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This article explores the theory of Riemann double integration for functions whose values are intervals
in the framework of time scale calculus. We define the Riemann double A-integral and Riemann double
V-integral for interval valued functions, namely interval Riemann AA-integral and interval Riemann VV-
integral. Some key theorems in the article discuss the uniqueness of the integral, the equality of the
interval Riemann double integral to the Riemann double integral when function is degenerate, necessary and
sufficient conditions for integrability, proving integrability of a function without knowing the actual value
of the integral. Additionally the relationship between the interval Riemann double integral and Riemann
double integral for two interval-valued functions is estableshed via Hausdorff-Pompeiu distance. Elementary
properties of the integral such as linearity property, subset property and others are established. Using the
concept of generalized Hukuhara difference, alternate definitions of the interval Riemann AA-integral and
interval Riemann VV-integral are formulated and theorems proving the equivalence of the integrals defined
in both approaches are established. Theorems proving the equivalence of interval Riemann A- and V-
integrals previously defined in both approaches are also shown.
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Introduction and Motivation

S. Hilger in 1988, as part of his Wiirzburg doctoral degree [1], introduced the theory of measure
chain calculus (which came to be known as the time scale calculus); transcripts later published in
1990, [2]. Time scale calculus unifies and extends discrete and continuous calculus; the theory proves
immensely useful when dealing with hybrid models [3]. As theoretical framework, Hilger formulated
three axioms [2] (also view [4; 1997]); any set, say T, that satisfied these axioms were called time
scales. By nature any closed subset T of R is a time scale, an excerpt “...any closed subset of R bears
the structure of a measure chain in a natural manner.” [2| concludes this.

Hilger introduced two operators [2]. The forward jump operator denoted by o and the backward
jump operator denoted by p. Mapping o : T — T such that o(t) = inf {u eT:u> t}. Similarly,
mapping p : T — T such that p(t) = sup {u eT:u< t}.

Using the notion of forward jump operator, Hilger in [2] formulated the delta derivative
(A-derivative). A decade later in 2000, C.D. Ahlbrandt et al. [5] introduced a notion of deriva-
tive, which they called the alpha derivative, consisting both the A-derivative and another derivative
called the nabla derivative (V-derivative) as special cases. This V-derivative was formulated using the
notion of backward jump operator, officially named so in 2002 by F. M. Atici et al. [6].

Integrations of the A-derivative and V-derivative are extensively discussed in literature, including
for the Riemann integration. The Riemann integral for real valued functions on time scales was
formulated by S. Sailer [7], using the concept of Darboux sum definition of the integral, and by
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G.S. Guseinov et al., using the concept of Riemann sum definition of the integral [8,9]. The Riemann
double A-integral for real valued functions was defined by M. Bohner et al. [10,11].

Below we give the definition of Riemann double A-integral (Riemann AA-integral) and Riemann
double V-integral (Riemann VV-integral) for real valued functions as defined in [10].

Let T1 and T be two given time scales and put T1 x To = {({,) : t € T1,f € To}.

The intervals on which integrals are defined, i.e., intervals on time scale T are defined as assuming
v <w [11]:

wawlr={te T:v<t<w}; (vwr={teT:v<t<w}

vwyr={te T:v<t<w}; vwlr={teT:v<t<w}.

For clarity E, F will represent partitions for the A-integral and G, H will represent partitions for
the V-integral.

Let [v,w]r and [r,s]7 be closed intervals on T such that [v wlp x [r,s]7 = {(t, f) :t € v,wlr,
t € [r,s]r}. We partition the intervals as [v =ty <t1 <...<t,=w],peNand [r=1f < <...<
t, = 5], ¢ € N; P([v,w] ) will denote the collection of all posable partitions of [v, w]r and P([r,s| 1)
will denote the collection of all possible partitions of [r, s] .

