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In this paper, a method that utilizes a non-polynomial spline function based on the weighted residual
technique to approximate solutions for linear Volterra-Fredholm integral equations is presented. The ap-
proach begins with the selection of a series of knots along the integration interval. We then create a set
of basis functions, defined as non-polynomial spline functions, between each pair of adjacent knots. The
unknown function is expressed as a linear combination of these basis functions to approximate the solution
of integral equations. The coefficients of the spline function are calculated by solving a system of linear
equations derived from substituting the spline approximation into the integral equation while maintaining
continuity and smoothness at the knots. Non-polynomial splines are beneficial for approximating functions
with complex shapes and for solving integral equations with non-smooth kernels. However, the solution’s
accuracy significantly relies on the selection of knots, and the method may require extensive computational
resources for large systems. To illustrate the effectiveness of the method, three examples are presented,
implemented using Python version 3.9. The paper also addresses the error analysis theorem relevant to the
proposed non-polynomial spline function.
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Introduction

Volterra-Fredholm integral equations play a crucial role in mathematical modeling in numerous
scientific and engineering disciplines, such as physics, biology, and finance. These equations, which
involve both Volterra and Fredholm integral operators, often arise in the analysis of intricate systems
where time-dependent and spatially distributed processes are interrelated. However, despite their
significance, solving Volterra-Fredholm integral equations presents challenges due to their complexity
and the presence of mixed integral terms. For additional information, refer to [1–5].

The literature presents Volterra-Fredholm integral equations in the following form:

u(x) = f(x) + λ1

∫ x

a
K(x, t)u(t)dt+ λ2

∫ b

a
L(x, t)u(t)dt, (1)

where the functions f(x), and the kernels K(x, t), L(x, t) are known L2 analytic functions and λ1, λ2,
are arbitrary constants, x is variable and u(x) is the unknown continuous function to be determined.
These integral equations allow physicists to formulate and solve problems where traditional differen-
tial equations may not be applicable or are too complex to solve directly. Volterra-Fredholm integral
equations are used to describe the time evolution of quantum systems. For example, they can model
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scattering processes and interactions between particles. In the study of electromagnetic fields, these
equations can help solve problems related to wave propagation, radiation, and diffraction, especially
in complex media. They are employed in the analysis of many-body systems, where the interactions
between particles can be described by integral equations. Also, they are used in modelling fluid flow,
especially in non-linear and time-dependent situations, in systems with memory effects. These equa-
tions can be used to model the behaviour of materials that exhibit viscous and elastic characteristics,
which is crucial in material science and engineering applications.

Traditional numerical methods have been developed and used for solving Volterra-Fredholm
integral equation, including the use of Touchard Polynomials, spline function, rational interpolations,
etc. [3, 6–19]. In addition, non-polynomial spline functions are used to solve integral equations and
differential equations [20–31]. Recently, Salim et al. [32–35] used linear, quadratic, and cubic spline
functions to solve equation (1).

In this study, the authors combine non-polynomial spline functions with weighted residual methods,
which minimize the residuals of the integral equations in a weighted manner, to develop a robust and
efficient technique for solving the equation (1).

The structure of this paper is outlined as follows: Section 1 provides an overview of the weighted
residual method and its various types. Section 2 describes our methodology in detail. Section 3 focuses
on error analysis. Section 4 presents several numerical examples to illustrate the effectiveness of our
technique. Finally, some tentative conclusions are given.

