ, 1)[1 + (1 + ε)K̃1](1 + 2β + ζβθ)]}.

Hence, for any ε1 > 0 choosing θ2 = θ2(ε1) > 0 small enough, we obtain that estimate (8) with
γ̃ = K̃ + ε1 = (βξ/2)max(2/ξ, 1)[1 + K̃1(1 + 2β)] + ε1 is valid for all θ ∈ (0, θ2]. Under condition (ii)
the constant K1 does not depend of T1 and T2, as well as the constant γ̃ = K̃ + ε1. Thus, taking into
account the estimates

‖Q̃1,θ − Q̃θ,T1,T2‖L(mn) ≤ δ1(T1, T2 − hN (θ2))θ, ‖Q̃−1θ,T1,T2‖L(mn) = ‖M
−1
θ,T1,T2

‖L(mn) ≤
K̃ + ε1
θ

,

and choosing T 1
0 and T 2

0 such that (K̃+ε1)ζδ1(T
1
0 , T

2
0 −hN (θ2)) ≤ 1/2, we obtain that Q̃1,θ is invertible

and ‖Q̃−11,θ‖L(mn) ≤ 2γ̃/θ. It follows then that

‖Q̃1,θ‖L(mn) ≤ ‖D
−1‖L(mn)‖Q̃

−1
1,θ‖L(mn)‖D‖L(mn) ≤ 2ζγ̃/θ.

Thus, by Theorem 3 in [10], Problem 1 is well-posed for ν = 1. This finishes the proof.

Application of Theorem 1 allows one to obtain effective well-posedness criteria for Problem 1. But
condition (ii) somewhat narrows the scope of application, since it becomes necessary to check the
well-posedness of the two-point boundary value problem for all T1 and T2. However, if we repeat
the proof of the sufficiency part of Theorem 1 setting T 0

1 = T 1
0 , T 0

2 = T 2
0 and using the introduced

numbers β, ξ, ζ, and then pass in the right part of the inequality to the limit, we establish the following
statement.
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Theorem 2. Let Assumption 1 hold and the following conditions be met:
(i) n−1 = n+1 = n1 and n−2 = n+2 = n2;
(ii) there exist T 0

1 , T
0
2 > 0 such that the boundary value problem

dx

dt
= A(t)x+ f(t), t ∈ (−T 0

1 , T
0
2 ), (17)

− P1S(−)x(−T 0
1 ) + P2S(+)x(T

0
2 ) = d (18)

is well-posed with a constant K1 satisfying the inequality K̃ζδ1(T 0
1 , T

0
2 ) < 1 with

K̃ = (βξ/2)max(2/ξ, 1)[1 + (1 + 2β)K1ζ].

Then Problem 1 is well-posed with the constant K = K̃ζ/[1− K̃ζδ1(T 0
1 , T

0
2 )].

2 An approximating regular boundary value problem and the estimate for the approximation

The following theorem provides an approximating two-point boundary value problem and the esti-
mate for the approximation.

Theorem 3. Under Assumptions 1 and 2, let Problem 1 be well-posed with constant K. Then for all
T1 ≥ T 1

0 and T2 ≥ T 2
0 , where T 1

0 , T
2
0 > 0 are some constants determined byKmax(δ−1 (T

1
0 ), δ

+
1 (T

2
0 )) < 1,

the boundary value problem

dx

dt
= A(t)x+ f(t), t ∈ (−T1, T2), (19)

P1S(−)A(−)x(−T1) + P2S(+)A(+)x(T2) = −P1S(−)f(−) − P2S(+)f(+) (20)

has a unique solution xT1,T2(t), and

max
t∈[−T1,T2]

‖xT1,T2(t)− x∗(t)‖ ≤

≤ K

1−Kmax(δ−1 (T1), δ
+
1 (T2))

[K‖f‖αmax(δ−1 (T1), δ
+
1 (T2)) + max(δ−2 (T1), δ

+
2 (T2))],

(21)

where x∗(t) is the solution of Problem 1.