Let E = {v =1y < ... <1 =w} € P(uwr) and F = {r =1 < ... <t =s} €
P([r,s]T). Subintervals are taken to be of the form [te 1te)r for 1 < e < p and [ff,l,tvf)T for
1 < f < ¢, which we will call the AA-subintervals. From each of these AA-subintervals we choose
J, € [te_1,te) T and 19f € [tf 1s tf)T arbitrarily and call it the AA-tags. We define the mesh of E as,
mesh-(E) = maxj<e<p(fe — fe—1) > 0. For some § > 0, Es will represent a A-partition of [v, w]T
with mesh & satisfying the property: for each e = 1,2,...,p we have either- (f, — t,_1) < 6 or
(e —te—1) > 0 A p(fe) = te1 (here A stands for “and”). Again, mesh-(F) = maxj<p<,(f; —£7-1) > 0.
For some ¢ > 0, F5 will represent a A-partition of [r, s]7 with mesh ¢ satisfying the property: for each
f=1,2,...,q we have either (f; —f;_1) <d or (f; —t;_1) >0 A p(ts) =t;_1.

Riemann AA-sum, Raa(g; Eg; Fs), of real valued function “g” evaluated at the AA-tags as follows,

p q
Raa(g:EsiFs) = > > g(de,0y) (Fe — fer)(Fr —£521).
e=1f=1

Definition 1. [10] (Riemann AA-integral) Let function g : [v,w]r X [r,s]r — R be a real val-
ued function. Function ¢ is said to be Riemann AA-integrable if there exists an Ian € R on
[v,w]T X [r,s]7 such that for any € > 0 there exists 6 > 0 hence for any A-partitions E5 and Fs, we
have ‘RAA(g; Es; Fs) — IAA| < e. Here Ian = RAA fvw fTS g(t, ) AtAE, where Raa fyw ff g(t,H)ALAT is
called the Riemann AA-integral.

Let G = {v =1t < ... <t =w} € Powr)and H = {r = {) < ... < {; = s} €
P([r,s]T). Subintervals are taken to be of the form (te Lite]r for 1 < e < pand (f4_1,%]r for
1 < f < q, which we will call the VV-subintervals. From each of these VV-subintervals we choose
ée € (te_1,te]r and Ef € (ff,l,tuf]T arbitrarily and call it the VV-tags. We define the mesh of G as,
mesh-(G) = maxj<e<p(fe — te—1) > 0. For some § > 0, Gs will represent a partition of [v,w]r
with mesh § satisfying the property: for each e = 1,2,...,p we have either (te — te1) < & or
(te — te—1) > 6 AN o(te—1) = te. Again, mesh- (H) = max1<f<q( ¢ —1t7-1) > 0. For some § > 0,
Hs will represent a partition of [r s] T with mesh § satlsfylng the property: for each f=1,2,...,¢ we
have either (f; —f;_1) < S or (fy —tp_1) > A o(fp_1) = 1.

Riemann VV-sum, Ryv(g; Gs; Hs), of real valued function “g

w0

evaluated at the VV-tags as follows,

p q
Ryv(g; Gs; Hs) : ZZg(fe,ff)(fe —te-1)(ty —ty-1).

e=1 f=1
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Definition 2. (Riemann VV-integral) Let function g : [v,w|r X [r,s]r — R be a real valued
function. Function g is said to be Riemann VV-integrable if there exists an Iyy € R on [v,w]r X
[r, s] 7 such that for any & > 0 there exists § > 0 hence for any V-partitions G5 and Hg, we have
’va(g;Gg;H(g) - Ivv‘ < e. Here Ivv = va f;u frs g(f, E)vaf, where va fvw f: g(f, tv)ngE is
called the Riemann VV-integral.

We take a quick look at the theory of interval analysis. R.E. Moore’s monograph [12| and [13] played
a vital role as a catalyst to the modern era of extensive research on interval analysis. This monograph
was the outgrowth of his Stanford PhD thesis titled “Interval arithmetic and automatic error analysis
in digital computing” [14]. Intuitively, interval analysis uses closed intervals of real numbers instead of
just numbers for calculations. Following we present basic concepts on classical interval analysis, view
[13] for more insight.

Let Ry denote the class of all non-empty compact intervals of real numbers. [P] = [P~,P*] € Ry;
P~ represents the left end point and P represents the right end point of interval [P]. If P~ = P*
then [P] is said to be degenerate.

