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An initial-boundary value problem for a loaded parabolic equation in a rectangular domain was considered.
By discretization with respect to a spatial variable, the problem under study is reduced to the initial
problem for a system of loaded ordinary differential equations. Based on the previously obtained results of
Dzhumabaev and Assanova, an estimate for the solution of the original initial-boundary value problem for
a loaded parabolic equation was established. An auxiliary initial problem for a system of loaded ordinary
differential equations is solved by the Dzhumabaev parameterization method. Conditions of the unique
solvability of the considering problem are obtained and algorithms for finding a solution are constructed.
The results are illustrated with a numerical example.
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Introduction

The parabolic partial differential equations play a very important role in many branches of science
and engineering. Applied problems involving boundary value problems for parabolic equations include:
thermal analysis in engineering, groundwater flow, climate modeling, biological processes, chemical
reactions, environmental engineering, material science and financial engineering [1–5].

Loaded parabolic equations are a type of parabolic partial differential equations that include ad-
ditional terms or conditions representing external influences or interactions, which can vary over time
and space. These “loads” can be functions or integrals that are added to the standard parabolic equa-
tion. Loaded parabolic equations often arise in various physical and engineering applications where
external sources, sinks, or other dynamic interactions need to be modeled [6]. These equations are used
to model more complex systems where simple diffusion or heat conduction is modified by additional
processes such as external forces, reaction terms, or other dynamic effects. For information on various
boundary value problems for loaded parabolic differential equations, refer to works [7–11].

A boundary value problem for a linear parabolic equation without loading was considered in works
[12, 13]. Using the polygonal method, estimates of the solution and their derivatives were obtained in
terms of the equation coefficients and boundary conditions [12]. Coefficient estimates of solutions and
the first derivative with respect to x of a linear boundary value problem for a parabolic equation with
one spatial variable were obtained [13].
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The numerical research of boundary value problems for a parabolic equations with and without
loading are of great interest due to their broad range of applications. Several methods for solving these
problems have been developed [14–18].

This work is aimed at development of methods for solving the initial-boundary value problem for
parabolic equation, proposed in [12, 13] to the initial-boundary value problem for a loaded parabolic
equation of the following form

∂u

∂t
= p(t, x)

∂2u

∂x2
+ q(t, x)u(t, x) +

m+1∑
j=1

kj(t, x)u(ξj , x) + f(t, x), (t, x) ∈ Ω = (0, T )× (0, ω), (1)

u(0, x) = ϕ(x), x ∈ [0, ω], (2)

u(t, 0) = ψ0(t), u(t, ω) = ψ1(t), t ∈ [0, T ], (3)

where functions p(t, x) > 0, q(t, x) ≤ 0, m ∈ N, kj(t, x), j = 1,m+ 1, f(t, x) are continuous with
respect to t and Holder continuous with respect to x; functions ϕ(x), ψ0(t), ψ1(t) are sufficiently
smooth and ψ0(0) = ϕ(0), ψ1(0) = ϕ(ω) matching conditions are performed.

A solution to problem (1)–(3) is a function u(t, x), continuous on Ω̄ = [0, T ]× [0, ω] that has con-
tinuous first-order partial derivatives with respect to t and continuous second-order partial derivatives
with respect to x. It satisfies the loaded differential equation (1) and boundary conditions (2), (3).

By discretizing with respect to the spatial variable x, problem (1)–(3) transforms to a problem for
systems of loaded ordinary differential equations. An auxiliary problem for a system of loaded ordinary
differential equations will be investigated. Based on the properties of solutions to the auxiliary prob-
lem, estimates for the solution of the original initial-boundary value problem for the loaded parabolic
equation will be established. In this case, the approach proposed in works [12, 13] will be used. A
numerical method for solving the initial problem for systems of loaded ordinary differential equations
is also proposed. A numerical implementation of the algorithm for the initial-boundary value problem
for a loaded parabolic equation is presented. The error between the exact solution of the problem
under consideration and its numerical discrete solution has been established.