Proof. We choose θ > 0 and, applying the parameterization method, obtain that the solution
(λ∗, u∗(t)) ∈ mn×mn(h̃(θ)) of the boundary value problem with parameter (2)–(5) in [10] satisfies the
equation I + ts∫

ts−1

A(t)dt

λ∗s + λ∗s+1 = −
ts∫

ts−1

f(t)dt−
ts∫

ts−1

A(t)u∗s(t)dt, s ∈ Z. (22)

By Theorem 3 in [10], for any ε > 0 there exists θ = θ(ε), such that the estimate
‖Q−1

1,h̃(θ)
‖L(mn) ≤

(1+ε)K
θ holds for all θ ∈ (0, θ], and, in addition,

∥∥∥∥∥∥∥
ts∫

ts−1

A(t)u∗s(t)dt

∥∥∥∥∥∥∥ ≤ cθ2, s ∈ Z,
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where c = [1 + (1 + ε)K]eθ‖f‖α, then the last term in (22) can be neglected for θ small enough. Let
us separate the system (22) into three parts. Replacing A(t), f(t) by α(t)A(−), α(t)f(−) for s : s ≤ N1,
and by α(t)A(+), α(t)f(+) for s : s ≥ N2, we obtain

(I +A(−)θ)λr1 − λr1+1 = −f(−)θ, r1 = −N1,−N1 − 1, . . . , (23)I + tr2∫
tr2−1

A(t)dt

λr2 + λr2+1 = −

tr2∫
tr2−1

f(t)dt, r2 = −N1 + 1, . . . , N2 − 1, (24)

(I +A(+)θ)λr3 − λr3+1 = −f(+)θ, r3 = N2, N2 + 1, . . . (25)

We rewrite this system in the form
Qθ,T1,T2λ = −Fθ,T1,T2 . (26)

If we choose ε > 0 to satisfy the inequality, then, by the theorem on small perturbations of
boundedly invertible operators, it follows that the matrix Qθ,T1,T2 is invertible, and its inverse satisfies
the estimate

‖Q−1θ,T1,T2‖L(mn) ≤
(1 + ε)K

[1− (1 + ε)Kmax(δ−1 (T1), δ
+
1 (T2))]θ

. (27)

Hence, by Assumptions 1 and 2, we obtain the estimate for the difference between λ∗ and the
solution λT1,T2 of equation (26):

‖λT1,T2 − λ∗‖2 ≤ ‖Q−1θ,T1,T2‖L(mn)‖Fθ,T1,T2 − F1(h̃(θ)) + [F1(h̃(θ)) +Qθ,T1,T2λ
∗]‖2 =

= ‖Q−1θ,T1,T2‖L(mn)‖Fθ,T1,T2 − F1(h̃(θ)) + [Q
1,h̃(θ))

λ∗ +G1(u
∗, h̃(θ))−Qθ,T1,T2λ∗]‖2 ≤

≤ (1 + ε)K[max(δ−2 (T1), δ
+
2 (T2)) +K‖f‖αmax(δ−1 (T1), δ

+
1 (T2)) + cθ]

1− (1 + ε)Kmax(δ−1 (T1), δ
+
1 (T2))

.

(28)
The components of λT1,T2 numbered with s : s ≤ N1 and s ≥ N2 satisfy equations (23) and (25),

respectively. Hence, the corresponding components of the vector µT1,T2 = DλT1,T2 solve the equations

(I + Ã(−)θ)µr1 − µr1+1 = −S(−)f(−)θ, r1 = −N1,−N1 − 1, . . . ,

(I + Ã(+)θ)µr3 − µr3+1 = −S(+)f(+)θ, r3 = N2, N2 + 1, . . .