Given [P],[Q] € Ry, some rules of ordinary interval arithmetic are

Minkowski addition: [P]® [Q]= [P~ +Q ,PT +Q"].
Scalar Product: for r € R, r[P]={[rP~,rP*] if r>0; [0] if r=0;
[Pt rP7] if r <0},
Order : [P] < [Q] implies PT < Q™.
Subset : [P] C[Q] if and only if Q- <P~ and PT <QT.
Absolute value : |[P]| = max {|P~|,|P*]}.

Reader is referred to [13| and [15] for theory on ordinary interval analysis.
The Hausdorff-Pompeiu distance between intervals [P] and [Q] is defined as

s([P], [Q]) = max{’P_ — Q_}, ’P+ — Q"'}}

[3h)

It is known that (RI, s) is a complete metric space. Properties of “s” are

1. s([P,[Q)) = 0+ [P] = [Q;

2. s(v[P,7[Ql) = [vs([P),[Q]) for all v € R;

3. ([P) @ [R]. [Q] @ [R]) = s([P], Q)

1. s([Pl® [R], [Q] & 8]) < s([P], [Q]) + s(IR][S]),
For details on “s” refer [16].

L. Stefanini in [16,17| details the general limitation of substraction of sets. To partially overcome
this situation, M. Hukuhara [18] introduced the H-difference (Hukuhara difference) which was further
generalized by L. Stefanini [17], referring to it as the generalized Hukuhara difference. We will denote
generalized Hukuhara difference by “©gn” defined as

Y

P~ =Q +R,P"= Q" +RT,
P~ P em[Q.Q =R R .
Q- =P -R,Q"= Pt -RT,
so that [P, PT] 6,n [Q7, Q"] = [R™,R"] is always defined by
R™ =min{P~ - Q~,P" —Q"}, Rf = max{P~ - Q~,PT - QT},
i.e., [P] ©gn [Q] = [min{P~ - Q,PT - Q" }, max{P~ - Q~,P* - QT}].

Properties of “©gy” are
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1. [P] &gn [P] = {0};

2. ([Pl®[Ql) &g [Q] = [P]; [Pl &g (Pl®[Q]) = -
3. ([P, [Q]) = s([P] ©gu [Q], [0]); here [0] [0,0};
4. ([P, [Q]) = 0« [P] ©gu [Q] = {0}.

For more details on properties of “©,1” one may refer [16] and [17].
Let [v,w]r be a closed interval on T. Function h is said to be an interval valued function if it
assigns a nonempty interval

(D) = [h(e)", h(t)*] = {h:h(t)” < h < h(t)*},

for each ¢ € [v,w] 7, where h™, ht : [v,w]7 — R are real valued functions.
h:[v,w]r — Ry and t € [v,w]r, | € Ry is said to be an interval limit of h as ¢ tends to u, denoted
by limy_,, h(t) = [ if for every € > 0 there exists 6 > 0 such that s(h(t),l) < e for all |t —u| < 4. Here,

1}1_1371J ht)=1< }gIllL (h(t) ©gn 1) = {0},
where the interval limits are in the metric “s”. For h(t) = [h~(t), AT (t)], lim;_, h(t) exists if and only
if limy_,,, h™(t) and lim;_,, AT (t) exists as ﬁnlte numbers. Here,

. e - ooy
fim h(t) = [ i - (0, iy (1)

h: [v,w]r — Ry is said to be interval continuous at u € [v, w| ¢ if for each € > 0, there exists § > 0
such that s([h(t)], [h(u)]) < &€ whenever |t —u| < §. Also, h is interval continuous at u € [v, w]r if and
only if its end points h~ and h* are continuous functions at u € [v,w]p. If h is interval continuous
at every t € [v,w]r, then we say that h is interval continuous. h is said to be interval bounded, if for
B >0, |[h(t)]] < B for all t € [v,w]r.

Reader is referred to [19] and [20].

Integration of functions whose values are intervals (interval valued functions) have garnered much
attention in recent years for both continuous calculus and time scale calculus.

For interval valued functions in continuous calculus, the interval Riemann integral was defined by
O. Caprani et al. in [15] (also view [13]); the interval Henstock integral was defined by C. Wu et al. in
[21]; the interval Henstock-Stieltjes integral was defined by M. E. Hamid [22]; the interval AP-Henstock
integral was defined by M. E. Hamid et al. [23]; the interval AP-Henstock-Stieltjes integral was defined
by G.S. Eun et al. [24]; and the interval McShane and interval McShane-Stieltjes integrals are defined
by C.K. Park [25].