1 Problem formulation

We take ∀τ and produce a discretization by variable x: xi = iτ, i = 0, N , Nτ = ω.
We present the following notations: ui(t) = u(t, iτ), pi(t) = p(t, iτ), qi(t) = q(t, iτ), kij(t) = kj(t, iτ),

j = 1,m, fi(t) = f(t, iτ), ϕi = ϕ(iτ), i = 0, N .
Using these notations, the problem (1)–(3) is transformed into the following problem

dui
dt

= pi(t)
ui+1 − 2ui + ui−1

τ2
+ qi(t)ui +

m+1∑
j=1

kij(t)ui(ξj) + fi(t), i = 1, N − 1, (4)

ui(0) = ϕi, i = 1, N − 1, (5)

u0(0) = ϕ0, uN (0) = ϕN , u0(t) = ψ0(t), uN (t) = ψ1(t), t ∈ [0, T ]. (6)

Here from relation (6) it is clear that functions u0(t) and uN (t) are known.
Due to the linearity of the system for ∀τ > 0 there is a unique solution to problem (4)–(6) defined

on [0, T ]:
{
u1(t), u2(t), . . . , uN−1(t)

}
. Relating the functions ui+1, ui−1 to the right side of each i-th
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equation of system (4), we apply the estimate from work [19]

‖ui‖ = max
t∈[0,T ]

{|ui(t)|} ≤ max

{
|ϕi|,

1

2

∥∥∥∥∥∥ ui−1(t)

1 + |qi(t)|τ2
2pi(t)

∥∥∥∥∥∥+
1

2

∥∥∥∥∥∥ ui+1(t)

1 + |qi(t)|τ2
2pi(t)

∥∥∥∥∥∥
+

1

2

∥∥∥∥∥∥ fi(t)

pi(t)
[
1 + |qi(t)|τ2

2pi(t)

]
∥∥∥∥∥∥ τ2 +

1

2

∥∥∥∥∥∥∥∥∥
m+1∑
j=1

kij(t)ui(ξj)

pi(t)
[
1 + |qi(t)|τ2

2pi(t)

]
∥∥∥∥∥∥∥∥∥ τ

2

}

≤ max

{
|ϕi|,

1

2
‖ui−1‖+

1

2
‖ui+1‖+

1

2
max
t∈[0,T ]

∥∥∥∥fi(t)pi(t)

∥∥∥∥ τ2 +
1

2
max
t∈[0,T ]

∥∥∥∥∥∥∥∥∥
m+1∑
j=1

kij(t)ui(ξj)

pi(t)

∥∥∥∥∥∥∥∥∥ τ
2

}
.

From here it is easy to obtain the following inequality

ηi ≤
1

2
ηi−1 +

1

2
ηi+1 +

1

2
max
t∈[0,T ]

∥∥∥∥fi(t)pi(t)

∥∥∥∥ τ2 +
1

2
max
t∈[0,T ]

m+1∑
j=1

∥∥∥∥∥kij(t)pi(t)

∥∥∥∥∥ · ‖ui‖ τ2, i = 1, N − 1, (7)

where ηi = max
{
ϕ̂, ‖ui‖

}
, ϕ̂ = max

i=1,N
{|ϕi|}.

Similarly to [12,13], using the sweep down and up from (7), we get

ηi ≤
N − i
N

η0 +
i

N
ηN +

N − i
N

i∑
l=1

max
t∈[0,T ]

∥∥∥∥l fl(t)pl(t)

∥∥∥∥ τ2 +
i

N

N−1∑
l=i+1

max
t∈[0,T ]

∥∥∥∥(N − l)fl(t)
pl(t)

∥∥∥∥ τ2

+
N − i
N

i∑
l=1

m+1∑
j=1

max
t∈[0,T ]

∥∥∥∥∥l klj(t)pl(t)

∥∥∥∥∥ τ2 · ηi +
i

N

N−1∑
l=i+1

m+1∑
j=1

max
t∈[0,T ]

∥∥∥∥∥(N − l)
klj(t)

pl(t)

∥∥∥∥∥ τ2 · ηi.