Then, taking into account the decomposibility of the matrices Ã(−) and Ã(+), we obtain that
P

(−)
1 µr1 and P (+)

2 µr3 satisfy the equations

(In−
1
+A−11θ)P

(−)
1 µr1 − P

(−)
1 µr1+1 = −P (−)

1 S(−)f(−)θ, (29)

(In+
2
+A+

22θ)P
(+)
2 µr3 − P

(+)
2 µr3+1 = −P (+)

2 S(+)f(+)θ. (30)

In the proof of Theorem 1 it was shown that the matricesM11(θ) andM55(θ) have bounded inverses.
Thus, the one-sided infinite systems (29) and (30) have the unique solutions

P
(−)
1 µ−N1+1 = P

(−)
1 µ−N1+2 = . . . = −[A−11]

−1P
(−)
1 S(−)f(−),

P
(+)
2 µN2 = P

(+)
2 µN2+1 = . . . = −[A+

22]
−1P

(+)
2 S(+)f(+).
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Returning to the variable λ, we obtain

A−11P
(−)
1 S(−)λ−N1+1 = −P (−)

1 S(−)f(−), A+
22P

(+)
2 S(+)λN2 = −P (+)

2 S(+)f(+).

Then, in view of (4), we have

A−11P
(−)
1 S(−)λ−N1+1 =P

(−)
1 Ã(−)S(−)λ−N1+1 = P

(−)
1 S(−)A(−)S

−1
(−)S(−)λ−N1+1

=P
(−)
1 S(−)A(−)λ−N1+1 = −P (−)

1 S(−)f(−),

P
(+)
2 S(+)A(+)λN2 =− P (+)

2 S(+)f(+).

These equations together with (24) constitute a closed system in parameters λ−N1+1, λ−N1+2, . . .,
λN2−1, λN2 . If estimate (27) holds, the boundary value problem (17), (18) is well-posed for all T1 ≥ T 1

0 ,

T2 ≥ T 2
0 . Taking into account that (18) multiplied by

∥∥∥∥ −A−11 0
0 A+

22

∥∥∥∥ yields the left-hand side of the

boundary condition (20), we obtain that problem (19), (20) is well-posed for all T1 ≥ T 1
0 , T2 ≥ T 2

0 .

Let xT1,T2 be a solution of problem (19), (20), and let [λT1,T2 ]N1,N2 be the vector composed of those
components of λT1,T2 ∈ mn that are numbered s = −N1 + 1,−N1 + 2, . . . , N2 − 1, N2. Since

max
s

sup
t∈[ts−1,ts)

‖xT1,T2 − [λT1,T2 ]N1,N2‖ ≤ c1θ,

where c1 is a constant independent of θ, we obtain, in view of (28), the following estimate:

max
t∈[−T1,T2]

‖xT1,T2(t)− x∗(t)‖ ≤ ‖[λT1,T2 ]N1,N2 − [λ∗]N1,N2‖+ (c+ c1)θ ≤

≤ (1 + ε)K[K‖f‖αmax(δ−1 (T1), δ
+
1 (T2)) + max(δ−2 (T1), δ

+
2 (T2)) + cθ]

1− (1 + ε)Kmax(δ−1 (T1), δ
+
1 (T2))

+ (c+ c1)θ.

Passing to the limit as θ → 0, we obtain (21). Theorem 3 is proved.

Conclusion

By approximating Problem 1 with a two-point boundary value problem and utilizing well-known
results, we developed an approximate method for finding the bounded solution. The form of matrices
P1 and P2 indicates that the approximating problem involves separated boundary conditions. Theorem
2 allows one to establish the well-posedness of the singular boundary value problem (Problem 1) using
the well-posedness constant K1 of the two-point boundary value problem, the eigenvalues ξ∓j of the
limit matrices A∓, and the nonsingular matrices S(∓). This approach provides a robust framework for
addressing similar singular problems.

Acknowledgments

This research was funded by the Science Committee of the Ministry of Science and Higher Education
of the Republic of Kazakhstan (grant no. BR20281002).

Author Contributions

All authors contributed equally to this work.

196 Bulletin of the Karaganda University



Approximation of a singular boundary ...

Conflict of Interest

The authors declare no conflict of interest.