In 2013, V. Lupulescu [19] introduced the notion of interval analysis to the concept of time scale cal-
culus pioneering extensive research that followed soon. He formulated differentiability and integrability
for interval valued functions on time scales using generalized Hukuhara difference.

For interval valued function in time scale calculus the interval Riemann integral was defined by
D. Zhao et al. [26] (A-integral) and by M. Bohner et al. [20] (V-integral and {,-integral), the
interval Riemann integral defined using the notion of generalized Hukuhara difference was given by
V. Lupulescu [19]; the interval Riemann-Stieltjes integral was defined in [27] (A-integral and V-integral)
and interval Riemann-Stieltjes integral using the notion of generalized Hukuhara difference was also
defined in the same [27] (A-integral and V-integral); the interval Henstock integral was defined by
W.T. Oh et al. |28] (A-integral); the interval Henstock-Stieltjes integral was defined by J.H. Yoon [29]
(A-integral); the interval McShane integral was defined by M.E. Hamid et al. [30] (A-integral); the
interval McShane-Stieltjes integral was defined by M.E. Hamid [31] (A-integral); and the interval
Henstock-Kurzweil-Stieltjes-{>-double integral was defined by D.A. Afariogun et al. [32,33].
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Given T x Ty = {(f, E) te Tl,f S Tz}, and [P] = [(Pl,Pg)], [Q] = [(Ql,QQ)], “s” forms a
complete metric space defined as [32,33]

s([P1,1Q)) = s([(Pr. P2, [(Q1. Q2)))
= max {\/(Q — P2+ (@5 — Pr)2/(QF - PP+ (@5 - BH)2).

Below we give the definition of interval Riemann A-integral and interval Riemann V-integral ac-
cording to D. Zhao et al. [26] and M. Bohner et al. [20], respectively.

We partition [v,w]r as E = {v =ty < ... < t, = w} € P([v,w]r). A-subintervals are of the
form [te—1,te)T; A-tags are ¥, € [te—1,te) T taken arbitrarily. For some § > 0, Es will represent a
A-partition of [v,w]r with mesh 4.

Definition 3. |26](Interval Riemann A-integral) Let function h : [v,w]r — Ry be an interval valued
function; h is said to be interval Riemann A-integrable if there exists an interval [Ia] € Ry on [v, w]r
such that for any € > 0 there exists 6 > 0 hence for any A-partition Es, we have s (IRA(h; Es), [IA]) <e.
Here [Ia] = IRa [, h(t)At; IRA(h; E5) := Y0 [h(0e)](te — te—1).

The set of all interval Riemann A-integrable functions on [v, w]7 will be denoted by {IRa[v, w] 1 }.
The interval Riemann A-integral defined using the notion of generalized Hukuhara difference was
given by V. Lupulescu [19] as

Definition 4. |19] Let function h : [v,w|r — Ry be an interval valued function; h is said to be
interval Riemann A-integrable if there exists an interval [Ia] € Ry on [v, w]|r such that for any € > 0
there exists § > 0 hence for any A-partition Es, we have s(IRa(h;Es) ©gn [Ia],[0]) < e. Here
[Ia] = IRA [, h(t)At; IRA(R; Ej) := Y0 [h(De)](te — te—1).

We formulate a theorem (Theorem 1) which proves the equivalence of Definition 3 (as defined in
[26]) and Definition 4 (as defined in [19]) below

Theorem 1. If h € {IRA [v, w] T} then, h is interval Riemann A-integrable defined using the gener-
alized Hukuhara difference and vice versa.

