
Bulletin of the Karaganda University. Mathematics Series, No. 1(117), 2025, pp. 81–91

https://doi.org/10.31489/2025M1/81-91 Research article

Solution of nonlocal boundary value problems for the heat equation
with discontinuous coefficients, in the case of two discontinuity points

U.K. Koilyshov1,2,∗, M.A. Sadybekov1,2, K.A. Beisenbayeva3

1Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan;
2Al-Farabi Kazakh National University, Almaty, Kazakhstan;
3Academy of Logistics and Transport, Almaty, Kazakhstan

(E-mail: koylyshov@math.kz, sadybekov@math.kz, beisenbaeva@mail.ru)

In this paper, the solution of the initial-boundary value problem for the heat equation with a discontinuous
coefficient under periodic or antiperiodic boundary conditions in the case of two discontinuity points is
substantiated using the method of separation of variables. Using the replacement, the problem under
consideration is reduced to a self-adjoint problem. By means of the Fourier method, this problem is reduced
to the corresponding spectral problem. Then, the eigenvalues and eigenfunctions of this self-adjoint spectral
problem are found. In conclusion, the main theorem on the existence and uniqueness of the classical solution
to the problem under consideration is proved. The peculiarity of the problem under consideration is the
non-local boundary conditions and the presence of two discontinuity points, which have not been considered
before. The authors were able to find eigenvalues explicitly and construct eigenfunctions. This technique
is also applicable in the case of more than two discontinuity points. The solution obtained in explicit form
can be further used for numerical calculations.
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Introduction.
Problem statement and research metods

We consider an initial boundary value problem for the heat equation with a discontinuity constant
coefficient

∂uj
∂t

= k2j
∂2uj
∂x2

(1)

in the domain Ω = ∪Ωj , Ωj = {(x, t) : lj−1 < x < lj , 0 < t < T} (j = 1, 2, 3), with the initial condition

u(x, 0) = ϕ(x), l0 ≤ x ≤ l3, (2)

boundary conditions of the formu1(l0, t) + eiπθu3(l3, t) = 0,

k1
∂u1(l0, t)

∂x
+ eiπθk3

∂u3(l3, t)

∂x
= 0,

0 ≤ t ≤ T (3)

and with conjugation conditions

uj(lj − 0, t) = uj+1(lj + 0, t), 0 ≤ t ≤ T, j = 1, 2, (4)
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kj
∂u1(lj − 0, t)

∂x
= kj+1

∂uj+1(lj + 0, t)

∂x
, 0 ≤ t ≤ T, j = 1, 2, (5)

where l0 < l1 < l2 < l3, the coefficients kj > 0, θ = 1, 2.
Parabolic equations with discontinuous coefficients have been studied quite well [1–3]. In these

works, the correctness of various initial-boundary value problems for a parabolic equation with discon-
tinuous coefficients was proved using the Green function method and method of thermal potentials.
In the absence of a discontinuity, the spectral theory of these problems has been constructed almost
completely [4–6]. In [7], some properties of the eigenfunctions of the Sturm-Liouville operator with
discontinuous coefficients were studied. In the case of a discontinuous coefficient, the spectral theory
of such problems is considered in [8–12].

Works devoted to solving problems of multilayer diffusion should be especially noted. Mathemat-
ical models of diffusion in layered materials arise in many industrial, ecological, biological, medical
applications and the theory of thermal conductivity of composite materials. Diffusion in several layers
is used in a wide range of heat and mass transfer areas [13–21].

LetW be the linear variety of functions from the class u(x, t) ∈ C(Ω)∩C2,1(Ω1)∩C2,1(Ω2)∩C2,1(Ω3)
which satisfy all conditions (2)–(4). A function u(x, t) from the class u(x, t) ∈ W will be called a
classical solution to problem (1)–(5) if: 1) it is continuous in the domain Ω; 2) it has continuous
first-order derivatives with respect to t and continuous second-order derivatives with respect to x in
the domain; 3) it satisfies equation (1) and all conditions (2)–(5) in the usual, continuous sense.