Considering that ‖ui‖ ≤ ηi, we set

‖ui‖ ≤
N − i
N

max{ϕ̂, ‖ψ0‖}+
i

N
max{ϕ̂, ‖ψ1‖}+

N − i
N

i∑
l=1

max
t∈[0,T ]

∥∥∥∥l fl(t)pl(t)

∥∥∥∥ τ2

+
i

N

N−1∑
l=i+1

max
t∈[0,T ]

∥∥∥∥(N − l)fl(t)
pl(t)

∥∥∥∥ τ2 + Θi‖ui‖, (8)

where Θi = N−i
N

i∑
l=1

m+1∑
j=1

max
t∈[0,T ]

∥∥∥∥l klj(t)

pl(t)

∥∥∥∥ τ2 + i
N

N−1∑
l=i+1

m+1∑
j=1

max
t∈[0,T ]

∥∥∥∥(N − l)k
l
j(t)

pl(t)

∥∥∥∥ τ2 < 1.

Then

‖ui‖ ≤
1

1−Θi

{
N − i
N

max{ϕ, ‖ψ0‖}+
i

N
max{ϕ, ‖ψ1‖}

+
N − i
N

i∑
l=1

max
t∈[0,T ]

∥∥∥∥l fl(t)pl(t)

∥∥∥∥ τ2 +
i

N

N−1∑
l=i+1

max
t∈[0,T ]

∥∥∥∥(N − l)fl(t)
pl(t)

∥∥∥∥ τ2

}
.

From inequality (8), reasoning in the same way as in [13] and [19], we obtain the validity of the following
statement:
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Theorem 1. Let
a) the assumptions with respect to the data of problem (1)–(3) be fulfilled;

b) the inequality Θ(x) = ω−x
ω

x∫
0

z
m+1∑
j=1

max
t∈[0,T ]

∥∥∥kj(t,z)
p(t,z)

∥∥∥ dz + x
ω

ω∫
x

(ω − z)
m+1∑
j=1

max
t∈[0,T ]

∥∥∥kj(t,z)
p(t,z)

∥∥∥ dz < 1 be

valid for all x ∈ [0, ω].
Then the problem (1)–(3) has a unique classical solution u∗(t, x), and for it the following inequality

holds:

max
t∈[0,T ]

|u∗(t, x)| ≤ ω − x
ω[1−Θ(x)]

max
{

max
x∈[0,ω]

|ϕ(x)|, max
t∈[0,T ]

|ψ0(t)|
}

+
x

ω[1−Θ(x)]
max

{
max
x∈[0,ω]

|ϕ(x)|, max
t∈[0,T ]

|ψ1(t)|
}

+
ω − x

ω[1−Θ(x)]

x∫
0

z max
t∈[0,T ]

∥∥∥∥f(t, z)

p(t, z)

∥∥∥∥ dz +
x

ω[1−Θ(x)]

ω∫
x

(ω − z) max
t∈[0,T ]

∥∥∥∥f(t, z)

p(t, z)

∥∥∥∥ dz.
The proof of Theorem 1, with minor modifications, follows the same principles as the proof of

Theorem in [13].
Thus, we have established an estimate for the solution of the original initial-boundary value problem

of the loaded parabolic equation (1)–(3).
Substituting u0(t) and uN (t) into the system of loaded equations (4), the discretized problem

(4)–(6) can be written in the following matrix-vector form

dũ

dt
= A(t)ũ+

m+1∑
j=1

Kj(t)ũ(ξj) + F(t), ũ ∈ RN−1, t ∈ [0, T ), (9)

ũ(0) = Φ, Φ ∈ RN−1, (10)

where ũ(t) =
(
u1(t), u2(t), . . . , uN−1(t)

)
is unknown function, the (N − 1) × (N − 1) matrices A(t),

Kj(t), j = 1,m+ 1, and (N − 1) vector-function F(t) are continuous on [0, T ], 0 = ξ0 < ξ1 < . . . <
ξm < ξm+1 = T . Here

A(t) =


−2p1(t)

τ2
+ q1(t) p1(t)

τ2
0 . . . 0

p2(t)
τ2

−2p2(t)
τ2

+ q2(t) p2(t)
τ2

. . . 0

0 p3(t)
τ2

−2p3(t)
τ2

+ q3(t) . . . 0

. . . . . . . . .
. . . . . .