Proof. Suppose h € {IRA[v,w]T} (Definition 3), then s(IRA(h; Es), [IA]) < €. Hence,

s([min {IRA(h‘; Es) — Ix, IRA (A Es) — Ig},max {IRA(h_§ Es) — In, IRa (T Es) — IZH , [0])

= max{‘ min {IRA(h_; Es) — I£7IRA(h+S Es) — IX} - 0"

i

max {IRA(h_; Eg) — I3,
R (W Es) — Ig} - o+’} - max{‘ min {IRA(h*; Es) — 15, IRA (R Es) — IZH,

| max {IRa(h™3 By) — I3, IRa (h5 Bs) — T4 }| } = | max {IRA(h 73 By) — I3, IRa (W5 Bs) — X }] <&

Thus, if h € {IRA[v,w]T} implies h is interval Riemann A-integral defined using the generalized
Hukuhara difference. The converse is proved similarly.

For the V-integral, we partition [v,w]r as G = {v =ty < ... < t, = w} € P([v,w]r).
V-subintervals are of the form (t._1,te]T; V-tags are { € (te—1,t]T taken arbitrarily. For some
d > 0, Gs will represent a V-partition of [v, w]r with mesh 0.

Definition 5. |20|(Interval Riemann V-integral) Let function h : [v,w]r — Ry be an interval val-
ued function; h is said to be interval Riemann V-integrable if there exists an interval [Iy] € Rp
on [v,w]r such that for any € > 0 there exists § > 0 hence for any V-partition Gs, we have
s(IRv(h; Gs), Iv]) < e. Here [Iv] = IRy [, h(t)Vt; IRv(h; Gs) := > 01 [h(&e)](te — te—1).
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The set of all interval Riemann V-integrable functions on [v,w]7 will be denoted by {IRy[v,w]r }.

The interval Riemann V-integral defined using the notion of generalized Hukuhara difference is
given below

Definition 6. Let function h : [v,w]r — Ry be an interval valued function; h is said to be in-
terval Riemann V-integrable if there exists an interval [Iy] € Ry on [v,w]r such that for any ¢ > 0
there exists & > 0 hence for any V-partition G, we have s(IRy(h; Gs) ©gn [Iv],[0]) < e. Here
[Iv] =1Ry [ h(t)VE; IRy (h; Gs) := >0 [h(&e)] (te — te—1).

Theorem 2 states the equivalence of Definition 5 (as defined in [20]) and Definition 6; proof of the
statement is omitted due to similarity with Theorem 1.

Theorem 2. If h € {IRV [v, W] T}, then h is interval Riemann V-integrable defined using the gener-
alized Hukuhara difference and vice versa.

To the best of our knowledge, Riemann double integral for interval valued functions on time scales
has not been discussed in literature. Hence, the primary objective of this paper is to define the interval
Riemann AA- and VV-integrals and establish some fascinating results.

1 Interval Riemann double integration

Partitioning [v,w]r as E = {v = & < ... < t, = w} € P([v,w]r) and [r,s]r as
F={r=1 <..<t =s} € P(rs|r). AA-subintervals for [v,w]r and [r,s]7 are of the
form [f._1,.) and [tuf,l,tuf)T respectively. AA-tags are J, € [te_1,te) T and 7§f € [tvf,l,tvf)T taken
arbitrarily. For some 6 > 0, Es and Fs will represent A-partitions of [v, w]|r and [r, s]r respectively
with mesh 9.

Interval Riemann AA-sum, IRana(h;Es; Fs), of interval valued function “h” evaluated at the
AA-tags as follows,

ie., TRaa(h;Es; Fs) =[h(D1,91) (f1 — fo) (F1 — f0), h(91,91) " (B —fo) (1 — o) ] @ ... @
[h(épv 5lq)i(gp - fp—l) ({q - 7\5Jq—1)7 ( Apv 51q)Jr(tAp - fp—l) (Eq - 7\fq—l ]
Here,
IRAA (RT3 Es; Fy) == Zp: > h(@e,5) (Fe — te1)(Er — T51),
e=1 f=1

p q
TRaa (RT3 Esi Fo) i= > Ym0, 04) (e — te1)(Fy — Tp-1).

Definition 7. (Interval Riemann AA-integral) Let function h : [v,w]r x [r, s]7 — R; be an interval
valued function; h is said to be interval Riemann AA-integrable if there exists an interval [Iaa] € Ry
on [v,w|r X [r,s]r such that for any £ > 0 there exists § > 0 hence for any A-partitions Es5 and Fy,
we have

s(TIRaa(; Es; Fs), [Ian]) <e.