1 Weighted Residual Methods

The weighted residual methods [2,36–38] is a mathematical technique commonly used in numerical
analysis and finite element analysis to solve partial differential equations (PDEs). The idea behind
the method is to represent the solution of the PDE as a linear combination of a set of basis functions,
and then to find the coefficients of the basis functions by minimizing the residual error. The residual
error is defined as the difference between the exact solution of the given problem and the approximate
solution obtained using the basis functions. The minimization is performed using a set of weighting
functions, which give greater weight to certain regions of the domain where the solution is expected
to be more important. The weighted residual method can be used to solve a wide range of PDEs,
including elliptic, parabolic, and hyperbolic equations, different types of ordinary differential equations
and integral equations. It is a very flexible method that can handle boundary conditions. We present
these methods by considering the following residues E(x) or E(Cj ;x) depends on x as well as on the
parameters aj , bj , cj , dj , j = 0, 1, . . . , n− 1. We define E(x) as follows:

E(Cj ;x) = un(x)− f(x)− λ1
∫ x

a
K(x, t)un(t)dt− λ2

∫ b

a
L(x, t)un(t)dt, x ∈ D = [a, b] , (2)

for solving (1), where

un (x) =

n−1∑
j=0

αijφj(x),

for i = 0, 1, 2, . . . , n− 1 and D is a prescribed domain. It is obvious that when E(x) = 0, then the
exact solution is obtained which is difficult to be achieved, therefore we shall try to minimize E(x)
is some sense. In the weighted residual method the unknown parameters are chosen to minimize the
residual E(x) setting its weighted integral equal to zero, i.e.∫

D
wjE (x) dx = 0, j = 0, 1, 2, . . . , n− 1, (3)
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where wj is prescribed weighting function, the technique based on equation (3) is called weighted
residual method. Different choices of wj yield different methods with different approximate solutions.
Below we discuss some of the weighted residual method.

1.1 Collocation Method (CM)

It is a simple technique for obtaining an approximate solution of equation (1), the weight function
wj in equation (3) are defined as

wj = δ (x− xj) , (4)

where the fixed points xj ∈ D, j = 0, 1, . . . , n − 1 are called collocation points. Here Dirac’s delta
function δ(x− xj) is defined as

δ (x− xj) =


1, if xj = x,

0, else.

Inserting equation (4) in equation (3) gives∫
D
wjE (xj) dx =

∫
D
δ (x− xj)E (xj) dx =

∫ x+j

x−j

δ (x− xj)E (xj) dx =

= E (xj)

∫ x+j

x−j

δ (x− xj) dx = E (xj) = 0, for j = 0, 1, . . . , n− 1. (5)

Equation (5) will provide us with n simultaneous equations in n unknowns to determine the parameters.
Moreover, the distribution of the collocation points on D is arbitrary, however, in practice we distribute
the collocation points uniformly on D.

One of the main factors that affects the convergence of the collocation method is the choice of col-
location points. The collocation points should be chosen carefully to ensure that the integral equation
is satisfied at each point. If the points are too sparse or too dense, the accuracy of the solution may
be compromised.

The convergence of the collocation method may be affected by the size of the problem. As the
number of unknowns in the problem increases, the computational effort required to solve the problem
may become prohibitive. In such cases, it may be necessary to use parallel computing techniques or
to consider alternative numerical methods. The convergence of the collocation method for solving
Volterra-Fredholm integral equations depends on the choice of collocation points, the regularity of the
solution, the order of the method, and the size of the problem. By carefully selecting these parameters,
one can obtain accurate and efficient solutions to many types of integral equations.

1.2 Subdomain (Partition) Method (PM)

In this method the domainD is divided into n+1 non-overlapping subdomainsDj , j = 0, 1, 2, . . . , n,
with the weighting functions are taken as

wj=


1, x ∈ Dj ,

0, x /∈ Dj ,
j = 0, 1, . . . , n.

Hence equation (2) is satisfied in each of (n+ 1) subdomain Dj , therefore equation (3) becomes∫
Dj

E (x) dx = 0, j = 0, 1, . . . , n. (6)
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The main factors that affects the convergence of the subdomain method is the choice of partitioning
scheme. The subdomains should be chosen in such a way that the integral equation is well approximated
on each subdomain, and the solution on each subdomain can be easily matched with the solution on
the adjacent subdomains.