0 0 0 . . . −2pN−1(t)
τ2

+ qN−1(t)

 ,

Kj(t) =


k1
j (t) 0 0 . . . 0

0 k2
j (t) 0 . . . 0

0 0 k3
j (t) . . . 0

. . . . . . . . .
. . . . . .

0 0 0 . . . kN−1
j (t)

 , j = 1,m+ 1,

F(t) =



p1(t)
τ2

ψ0(t) + f1(t)
f2(t)
f3(t)
...

pN−1(t)
τ2

ψ1(t) + fN−1(t)

 , Φ =


ϕ1

ϕ2

ϕ3
...

ϕN−1

 .
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A solution to problem (9), (10) is a vector function ũ(t), which is continuous on [0, T ] and con-
tinuously differentiable on (0, T ). This function satisfies the loaded differential equation (9) and the
condition (10).

2 Solving problem (9), (10) by using the parameterization method

We will use the approach proposed in [20–24] to solve the initial value problem for loaded differential
equations (9), (10). This approach relies on the algorithms of the Dzhumabaev parametrization method
[19,25] and numerical methods. The implementation and efficiency of this method for finding analytical
and numerical solutions to boundary value problems for various differential equations are shown in
[26–32].

The interval [0, T ] is partitioned into subintervals by loading points: [0, T ) =
m+1⋃
s=1

[ξs−1, ξs).

Define the space C([0, T ], ξs,R(N−1)(m+1)) consisting of system functions ũ[t] = (ũ1(t), ũ2(t), . . . ,
ũm+1(t)), where each ũs : [ξs−1, ξs)→ RN−1 is continuous on [ξs−1, ξs) and has finite left-sided limits

lim
t→ξs−0

ũs(t) for all s = 1,m+ 1. The norm on this space is defined as ||ũ[·]||2 = max
s=1,m+1

sup
t∈[ξs−1,ξs)

||ũs(t)||.

The restriction of the function ũ(t) to the interval [ξs−1, ξs) is denoted by ũs(t), meaning
ũs(t) = ũ(t) for t ∈ [ξs−1, ξs), s = 1,m+ 1. We introduce additional parameters µs = ũs+1(ξs),
s = 1,m, µm+1 = ũ(ξm+1). By making the substitution ũ1(t) = v1(t) + Φ on [ξ0, ξ1) and
ũs(t) = vs(t) + µs−1 on each interval [ξs−1, ξs), s = 2,m+ 1, we obtain multi-point initial value
problem with parameters

dv1

dt
= A(t)(v1 + Φ) +

m+1∑
j=1

Kj(t)µj + F(t), t ∈ [ξ0, ξ1), (11)

dvs
dt

= A(t)(vs + µs−1) +
m+1∑
j=1

Kj(t)µj + F(t), t ∈ [ξs−1, ξs), s = 2,m+ 1, (12)

vs(ξs−1) = 0, s = 1,m+ 1, (13)

Φ + lim
t→ξ1−0

v1(t) = µ1, (14)

µs−1 + lim
t→ξs−0

vs(t) = µs, s = 2,m+ 1. (15)

A pair (v∗[t], µ∗), where the elements are v∗[t] =
(
v∗1(t), v∗2(t), . . . , v∗m+1(t)

)
∈ C([0, T ], ξs, R

(N−1)(m+1)),

µ∗ = (µ∗1, µ
∗
2, . . . , µ

∗
m+1) ∈ R(N−1)(m+1), is said to be a solution to problem (11)–(15) if the functions

v∗s(t), s = 1,m+ 1, are continuously differentiable on [ξs−1, ξs) and satisfy (11), (12) and additional
conditions (14), (15) with µj = µ∗j , j = 1,m+ 1, and initial conditions (13).