Here [Iaa] = IRaa [ [7 h(t,{)AtAE, where IRan [ [ h(t,T)AEAL is called the interval Riemann
AA-integral.
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The set of all interval Riemann AA-integrable functions on [v,w]r X [r,s]r will be denoted by
{IRAA[v,w]T x [r, s]T}.

Example 1. 1. When T = R, the interval Riemann AA-integral coincides with the usual interval
Riemann double integral in R.

2. When T = aZ, here a € R and v,w,r,s € aZ, if h € {IRAA[v,w]T X [r, S}T}, then

,_1 £_1

IRAA/ /httAtAt—a ZZ aza]

7,—*]—7

w_12_1

:a2-ZZ{ (ai,aj)”, (ai,aj)ﬂ.
1—7]—7
Ifa=1, T =7 and
w—1s—1
IRAA/ / ttAtAt—ZZ Z]

i=v j=r

For the VV-integral, we partition [v,w|r as G = {v =ty < ...< t, = w} € P([v,w]r) and
[r,slras H={r =1y <... <ty =s} € P([r,s]r). VV-subintervals for [v,w]r and [r, s]T are of the
form (fo_1,%] and (tf 1,tf]T, respectively. VV-tags are fe (te_1,te] T and §f € (tf 1,tf]T taken
arbitrarily. For some 6 > 0, G5 and H; will represent V-partitions of [v,w]r and [r, s|r respectively
with mesh 4.

Interval Riemann VV-sum, IRyv (h; Gs; Hy), of interval valued function h evaluated at the VV-tags
as follows,

ie., IRyv(h;GsiHs) =[h(&, &) (f1 — o) (f1 —fo), h(&1. &) (1 — o) (1 —t0)] @ ... @
[h(épa gq)_ (fp - 7Epfl) (tq - tqfl)’ h(fpv fq) (tp - tpfl) (tq - qul)]'

Here,

p q
IRyv(h™; Gg; Hs) : Zzhfeygf —te 1)(tf_tf 1),
e=1 f=1

p q
IRyv(h*;Gs; Hs) Zzhéwgf (te —te—1)(Ef —tp_1).
e=1 f=1

Definition 8. (Interval Riemann VV-integral) Let function h : [v, w]r X [r, s]7 — Ry be an interval
valued function; h is said to be interval Riemann VV-integrable if there exists an interval [Iyv] € Ry

on [v,w]p X [r,s]p such that for any ¢ > 0 there exists § > 0 hence for any V-partitions G5 and Hg,
we have

s(IRvv (h; Gs; Hy), [Ivv]) < e.

Here [Ivy] = IRyv [ [ h(t,{)ViVE, where IRyy [° [ h(t,1)VEVE is called the interval Riemann
VV-integral.

The set of all interval Riemann VV-integrable functions on [v,w]r X [r,s]r will be denoted by
{IRyv[v,w]r x [r,s]T}.
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Ezxample 2. 1. When T = R, the interval Riemann VV-integral coincides with the usual interval
Riemann double integral in R.
2. When T = aZ, here a € R and v, w,r,s € aZ, if h € {Iva[v,w]T X [r, S}T}, then

w s

a a

IRyv /Uw/rsh(f,tv)VtAVtv—aQ-‘Z > [n(ai, ah)]

i=Y41 =41

2 |o

Il

Q

[\
Ma»s

Z [h(ai,aj)_,h(ai,aj)+].
i=2415j=C241

Ifa=1, T =7 and

IRW// (£, VtVt_Z Z

i=v+1j=r+1

Following statements and theorems will be given in regard to the AA-integral, VV-integral versions
are omitted due to their similarity.

Remark 1. If h € {IRaa[v,w]7 X [r,s]7}, then the value of integral [Iaa] is unique and well-
defined.

If h € {IRaa[v,w]7 x [r,s]7} and h is degenerate, then interval Riemann AA-integral (Definition
7) equals Riemann AA-integral (Definition 1).

Theorem 3. Let h : [Lto,U(tA(])]T X [E(),U(tuo)]:[' — RI, then h € {IRAA[I%,U(EQ)]T X [fg,d(tuo)}T} and
Ran /t = /t Wi DAIAT = [h(i. o) (o(Go) ~ o) (o(00) ~ o). A(io. o) * (o) ) (o) ~ ) .