First let’s consider the case θ = 1. After the next replacement uj(x, t) = vj(y, t), where

y =



x− l0
k1

, l0 < x < l1,

x− l1
k2

, l1 < x < l2,

x− l2
k3

, l2 < x < l3,

(6)

problem (1)–(5) take the following form:

∂vj
∂t

=
∂2vj
∂y2

(7)

in the domain Dj = {(y, t) : 0 < y < hj , 0 < t < T} (j = 1, 2, 3),

vj(y, 0) = ψj(y), 0 ≤ y ≤ hj , (8)v1(0, t)− v3(h3, t) = 0,
∂v1(0, t)

∂y
− ∂v3(h3, t)

∂y
= 0,

0 ≤ t ≤ T, (9)

v1(h1, t) = v2(0, t), v2(h2, t) = v3(0, t), 0 ≤ t ≤ T, (10)

∂v1(h1, t)

∂y
=
∂v2(0, t)

∂y
,

∂v2(h2, t)

∂y
=
∂v3(0, t)

∂y
, 0 ≤ t ≤ T, (11)

where
hj =

lj − lj−1
kj

, ψj(y) = ϕj(kjy + lj−1), j = 1, 2, 3. (12)

To solve problem (7)–(11), we apply the Fourier method: vj(y, t) = Yj(y) · T (t) 6= 0.
Substituting vj(y, t) = Yj(y) · T (t) into equation (7) and conditions (8)–(11), and separating the

variables, we obtain the following spectral problem
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LY (y) =


−Y ′′(x), 0 < y < h1
−Y ′′(x), 0 < y < h2
−Y ′′(x), 0 < y < h3

 = λY (y), (13)

{
Y1(0)− Y3(h3) = 0,

Y ′1(0)− Y ′3(h3) = 0,
(14)

Y1(h1) = Y2(0), Y2(h2) = Y3(0), Y ′1(h1) = Y ′2(0), Y ′2(h2) = Y ′3(0). (15)

The function T (t) is a solution to the equation

T ′(t) + λT (t) = 0.

The following holds:
Lemma 1. Spectral problem (13)–(15) is self-adjoint.
The proof is carried out by direct calculation.
Now we will find the eigenvalues and construct the eigenfunctions of spectral problem (13)–(15).

The general solution to equation (13) has the form:
Y1(y) = c1cos

√
λy + c2sin

√
λy, 0 < y < h1,

Y2(y) = c3cos
√
λy + c4sin

√
λy, 0 < y < h2,

Y3(y) = c5cos
√
λ(h3 − y) + c6sin

√
λ(h3 − y), 0 < y < h3,

(16)

where cj are arbitrary constants (j = 1, 2, 3, 4, 5, 6).
Substituting general solution (16) into boundary conditions (14) and conjugation conditions (15)

we obtain the following system

c1 = c5,

c2 = −c6,
c1 cos

√
λh1 + c2 sin

√
λh1 = c3,

−c1 sin
√
λh1 + c2 cos

√
λh1 = c4,

c3 cos
√
λh2 + c4 sin

√
λh2 = c5 cos

√
λh3 + c6 sin

√
λh3,

−c3 sin
√
λh2 + c4 cos

√
λh2 = c5 sin

√
λh3 − c6 cos

√
λh3.

The characteristic determinant of the system has the form:

∆(λ) = 2− 2 cos(s3
√
λ) = 0,

where s3 =
3∑
j=1

hj =
3∑
j=1

lj − lj−1
kj

. From the last equation we find the eigenvalues of problem (13)–(15):

λn =

(
2πn

s3

)2

, n = 0, 1, 2, ... (17)

Since these eigenvalues are twofold, the following eigenfunctions correspond to them:

Yn(y) = C



cos

(
2πn

s3
y

)
, 0 < y < h1,

cos

(
2πn

s3
(h2 + h3 − y)

)
, 0 < y < h2,

cos

(
2πn

s3
(h3 − y)

)
, 0 < y < h3,

(18)
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Ỹn(y) = C



sin

(
2πn

s3
y

)
, 0 < y < h1,

sin

(
2πn

s3
(y − h2 − h3)

)
, 0 < y < h2,

−sin
(

2πn

s3
(h3 − y)

)
, 0 < x < h3.