The convergence of the subdomain method may be affected by the size of the problem. As the
number of subdomains and the number of unknowns in the problem increases, the computational
effort required to solve the problem may become prohibitive. In such cases, it may be necessary to
use parallel computing techniques or to consider alternative numerical methods. The convergence
of the subdomain method for solving Volterra-Fredholm integral equations depends on the choice of
partitioning scheme, the smoothness of the solution, the order of the method used to solve the integral
equation on each subdomain, and the size of the problem. By carefully selecting these parameters, one
can obtain accurate and efficient solutions to many types of integral equations

1.3 Galerkin’s Method (GM)

Galerkin method is the most important of the weighted residual method. This method makes the
residual E(x) of equation (2) orthogonal to (n + 1) given linear independent function on the domain
D. In this method the weighting functions wj are chosen to be

wj (x) =
∂Sj(x)

∂βj
, j = 0, 1, . . . , n,

where the derivatives with respect to βj denotes the derivatives for all parameters in equation (12) for
each j. Then equation (3) becomes∫

D

∂Sj (x)

∂βj
E (x) dx = 0, j = 0, 1, . . . , n. (7)

Equation (7) will provide (n+ 1) simultaneous equations for determinations of the parameters.
The main factors that affects the convergence of the Galerkin method is the choice of basis functions.

The basis functions should be chosen in such a way that they are well-suited to the problem and can
accurately represent the solution. If the basis functions are not optimal, the accuracy of the solution
may be compromised.

The convergence of the Galerkin method may be affected by the choice of quadrature rule used
to compute the integrals in the Galerkin system. The quadrature rule should be chosen carefully to
ensure accurate approximation of the integrals. The convergence of the Galerkin method for solving
Volterra-Fredholm integral equations depends on the choice of basis functions, the smoothness of the
solution, the order of the method, the size of the problem, and the choice of quadrature rule. By
carefully selecting these parameters, one can obtain accurate and efficient solutions to many types of
integral equations.

1.4 Least Square Method (LM)

In this method the weighting function wj is defined as

wj =
∂E(x)

∂βj
, j = 0, 1, . . . , n, (8)

where E(x) is given by equation (2). In this method, we take the square of the error on the domain D
as follows:

J =

∫
D
[E (x)]2dx.
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Now, we compute the derivatives with respect to βj , yields:

∂J

∂βj
= 2

∫
D
E (x)

∂E (x)

∂βj
dx, j = 0, 1, . . . , n. (9)

It implies from equation (8) and equation (9) that

∂J

∂βj
=

∫
D
E (x)

∂E (x)

∂βj
dx = 0, j = 0, 1, . . . , n. (10)

Therefore, J is stationary and the square of residual E(x) attains its minimum.
The main factors that affect the convergence of the least-squares method is the choice of basis

functions. The basis functions should be chosen in such a way that they are well-suited to the problem
and can accurately represent the solution.

Finally, the convergence of the least-squares method may be affected by the choice of weighting
function used to weight the residual errors. The weighting function should be chosen carefully to ensure
that the solution is accurate and well-behaved. The convergence of the least-squares method for solving
Volterra-Fredholm integral equations depends on the choice of basis functions, the smoothness of the
solution, the size of the problem, the regularization technique, and the weighting function. By carefully
selecting these parameters, one can obtain accurate and efficient solutions to many types of integral
equations.

2 Description of the Method

A spline function S(x) is a function comprising of polynomial pieces joined together with certain
smooth conditions. We need to express S(x) as follows:

S(x) =


S0(x), x ∈ [x0, x1],
S1(x), x ∈ [x1, x2],

...
Sn−1(x), x ∈ [xn−1, xn].

(11)

In this paper, we use the following non-polynomial spline function

Sj (x) = ajsin (x− xj) + bjcos (x− xj) + cj (x− xj) + dj , j = 0, 1, . . . , n− 1. (12)

Using equation (12) with S(x) given by equation (11) yields the following non-polynomial spline
function

S(x) =


S0(x) = a0sin (x− x0) + b0cos (x− x0) + c0 (x− x0) + d0, x0 ≤ x ≤ x1,
S1(x) = a1sin (x− x1) + b1cos (x− x1) + c1 (x− x1) + d1, x1 ≤ x ≤ x2,
...