References

1 Fazio, R. (2002). A survey on free boundary identification of the truncated boundary in numerical
BVPs on infinite intervals. Journal of Computational and Applied Mathematics, 140 (1-2), 331–
344. https://doi.org/10.1016/S0377-0427(01)00526-X

2 Ronto, M., & Samoilenko, A.M. (2000). Numerical-Analytic Methods in the Theory of Boundary-
Value Problems. World Scientific. https://doi.org/10.1142/3962

3 Mitropolsky, Yu.A., Samoilenko, A.M., & Kulik, V.L. (2002). Dichotomies and Stability in
Nonautonomous Linear Systems. Taylor & Francis Ltd, United Kingdom. https://doi.org/
10.1201/9781482264890

4 Dzhumabaev, D.S. & Uteshova, R.Ye. (2018). Weighted limit solution of a nonlinear ordinary
differential equation at a singular point and its property. Ukrainian Mathematical Journal,
69 (12), 1997–2004. https://doi.org/10.1007/s11253-018-1483-2

5 Muratbekov, M.B., & Bayandiyev, Ye.N. (2022). Existence and smoothness of solutions of a sin-
gular differential equation of hyperbolic type. Bulletin of the Karaganda University. Mathematics
Series, 3(107), 98–104. https://doi.org/10.31489/2022M3/98-104

6 Yesbayev, A.N., & Ospanov, M.N. (2021). The solvability conditions for the second order non-
linear differential equation with unbounded coefficients in L2(R). Bulletin of the Karaganda
University. Mathematics Series, 1(101), 104–110. https://doi.org/10.31489/2021M1/104-110

7 Uteshova, R.Ye., & Kokotova, Ye.V. (2022). On bounded solutions of linear systems of differential
equations with unbounded coefficients. Bulletin of the Karaganda University. Mathematics
Series, 4(108), 107–116. https://doi.org/10.31489/2022M4/107-116

8 Assanova, A.T., & Uteshova, R.E. (2021). A singular boundary value problem for evolution equa-
tions of hyperbolic type. Chaos, Solitons and Fractals, 143, article number 110517.
https://doi.org/10.1016/j.chaos.2020.110517

9 Daleckii, Ju.L., & Krein, M.G. (1974). Stability of solutions of differential equations in Banach
space. American Mathematical Society.

10 Uteshova, R.E., & Kokotova, Y.V. (2023). On the well-posedness of a singular problem for linear
differential equations. Lobachevskii Journal of Mathematics, 44 (7), 2961–2969. https://doi.org/
10.1134/S1995080223070430

11 Dzhumabaev, D.S. (1989). Criteria for the unique solvability of a linear boundary-value prob-
lem for an ordinary differential equation. USSR Computational Mathematics and Mathematical
Physics, 29 (1), 34–46. https://doi.org/10.1016/0041-5553(89)90038-4

12 Horn, R.A., & Johnson, C.R. (2013). Matrix Analysis. 2nd Edition, Cambridge University Press.
13 Dzhumabaev, D.S. (1990). Approximation of the bounded solution of an ordinary linear differen-

tial equation by solutions of two-point boundary-value problems. USSR Computational Mathe-
matics and Mathematical Physics, 30 (2), 34–45. https://doi.org/10.1016/0041-5553(90)90074-3

Mathematics Series. No. 1(117)/2025 197

https://doi.org/10.1016/S0377-0427(01)00526-X
https://doi.org/10.1201/9781482264890
https://doi.org/10.1201/9781482264890
https://doi.org/10.1016/j.chaos.2020.110517
https://doi.org/10.1134/S1995080223070430
https://doi.org/10.1134/S1995080223070430
https://doi.org/10.1016/0041-5553(89)90038-4
https://doi.org/10.1016/0041-5553(90)90074-3


R. Uteshova, Y. Kokotova

Author Information∗

Roza Uteshova (corresponding author) — Candidate of sciences in physics and mathematics, As-
sociate Professor, Institute of Mathematics and Mathematical Modeling, 125 Pushkin Street, Almaty,
050010, Kazakhstan; e-mail: r.uteshova@math.kz ; https://orcid.org/0000-0002-8809-9310

Yelena Kokotova — Candidate of sciences in physics and mathematics, K. Zhubanov Aktobe
Regional University, 34 Moldagulova Avenue, Aktobe, 030000, Kazakhstan; e-mail: kokotovae@mail.ru;
https://orcid.org/0009-0007-9625-3334

∗The author’s name is presented in the order: First, Middle and Last Names.

198 Bulletin of the Karaganda University