(19)

Lemma 2. The system of eigenfunctions (18)-(19) forms an orthonormal basis.
The proof follows from the general theory of self-adjoint problems. From the normalization condi-

tion it is not difficult to find C =

√
2

s3
.

From Lemma 2 it follows that the solution to problem (7)–(11) can be written in the following
form:

vj(y, t) =
∞∑
n=0

(
ϕnYn(y) + ϕ̃nỸn(y)

)
e−λnt,

where

ϕn =

h1∫
0

ψ1(η)Yn(η)dη +

h2∫
0

ψ2(η)Yn(η)dη +

h3∫
0

ψ3(η)Yn(η)dη, (20)

ϕ̃n =

h1∫
0

ψ1(η)Ỹn(η)dη +

h2∫
0

ψ2(η)Ỹn(η)dη +

h3∫
0

ψ3(η)Ỹn(η)dη. (21)

Let us transform formula (20). In each integral we make the following replacements, respectively:

η =
ξ − lj−1
kj

, dη =
dξ

kj
, (j = 1, 2, 3). Taking into account formula (12), we obtain

ϕn =
1

k1

l1∫
l0

ϕ1(ξ)Yn(
ξ − l0
k1

)dξ +
1

k2

l2∫
l1

ϕ2(ξ)Yn(
ξ − l1
k2

)dξ +
1

k3

l3∫
l2

ϕ3(ξ)Yn(
ξ − l2
k3

)dξ. (22)

Similarly, transforming formula (21), we have

ϕ̃n =
1

k1

l1∫
l0

ϕ1(ξ)Ỹn(
ξ − l0
k1

)dξ +
1

k2

l2∫
l1

ϕ2(ξ)Ỹn(
ξ − l1
k2

)dξ +
1

k3

l3∫
l2

ϕ3(ξ)Ỹn(
ξ − l2
k3

)dξ. (23)

If we move to the initial variable using formula (6), then formulas (18)–(19) take the form:

Yn(y) =

√
2

s3


Yn(

x− l0
k1

), l0 < x < l1,

Yn(
x− l1
k2

), l1 < x < l2,

Yn(
x− l2
k3

), l2 < x < l3,

=

√
2

s3



cos

(
2πn

s3

(
x− l0
k1

))
, l0 < x < l1,

cos

(
2πn

s3

(
l2 − x
k2

+
l3 − l2
k3

))
, l1 < x < l2,

cos

(
2πn

s3

(
l3 − x
k3

))
, l2 < x < l3,

Ỹn(y) =

√
2

s3


Ỹn(

x− l0
k1

), l0 < x < l1,

Ỹn(
x− l1
k2

), l1 < x < l2,

Ỹn(
x− l2
k3

), l2 < x < l3,

=

√
2

s3



sin

(
2πn

s3

(
x− l0
k1

))
, l0 < x < l1,

sin

(
2πn

s3

(
x− l2
k2

+
l2 − l3
k3

))
, l1 < x < l2,

sin

(
2πn

s3

(
x− l3
k3

))
, l2 < x < l3.
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We redesignate the last formulas as follows: Yn(y) = Xn(x), Ỹn(y) = X̃n(x). Then

Xn(x) =

√
2

s3



cos

(
2πn

s3

(
x− l0
k1

))
, l0 < x < l1,

cos

(
2πn

s3

(
l2 − x
k2

+
l3 − l2
k3

))
, l1 < x < l2,

cos

(
2πn

s3

(
l3 − x
k3

))
, l2 < x < l3,

X̃n(x) =

√
2

s3



sin

(
2πn

s3

(
x− l0
k1

))
, l0 < x < l1,

sin

(
2πn

s3

(
x− l2
k2

+
l2 − l3
k3

))
, l1 < x < l2,

sin

(
2πn

s3

(
x− l3
k3

))
, l2 < x < l3.