Theorem 4. Let h: [p(t), to]T  [p(fo),to] T — Ru, then h € {IRaa[p(to).t0] T x [p(f0), 0] 7 } and

~ )

IRAA/O /O h(t, £)AEAL = [h(P(tAo%P(Eo))f(fo—P(fo))(fvo—P(fo)%h(ﬂ(to)ap(to))+

p(to) J/p(fo)
(fo — p(do)) (fo — p(io)) |

Theorem 5. An interval valued function h : [v, w] X [r, s]7 — Ry is interval Riemann AA-integrable
on [v,w] x [r,s] if and only if A~ and h™ are Riemann AA-integrable on [v, w]7 X [r, s]7 and

IRAA// ATAL = RAA// (t,1) AtAtRAA// h(t, 1) TALAE.

Proof. 1f h € {IRaa[v,w]7 x [r,s]T}, then integral [Iaa] = [Ixa,IAA] such that for each & > 0
there exists § such that

s(IRaa (h; Es; Fs), [Ian]) = max

(h*;Egs; Fs) — IXA’}

p q
DD h(@e,0p) " (Fe = te1)(Er —F5-1) = Ixa|,

b<e,

h(De, 0 4) T (fe — tem1)(fp — Ep—1) — IXA

thus,
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| S0y S (e Fp) (e — o) (Fy — Ty 1) — I | < € and
‘ Ze:l Zf:l (7967 ﬁf)Jr(tAe - ie—l)(tuf - gf—l) - IXA’ <¢g,

hence we conclude.
Conversely, let b=, ht be Riemann AA-integrable on [v,w]|r X [r, s] T, then there exists I1, [» € R
such that for each € > 0, there exists § such that

’RAA(hf;E(;;F(g) — Il‘ < € and ’RAA(h+;E5;F5) — Ig‘ <e.

Letting [Iaa] = [11, I2], we have

max{‘RAA(hf; Es; Fs) — Il‘, (h+;E5;F5) — IQ‘} = maX{

Zzh te—te—1)(Ty —ty—1) — IXA

e=1 f=1

(tf —tr-1) = Ixa

I

implies s(IRAA(h; Es; Fs), [IAA]) < ¢ hence we conclude.

Without actually knowing the value of the integral, we can prove the integrability of a function via
the criterion of integrability. It is stated as

Theorem 6. An interval valued function h : [v, w]r x[r, s]r — Ry is interval Riemann AA-integrable
on [v,w]r X [r,s]p if and only if for each € > 0 there exists § such that any A-partitions Eq;, F;, and
Eg;, Fa, with mesh< ¢ implies

S(IRAA(h; E15; F16),IRAA(h; E26; FQ(S)) < €.

A function h : [v,w]7 X [r, s]7 — Ry is said to be interval continuous at (fg, o) € [v,w]r x [r, 5] if

for each £ > 0 there exists § > 0 such that s([h(¢,£)], [h(fo,0)]) < e, whenever \/(fo — )2+ (fg — )2 < 4.
Interval boundedness and interval continuity of a function are sufficient conditions for the existence
of interval Riemann double integrability.

Theorem 7. Every bounded continuous interval valued function is interval Riemann AA-integrable,

and
IRan / / Wi B AFAT = [RM / / Wi, B~ AEAT, Raa / / h(f,f)*AiAtu}

Below we establish a relation between interval Riemann AA-integral and Riemann AA-integral for
two interval valued functions via Hausdorff-Pompeiu distance.

Theorem 8. Let hi,hy € {IRaalv,w]r X [r,s]r}, if given s([hi(£,%)], [h2(£,7)]) is Riemann
AA-integral then,

(IRAAf [ ha (6, 6)ALAE TRAA ) [ ho(t, T AtAt) < Raa [ [7s([hi(E,2)], [ha(t, 1)]) ALAL.
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Proof. By definition of distance we have,

s(IRaa / ’ / (i, )ATAT TRaA / " / ha(f i) A7)

= max ’IRAA/ /hlt AtAt—IRAA/ /hgt AtAt‘
‘IRAA/ /hl(t,t)+AtAt—IRAA/ /hg(t,t)JrAtAt’}