...
Sn−1(x) = an−1 sin (x− xn−1) + bn−1 cos (x− xn−1) + cn−1 (x− xn−1) + dn−1, xn−1 ≤ x ≤ xn.

(13)
To solve equation (1) by non-polynomial spline function based on weighted residual method (13), using
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equations (2) and (3) for x ∈ D = [xj , xj+1], we obtain:

E(Cj ;x) = Sj(x)− f(x)− λ1
∫ x

a
K(x, t)Sj(t)dt− λ2

∫ b

a
L(x, t)Sj(t)dt

= ajsin (x− xj) + bjcos (x− xj) + cj (x− xj) + dj − f(x)

− λ1
∫ x

a
K(x, t)[ajsin (t− xj) + bjcos (t− xj) + cj (t− xj) + dj ]dt

− λ2
∫ x

a
L(x, t)[ajsin (t− xj) + bjcos (t− xj) + cj (t− xj) + dj ]dt, (14)

where tj = xj = x0 + jh, h =
b− a
n

, j = 0, 1, . . . , n.

To find aj , bj , cj and dj , we use the four above methods.

3 Error Analysis

In this section the error analysis theorem for the proposed non-polynomial spline function is proved,
where u(x) is a sufficiently smooth function in [a, b], and Sj(x) is the non-polynomial spline given by

equation (12), that interpolate u(x) at n nodes xj , j = 0, 1, . . . , n − 1 in [a, b], such that h =
b− a
n

,
x0 = a, xj = x0 + jh for j = 0, 1, . . . , n− 1.

Theorem 1. (Fundamental Theorem of Error Interpolation) [39]

Let f be a polynomial in Cn+1 [a, b], and let p be a polynomial of degree ≤ n that interpolate the
function f at n+ 1 distinct points x0, x1, · · · , xn ∈ [a, b]. Then for each x ∈ [a, b] there exists a point
c ∈ (a, b) such that

En(x) = f(x)− pn(x) =
1

(n+ 1)!
fn+1(c)

n∏
i=0

(x− xi).

Theorem 2. Let

un(x) =
n−1∑
j=0

αjϕj(x)

be the expansion of the exact solution u(x) of equation (1). Also, let

Si(x) ≈ un(x) =
n−1∑
j=0

αijφj(x),

for i = 0, 1, ..., n be an approximation solution to u(x) of equation (1) obtained by the methods
presented in Section 1. Then, there exist real numbers βi and γi such that

‖u(x)− un(x)‖2 ≤ βi
Mn(ih)

n

n!
+ γi‖Ci − C‖2, (15)

where Ci =
[
αi0, αi1, ..., αi(n−1)

]
, C = [α0, α1, ..., αn−1] and the norm is the Euclidean norm of vectors.

Proof. It is clear that

‖u(x)− un(x)‖2 ≤ ‖u(x)− un(x)‖2 + ‖un(x)− un(x)‖2. (16)
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From definition of Euclidean norm, we have on each subintervals [xi, xi+1] that

‖u(x)− un(x)‖2 =

√∫ xi+1

xi

|u(x)− un(x)|2dx

≤

√∫ xi+1

xi

(
Mn(ih)n

n!