Since the system of eigenfunctions {Yn(y), Ỹn(y)} forms a basis, the functions {Xn(x), X̃n(x)} also
form a basis. Formulas (22)-(23) have the form:

ϕn =
1

k1

l1∫
l0

ϕ1(ξ)Xn(ξ)dξ +
1

k2

l2∫
l1

ϕ2(ξ)Xn(ξ)dξ +
1

k3

l3∫
l2

ϕ3(ξ)Xn(ξ)dξ, (24)

ϕ̃n =
1

k1

l1∫
l0

ϕ1(ξ)X̃n(ξ)dξ +
1

k2

l2∫
l1

ϕ2(ξ)X̃n(ξ)dξ +
1

k3

l3∫
l2

ϕ3(ξ)X̃n(ξ)dξ. (25)

Now let’s prove the main theorem.
Theorem. Let ϕ(x) be a continuously differentiable function satisfying the conditions ϕ(l0) = ϕ(l3),

k1ϕ
′(l0) = k3ϕ

′(l3), ϕ(lj − 0) = ϕ(lj + 0), kjϕ
′(lj − 0) = kj+1ϕ

′(lj + 0) (j = 1, 2).

Then the function

u(x, t) =

∞∑
n=0

(
ϕnXn(x) + ϕ̃nX̃n(x)

)
e−λnt, (26)

where the coefficients are determined by formulas (24)-(25), is the only classical solution of (1)–(5).
Proof. First we prove the existence of solution (26). Since

{
Xn(x), X̃n(x)

}
the eigenfunctions

and λn eigenvalues of problem (13)–(15), then it is easy to verify that the function u(x, t) determined
by formula (26) satisfies the equation, initial condition, boundary conditions and pairing conditions of
problem (1)–(5). Series (26) is the sum of functions

un(x, t) =
(
ϕnXn(x) + ϕ̃nX̃n(x)

)
e−λnt. (27)

Let us show that when t ≥ ε > 0 (ε is any positive number) the series
∞∑
n=0

un(x, t),
∞∑
n=0

∂un
∂t

,

∞∑
n=0

∂2un
∂x2

converges uniformly. Obviously, |ϕ| ≤ M1 then from formula (27) it follows that{
|ϕn|, |ϕ̃n|

}
≤M2. Then from equality (27) and from the following equalities

∂un
∂t

=
(
−λnXn(x)ϕn − λnX̃n(x)ϕ̃n

)
e−λnt,

∂2un
∂x2

=
λn
k2j

(
−Xn(x)ϕn − X̃n(x)ϕ̃n

)
e−λnt,
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we get

|un(x, t)| ≤M3e
−λnε,

{∣∣∣∣∣∂un∂t
∣∣∣∣∣,
∣∣∣∣∣∂2un∂x2

∣∣∣∣∣
}
≤M4λne

−λnε,

where constants M3,M4 positive and does not depend on n. Taking into account formula (17), we
have { ∞∑

n=1

∣∣∣un(x, t)
∣∣∣, ∞∑
n=1

∣∣∣∣∣∂un∂t
∣∣∣∣∣,
∞∑
n=1

∣∣∣∣∣∂2un∂x2

∣∣∣∣∣
}
≤
∞∑
n=1

Mn2e
−
(2πn

s3

)2

ε

,

where constant M > 0, and does not depend on n. Since the series
∞∑
n=1

Mn2e
−
(2πn

s3

)2

ε

an absolutely

convergent series, hence, according toWeierstrass’s test, the series

{ ∞∑
n=0

∣∣∣un(x, t)
∣∣∣, ∞∑
n=0

∣∣∣∣∣∂un∂t
∣∣∣∣∣,
∞∑
n=0

∣∣∣∣∣∂2un∂x2

∣∣∣∣∣
}

converge uniformly for t ≥ ε and are continuous for t ≥ ε the functions u(x, t),
∂u(x, t)

∂t
,
∂2u(x, t)

∂x2
.