Problems (9), (10) and (11)–(15) are equivalent. If the ũ∗(t) is a solution of problem (9), (10),
then the pair (v∗[t], µ∗), where v∗[t] =

(
ũ∗(t) − Φ, ũ∗(t) − ũ∗(ξ1), . . . , ũ∗(t) − ũ∗(ξm)

)
, and µ∗ =(

ũ∗(ξ1), ũ∗(ξ2), . . . , ũ∗(ξm), ũ∗(ξm+1)
)
, is a solution to problem (11)–(15). Conversely, if the pair

(ṽ[t], µ̃) with elements ṽ[t] =
(
ṽ1(t), ṽ2(t), . . . , ṽm+1(t)

)
∈ C([0, T ], ξs, R

(N−1)(m+1)),
µ̃ = (µ̃1, µ̃2, . . . , µ̃m+1) ∈ R(N−1)(m+1) is a solution to problem (11)–(15), then the function ˜̃u(t)
defined by the equalities ˜̃u(t) = ṽ1(t) + Φ, t ∈ [ξ0, ξ1), ˜̃u(t) = ṽs(t) + µ̃s−1, t ∈ [ξs−1, ξs), s = 2,m+ 1,
and ˜̃u(T ) = µ̃m+1, will be the solution of the original problem (9), (10).
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By employing the fundamental matrix Xs(t) of differential equation
dũ

dt
= A(t)ũ on [ξs−1, ξs],

s = 1,m+ 1, we transform the solution of an initial value problem for a differential equations with
parameters (11)–(13) into an equivalent system of integral equations:

v1(t) = X1(t)

t∫
ξ0

X−1
1 (η)A(η)dη · Φ + X1(t)

t∫
ξ0

X−1
1 (η)

m+1∑
j=1

Kj(η)dηµj

+ X1(t)

t∫
ξ0

X−1
1 (η)F(η)dη, t ∈ [ξ0, ξ1),

(16)

vs(t) = Xs(t)
t∫

ξs−1

X−1
s (η)A(η)dη · µs−1 + Xs(t)

t∫
ξs−1

X−1
s (η)

m+1∑
j=1

Kj(η)dηµj

+ Xs(t)
t∫

ξs−1

X−1
s (η)F(η)dη, t ∈ [ξs−1, ξs), s = 2,m+ 1.

(17)

By substituting the respective expressions from (16), (17) into the conditions (14) and (15), we get
a system of linear algebraic equations with respect to the parameters µs, s = 1,m+ 1:

X1(ξ1)

ξ1∫
ξ0

X−1
1 (η)

m+1∑
j=1

Kj(η)dηµj − µ1

= −Φ−X1(ξ1)

ξ1∫
ξ0

X−1
1 (η)A(η)dη · Φ−X1(ξ1)

ξ1∫
ξ0

X−1
1 (η)F(η)dη,

(18)

µs−1+Xs(ξs)
ξs∫

ξs−1

X−1
s (η)A(η)dη · µs−1 − µs + Xs(ξs)

ξs∫
ξs−1

X−1
s (η)

m+1∑
j=1

Kj(η)dηµj

= −Xs(ξs)
ξs∫

ξs−1

X−1
s (η)F(η)dη, t ∈ [ξs−1, ξs), s = 2,m+ 1.

(19)

Unknown parameters µs, s = 1,m+ 1 can be found using the system (18), (19). Using O ∈ RN−1,N−1

zero matrix, I ∈ RN−1,N−1 identity matrix and

ys(B, t) = Xs(t)
t∫

ξs−1

X−1
s (η)B(η)dη, s = 1,m

notations, we write system (18), (19) in the following form

Q∗(ξ)µ = F∗(ξ), µ ∈ R(N−1)(m+1), (20)

where

Q∗(ξ) =


y1(K1, ξ1)− I y1(K2, ξ1) y1(K3, ξ1) . . . y1(Km+1, ξ1)

I + y2(A, ξ2) + y2(K1, ξ2) y2(K2, ξ2)− I y2(K3, ξ2) . . . y2(Km+1, ξ2)
y3(K1, ξ3) I + y3(A, ξ3) + y3(K2, ξ3) y3(K3, ξ3)− I . . . y3(Km+1, ξ3)

. . . . . . . . .
. . . . . .

ym+1(K1, ξm+1) ym+1(K2, ξm+1) ym+1(K3, ξm+1) . . . ym+1(Km+1, ξm+1)− I

 ,
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F∗(ξ) =
(
− Φ− y1(A, ξ1)Φ− y1(F , ξ1),−y2(F , ξ2), . . . ,−ym(F , ξm),−ym+1(F , ξm+1)

)′
.