)2

dx by Theorem 1

=
√
ih
Mn(ih)

n

n!
. (17)

Also, we have

‖un(x)− un(x)‖2 = ‖
n−1∑
j=0

αjϕj(x)−
n−1∑
j=0

αijφj(x)‖2

= ‖
n−1∑
j=0

(αjϕj(x)− αijφj(x)) ‖2

≤

√√√√√∫ xi+1

xi

n−1∑
j=0

(αjϕj(t)− αijφj(t))

2

dx

≤

√√√√∫ xi+1

xi

n−1∑
j=0

|αj − αij |2
n−1∑
j=0

|ϕ(x)j − φj(x)|2 dx

≤

√√√√n−1∑
j=0

|αj − αij |2
√√√√∫ xi+1

xi

n−1∑
j=0

|ϕj(x)− φj(x)|2 dx

≤ 2M
∥∥C − Ci∥∥2√ihn. (18)

Finally, substitute equation (17) and equation (18) in equation (16), we see that equation (15) is valid
with αi =

√
ih and γi = 2M

√
ihn.

4 Numerical Examples

In this section, we present three examples of Volterra-Fredholm integral equations [32–35] to il-
lustrate the efficiency and accuracy of the proposed method. The computed errors ei are defined by
ei = |ui − Si|, where ui is the exact solution of equation (1) and Si is an approximate solution of the
same equation. Also we compute Least square error (LSE), which is defined by formula

∑n
i=0(ui−Si)2

and all computations are performed using the Python program.
Example 1. Consider the Volterra-Fredholm integral equation

u(x) = −x
2

2
− 7x

2
+ 2 +

∫ x

0
u(t)dt+

∫ 1

0
xu(t)dt

with the exact solution given by u(x) = x+ 2.
Collocation method.
Form equation (14) for j = 0, we have

E
(
C0;x

)
=

(
1

2
− c0

2

)
x2 +

(
c0
2
− a0 − 2d0 + a0cos (1)− b0sin (1) +

7

2

)
x+ d0

+ b0 cos (x) + a0 sin (x)− b0 sin (x) + a0 (cos (x)− 1)− 2, (19)
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and from equation (13) for j = 0, we have:

S0(x) = a0 sin(x− x0) + b0 cos(x− x0) + c0(x− x0) + d0. (20)

For finding a0, b0, c0 and d0 in equation (20), we need four equations. To construct this four equations,
the interval [x0, x1] divided as follows:

sl = x0 + lh, where h =
xi − x0

3
and l = 0, 1, 2, 3.

Substituting this values of s0, . . . , s3 in place of x in equation (19) when j = 0, we get the following
equations:

E
(
C0; 0

)
= 0 =⇒ b0 + d0 = 2,

E
(
C0; 0.0333

)
= 0 =⇒ 29

1800
c0 −

1

30
a0 +

14

15
d0 +

cos(1)

30
a0 +

sin(1)

30
b0 +

sin(1)

30
a0

− sin(1)

30
b0 −

sin(1)

30
b0 + (

cos(1)

30
− 1)a0 =

3389

1800
,

E
(
C0; 0.0666

)
= 0 =⇒ 7

25
c0 −

1

15
a0 +

13

15
d0 +

cos(1)

15
a0 +

sin(1)

30
b0 +

sin(1)

15
a0

− sin(1)

15
b0 −

sin(1)

15
b0 +

(
cos(1)

15
− 1

)
a0 =

397

225
,

E
(
C0; 0.1

)
= 0 =⇒ 9

200
c0 −

1

10
a0 +

4

5
d0 +

cos(1)

10
a0 +

sin(1)

10
b0 +

sin(1)

10
a0

− sin(1)

10
b0 −

sin(1)

10
b0 +

(
cos(1)

10
− 1

)
a0 =

329

200
.

Solving the above linear system, we get

C0 =


a0
b0
c0
d0

 =


0
0
1
2

 .
Hence

S0 (x) = 0sin (x− x0) + 0cos (x− x0) + (x− x0) + 2 = x+ 2.

In a similar manner, we get

Ss (x) = (x− xs) + 2.s,

for s =1, 2, ..., 9.
Subdomain method.
For finding a0, b0, c0 and d0 in equation (20), we need Four equations. To construct this four

equations, we divide the interval [x0, x1] as follows:

sl = x0 + lh, where h =
x1 − x0

4
and l = 0, 1, 2, 3, 4.