Now we need to prove that series (26) converges uniformly everywhere in Ω. Note that the n-term
of the series (26) is dominated by the sum |ϕn| + |ϕ̃n|. Integrating by parts the integral in formula
(24), we obtain

|ϕn| ≤
C1s3
2π
· |αn|
n
, |ϕ̃n| ≤

C1s3
2π
· |α̃n|
n
, C1 = max

(√
k1,
√
k2,
√
k3
)
,

where αn =
1√
k1

l3∫
l0

ϕ′(ξ)Xn(ξ)dξ, α̃n =
1√
k2

l3∫
l0

ϕ′(ξ)X̃n(ξ)dξ are Fourier coefficients of functions ϕ′(x)

on a segment [l0, l3]. Taking into account the inequality ab ≤ 1

2
(a2 + b2), we have

|ϕn|+ |ϕ̃n| ≤
C1s3
4π
·
(
α2
n + α̃2

n +
2

n2

)
.

Using the Bessel inequality
∞∑
n=0

(
α2
n + α̃2

n

)
≤ ‖ϕ′‖2

and the well-known equality
∞∑
n=1

1

n2
=
π2

6
, we get

∞∑
n=0

(|ϕn|+ |ϕ̃n|) ≤ C.

Thus, the majorizing series is absolutely convergent, this means series (26) converges uniformly in
Ω and defines a continuous function u(x, t) in Ω . Thus, we proved the existence of a solution. Now
let’s prove uniqueness. Let’s assume there are two solutions ṽ(x, t), v̂(x, t). Then for the function
v(x, t) = ṽ(x, t)− v̂(x, t), we have the following problem C:

∂v

∂t
= k2j

∂2v

∂x2
,

v(x, 0) = 0, l0 ≤ x ≤ l3,v(l0, t)− v(l3, t) = 0,

k1
∂v(l0, t)

∂x
− k3

∂v(l3, t)

∂x
= 0,

0 ≤ t ≤ T,
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v(lj − 0, t) = v(lj + 0, t),

kj
∂v(lj − 0, t)

∂x
= kj+1

∂v(lj + 0, t)

∂x
,

j = 1, 2.

The solution to this problem C can be represented in the form of an expansion in terms of the basis{
Xn(x), X̃n(x)

}
and it has the form:

v(x, t) =
∞∑
n=0

(
An(t)Xn(x) + Ãn(t)X̃n(x)

)
. (28)

The coefficients An(t) and Ãn(t) are determined by the formulas

An(t) =
1

k1

l1∫
l0

v(ξ, t)Xn(ξ)dξ +
1

k2

l2∫
l1

v(ξ, t)Xn(ξ)dξ +
1

k3

l3∫
l2

v(ξ, t)Xn(ξ)dξ, (29)

Ãn =
1

k1

l1∫
l0

v(ξ, t)X̃n(ξ)dξ +
1

k2

l2∫
l1

v(ξ, t)X̃n(ξ)dξ +
1

k3

l3∫
l2

v(ξ, t)X̃n(ξ)dξ. (30)

First, we transform formula (29). Differentiating with respect to the variable t, we obtain

A′n(t) =
1

k1

l1∫
l0

∂v(ξ, t)

∂t
Xn(ξ)dξ +

1

k2

l2∫
l1

∂v(ξ, t)

∂t
Xn(ξ)dξ +

1

k3

l3∫
l2

∂v(ξ, t)

∂t
Xn(ξ)dξ =

= k1

l1∫
l0

∂2v(ξ, t)

∂ξ2
cos

(
2πn

s3

(
ξ − l0
k1

))
dξ + k2

l2∫
l1

∂2v(ξ, t)

∂ξ2
cos

(
2πn

s3

(
l2 − ξ
k2

+
l3 − l2
k3

))
ξ+

+k3

l3∫
l2

∂2v(ξ, t)

∂ξ2
cos

(
2πn

s3

(
l3 − ξ
k3

))
dξ.