< max IRAA/ / \hl(f,t“)——h2(£,f)—\A£Af,IRM/ / \hl(i,f)+—h2(£,t“)+|AfAt“}

<IRAA/ /max ‘hltt —h2

:RM/ / s([h1 (L, 1)), [hao(f,1)]) ALAL.

|, [ Bt = hald, fm}AfAf

Theorem 9. Let hq,ho € {IRAA[v,w]T x [r, S]T} and v € R, then
1. vhy € {IRAA[’U,’U)]T X [r, S]T} and

w S w S
Ran / / yhi(F, D) APAT = 7 TRAA / / hi(F, ) AFAT,

2. hi+ho € {IRAA[U,QU]T X [r, s]T} and

IRAA/ / (h1 + h2) t AtAt—IRAA/ /hlt AtAt—i—

IRAA/ /hg(f,f)AfAf,
Ran / / ha (0, 1) APAT C TRaA / / ha(i, [)ATAT,

Definition 7 and Definition 8 can also be alternatively defined using the generalized Hukuhara
difference as

3. hi(f,0) C ho(i, D)

Definition 9. Let function h : [v,w]r X [r,s]7 — Ry be an interval valued function; A is said to be
interval Riemann AA-integrable if there exists an interval [Iaa] € Ry on [v, w]r X [r, s]r such that for
any € > 0 there exists § > 0 hence for any A-partitions Es and Fs, we have

s(IRaa(h; Es; Fs) g [Iaal, [0]) < e.

Here [Iaa] = IRaa [, [ h( t, 1) ALAL, where TRAA L2 [ h( t,1)AtAf is called the interval Riemann
AA-integral.
We establish a theorem which proves the equivalence of Definition 7 and Definition 9.

Theorem 10. If h € {IRaalv,w]r x [r,s]7} then, h is interval Riemann AA-integrable defined
using the generalized Hukuhara difference and vice versa.
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Proof. Suppose h € {IRAA[v,w]T x [r, s]T} (Definition 7), then s(IRAA(h; Es; Fs), [IAA]) < e.
Hence,

s([min{IRAA(h_; Eg:Fs) — Ix 0, IRan (bt Es; Fs) — IIA},

max {IRAa(h*;E(;;F(;) —  Ina TRaa(h"5Es Fy) — IZAH : [0]>

_ max{‘ min {IRAA(h_; Es:Fs) — Ix 0, IRan (A Bs; Fy) — IXA} —0-
max {IRM(h*; Bg; Fs) — Ixa.IRan (b By Fy) — IXA} - oﬂ}
- max{‘ min {IRAA(h_; Es:Fs) — Ix 0, IRan (bt Bs; Fs) — IXA}
max{IRAA(h_; Eg; Fs) — Ixp.IRan (b By Fy) — IXAH}

= | max {IRAA(hi;E(s;F(S) — IxnsIRAA (R Eg; Fy) — IZAH <e.

)

)

Thus, if h € {IRaalv,w]r X [r,s]r} implies h is interval Riemann AA-integrable defined using
the generalized Hukuhara difference. The converse is proved similarly.

Definition 8 is alternatively defined using the notion of generalized Hukuhara difference as

Definition 10. Let function h : [v,w|r X [r,s]r — Ry be an interval valued function; h is said to
be interval Riemann VV-integrable if there exists an interval [Iyy] € Ry on [v, w]p X [r, s] 7 such that
for any € > 0 there exists § > 0 hence for any V-partitions G5 and Hy, we have

S(Iva(h; Gs; H5) Ogl [Ivv], [0]) <e.

Here [Iyv] = IRyv [ [7 h(,1)VEiVE, where IRy [\ [ h(f,£)ViV{ is called the interval Riemann
VV-integral.

We establish a theorem which proves the equivalence of Definition 8 and Definition 10; prove is
omitted due to its similarity with Theorem 10.

Theorem 11. 1f h € {IRyv[v,w]r X [r,s]7}, then h is interval Riemann VV-integrable defined
using the generalized Hukuhara difference and vice versa.

Conclusion

This paper explores the theory of Riemann double integration for interval valued functions on time
scales and discuss a few fascinating results.
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