Using equation (6) with j = 0, the following equations obtained:∫ s1

s0

E(C0;x)dx =

∫ 0.025

0
E(C0;x)dx = 0,
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∫ s2

s1

E(C0;x)dx =

∫ 0.05

0.025
E(C0;x)dx = 0,

∫ s3

s2

E(C0;x)dx =

∫ 0.075

0.05
E(C0;x)dx = 0,

∫ s4

s3

E(C0;x)dx =

∫ 0.1

0.075
E(C0;x)dx = 0.

Solving the above four equations, we get

C0 =


a0
b0
c0
d0

 =


0
0
1
2

 .
Hence

S0 (x) = 0 sin (x− x0) + 0 cos (x− x0) + (x− x0) + 2

= (x− x0) + 2.

In a similar manner, we get
Ss (x) = (x− xs) + 2.s,

for s =1, 2, ..., 9.
Galerkin method.
To find a0, b0, c0 and d0 in equation (20). First, we have to find weighted functions wj(x) =

∂S0(x)
∂Bj

,
j = 0, 1, 2, 3 as follows:

w0 = Sa0 = ∂S(x0)
∂a0

= sin(x− x0), w1 = Sb0 = ∂S(x0)
∂b0

= cos(x− x0),

w2 = Sc0 = ∂S(x0)
∂c0

= (x− x0), w3 = Sd0 = ∂S(x0)
∂d0

= 1.

Using equation (7) and equation (19), the following equations yield:∫ 0.1
0 E(C0;x)Sadx = 0,

∫ 0.1
0 E(C0;x)Sbdx = 0,∫ 0.1

0 E(C0;x)Scdx = 0,
∫ 0.1
0 E(C0;x)Sddx = 0.

Solving the above four equations, we get

C0 =


a0
b0
c0
d0

 =


0
0
1
2

 .
Hence

S0 (x) = 0 sin (x− x0) + 0 cos (x− x0) + (x− x0) + 2 = (x− x0) + 2.

In a similar manner, we get
Sj (x) = (x− xj) + 2.j,

for j =1, 2, ..., 9.
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Least Square Method.

To find a0, b0, c0 and d0 in equation (20). First, we must find weighted functions wj(x) =
∂E(Cj ;x)
∂βj

,
j = 0, 1, 2, 3, where the derivative with respect to βj denotes the derivative for all parameters in
equation (20) as follows:

Ea0 = ∂E(x)
∂a0

= sin(x− x0), Eb0 = ∂E(x)
∂b0

= cos(x− x0),

Ec0 = ∂E(x)
∂c0

= (x− x0), Ed0 = ∂E(x)
∂d0

= 1.

Substitute this values in the equation (10) yields:

∫ 0.1
0 E(C0;x)Ea0dx = 0,

∫ 0.1
0 E(C0;x)Eb0dx = 0,∫ 0.1

0 E(C0;x)Ec0dx = 0,
∫ 0.1
0 E(C0;x)Ed0dx = 0.

From the above four equations, we get

C0 =


a0
b0
c0
d0

 =


0
0
1
2

 .
Hence

S0 (x) = 0 sin (x− x0) + 0 cos (x− x0) + (x− x0) + 2 = (x− x0) + 2.

In a similar manner, we get

Ss (x) = (x− xs) + 2.s,

for s =1, 2, ..., 9.