Integrating by parts twice and using the boundary conditions and conjugation conditions, we have

A′n(t) = −
(

2πn

s3

)2 1

k1

l1∫
l0

v(x, t) cos

(
2πn

s3

(
x− l0
k1

))
dx−

−
(

2πn

s3

)2 1

k2

l2∫
l1

v(x, t) cos

(
2πn

s3

(
l2 − x
k2

+
l3 − l2
k3

))
dx−

−
(

2πn

s3

)2 1

k3

l3∫
l2

v(x, t) cos

(
2πn

s3

(
l3 − x
k3

))
dx =

= −λn

l3∫
l0

v(x, t)Xn(x)dx = −λnAn(t).
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Therefore An(t) = cne
−λnt. Transforming in a similar way, we obtain for the coefficient Ãn(t).

Ã′n(t) = −λnÃn(t) ⇒ Ãn(t) = c̃ne
−λnt.

Substituting the found An(t) and Ãn(t) into formula (29)-(30), we obtain

1

k1

l1∫
l0

v(ξ, t)Xn(ξ)dξ +
1

k2

l2∫
l1

v(ξ, t)Xn(ξ)dξ +
1

k3

l3∫
l2

v(ξ, t)Xn(ξ)dξ = cne
−λnt, (31)

1

k1

l1∫
l0

v(ξ, t)X̃n(ξ)dξ +
1

k2

l2∫
l1

v(ξ, t)X̃n(ξ)dξ +
1

k3

l3∫
l2

v(ξ, t)X̃n(ξ)dξ = c̃ne
−λnt. (32)

Passing to the limit t→ 0 in equality (31)-(32) what is possible due to continuity v(x, t) in Ω , we
have

0 = An(0) = cn, 0 = Ãn(0) = c̃n,

therefore cn = 0, c̃n = 0.
Then from formula (28), we obtain v(x, t) = 0, it follows from this that ṽ(x, t) = v̂(x, t). The

theorem is proved.
Now consider the case θ = 2.
Then, after applying the method of separation of variables, we obtain the following spectral problem

X ′′j (x) +
λ

k2j
Xj(x) = 0, lj−1 < x < lj , j = 1, 2, 3, (33)

{
X1(l0) +X3(l3) = 0,

k1X
′
1(l0) + k3X

′
3(l3) = 0,

(34)

Xj(lj − 0) = Xj+1(lj + 0), kjX
′
j(lj − 0) = kj+1X

′
j+1(lj + 0), j = 1, 2. (35)

The eigenvalues of problem (33)–(35) have the form: λn =

(
(2n+ 1)π

s3

)2

, n = 0, 1, 2, ...

The following eigenfunctions correspond to these eigenvalues.

Xn(x) =

√
2

s3



cos

(
(2n+ 1)π

s3

(
x− l0
k1

))
, l0 < x < l1,

− cos

(
(2n+ 1)π

s3

(
l2 − x
k2

+
l3 − l2
k3

))
, l1 < x < l2,

− cos

(
(2n+ 1)π

s3

(
l3 − x
k3

))
, l2 < x < l3,

X̃n(x) =

√
2

s3



sin

(
(2n+ 1)π

s3

(
x− l0
k1

))
, l0 < x < l1,

sin

(
(2n+ 1)π

s3

(
l2 − x
k2

+
l3 − l2
k3

))
, l1 < x < l2,

sin

(
(2n+ 1)π

s3

(
l3 − x
k3

))
, l2 < x < l3.

All other calculations, including the proof of the theorem, are carried out in a similar way.
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Conclusion

The method proposed in this article can be used in the case of n break points, where n ≥ 3, and
for the more general case of the conjugation condition (in this work, the ideal contact condition is
considered). The solution to the problem is found in explicit form, which allows it to be used for
numerical solution.
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