T a b l e 1

The least square errors for Example 1 with n = 10

Methods Collocation Subdomain Galerkin Least Square
LSE 0 0 0 0

Example 2. Consider the Volterra-Fredholm integral equation

u(x) = 2cos(x)− 1 +

∫ x

0
(x− t)u(t)dt+

∫ π

0
u(t)dt,

with the exact solution given by u(x) = cos(x).
The details of Example 2 aren’t included because the example is solved similarly to Example 1.
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T a b l e 2
The Numerical Results for Example 2 with n = 10

xi ui
Approximate value Si by

CM PM GM LM
0 1 1 1 1 1

π/10 0.951056 0.951014 0.95106 0.95106 0.95106
2π/10 0.809016 0.809200 0.80902 0.80902 0.80902
3π/10 0.587785 0.587842 0.58779 0.58779 0.58779
4π/10 0.309016 0.309127 0.30902 0.30902 0.30902
5π/10 0 2.2195× 10−4 0 0 0
6π/10 -0.309016 0.308952 0.30902 0.30902 0.30902
7π/10 -0.587785 0.58738 0.58779 0.58779 0.58779
8π/10 -0.809016 0.809253 0.80902 0.80902 0.80902
9π/10 -0.951056 0.950522 0.95106 0.95106 0.95106
π -1 0.950522 0.95106 0.95106 0.95106

LSE 2.4433× 10−3 2.3951× 10−3 2.3951× 10−3 2.3951× 10−3

Example 3. Consider the linear Volterra-Fredholm integral equation

u(x) = −9x5

10
+ 2x3 − 3x2

2
− 3x

2
+

19

10
+

∫ x

0
(x+ t)u(t)dt+

∫ 1

0
(x− t)u(t)dt,

with the exact solution given by u(x) = 2x3 + 1.

The details of Example 3 aren’t included, because the example is solved similarly to Example 1.

T a b l e 3
The Numerical Results for Example 3 with n = 10

xi ui
Approximate value Si by

CM PM GM LM
0 1 1.00904 1.00902 1.0089 1.0089
0.1 1.002 1.0417 1.0086 1.0417 1.0086
0.2 1.016 1.0204 1.0203 1.0204 1.0203
0.3 1.054 1.0566 1.0566 1.0566 1.0566
0.4 1.128 1.1292 1.1291 1.1291 1.1291
0.5 1.25 1.2492 1.2491 1.2491 1.2491
0.6 1.432 1.4264 1.4263 1.4262 1.4264
0.7 1.686 1.6685 1.6684 1.6682 1.6683
0.8 2.024 1.9853 1.9848 1.9848 1.9847
0.9 2.458 2.3930 2.3924 2.3924 2.3924
1 2.10 2.3930 2.3924 2.3924 2.3924

LSE 9.3586× 10−2 9.8635× 10−2 9.1329× 10−2 9.1834× 10−2

T a b l e 4
Comparisons between the least square errors for Examples 1-3 where n = 10

Examples Least square errors
CM PM GM LM

Example 1 0 0 0 0
Example 2 2.4433× 10−3 2.3951× 10−3 2.3951× 10−3 2.3951× 10−3

Example 3 9.3586× 10−2 9.8635× 10−2 9.1329× 10−2 9.1834× 10−2

Conclusion

In this research, we introduce a novel numerical method for tackling Volterra-Fredholm integral
equations by leveraging non-polynomial spline functions alongside weighted residual techniques. The
conclusions of our study are summarized from Tables 1–4 as follows:
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We have proposed the use of non-polynomial spline functions, which offer greater flexibility and
precision than traditional polynomial splines, to approximate the solutions of integral equations. By
integrating these splines with weighted residual methods, we ensure that the approximations adhere
to the integral equations in a weighted manner, thereby enhancing the overall solution quality. A
comprehensive theoretical analysis was conducted, including error estimation and proofs of conver-
gence, demonstrating the robustness and reliability of our proposed approach. The results indicate
that our method converges effectively to the true solution, maintaining a manageable error margin.
Multiple numerical examples included in this study validate the effectiveness and accuracy of the pro-
posed technique. Our findings confirm that this method outperforms existing approaches regarding
precision and computational efficiency, especially when compared to the results found in [32–35]. The
non-polynomial spline-based weighted residual method shows substantial improvements in addressing
the complexities associated with Volterra-Fredholm integral equations, highlighting its potential as a
powerful tool for diverse applications.
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