It can be readily shown that solving the boundary value problem (9), (10) is equivalent to solving
the system (20).

Theorem 2. Let the matrix Q∗(ξ) : R(N−1)(m+1) → R(N−1)(m+1) be invertible. Then, for any F(t)
and Φ ∈ R(N−1), the problem (9), (10) has a unique solution ũ?(t) and this solution satisfies the
estimate

‖ũ?‖1 ≤M max(‖Φ‖, ‖F‖1),

M = eαξ̄ ξ̄
{
αmax

(
1, γ(ξ)

[
1 + eαξ̄ ξ̄α+ eαξ̄ ξ̄

])
+
(m+1∑
j=1

βjγ(ξ) + 1
)[

1 + eαξ̄ ξ̄α+ eαξ̄ ξ̄
]}

+ γ(ξ)
[
1 + eαξ̄ ξ̄α+ eαξ̄ ξ̄

]
,

where γ(ξ) = ‖[Q∗(ξ)]−1‖, α = max
t∈[0,T ]

‖A(t)‖, βj = max
t∈[0,T ]

‖Kj(t)‖, j = 1,m+ 1, ξ̄ = max
s=1,m+1

(ξs− ξs−1),

‖ũ?‖1 = max
t∈[0,T ]

‖ũ?(t)‖.

The proof of Theorem 2, with minor modifications, follows the same principles as the proof of
Theorem 1.1. in [32].

3 Algorithm for numerical solving of problem (9), (10) and (1)–(3)

The proposed numerical algorithm is based on the construction and solving of system (20). The
coefficients and the right-hand side of this system (20) are found as solutions to Cauchy problems.

Algorithm for numerical solving of problem (9), (10):
1. Assume we have a partition: 0 = ξ0 < ξ1 < ... < ξm < ξm+1 = T . Divide every interval [ξs−1, ξs],

s = 1,m+ 1, with step hs = (ξs − ξs−1)/l, l ∈ N, s = 1,m+ 1.
2. To determine the values of matrix Q∗(ξ) and the vector F∗(ξ) in system (20) we compute the

values ys(A, hs), ys(Kj , hs), j = 1,m+ 1, ys(F , hs), s = 1,m+ 1, using the Runge Kutta RK4 Method
with step size hs in each subinterval.

3. Solve the system of linear algebraic equations

Qh̃∗(ξ)µ = F h̃∗ (ξ), µ ∈ R(N−1)(m+1), (21)

here ũh̃r(ξs) = µh̃s , s = 1,m+ 1.
4. To define the values of approximate solution at the remaining points, we solve the Cauchy

problems
dũ

dt
= A(t)ũ+

m+1∑
j=1

Kj(t)µh̃j + F(t), ũ(0) = Φ, t ∈ [ξ0, ξ1], (22)

dũ

dt
= A(t)ũ+

m+1∑
j=1

Kj(t)µh̃j + F(t), ũ(ξs−1) = µh̃s−1, t ∈ [ξs−1, ξs), s = 2,m+ 1. (23)

Solving Cauchy problems (22), (23) also using the Runge Kutta RK4 Method, we obtain a numerical
solution to linear initial-boundary value problem for loaded differential equations (9), (10).

If ũ?(ξh̃j ) =
(
u?1(ξh̃j ), u?2(ξh̃j ), . . . , u?N−1(ξh̃j )

)′
, j = 0, (m+ 1)l is a numerical solution to linear initial

value problem for loaded differential equations (9), (10), then u?(ξh̃j , sτ) = u?s(ξ
h̃
j ), s = 1, N − 1 will be

a numerical solution to linear initial value problem for loaded differential equation of parabolic type
(1)–(3).
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4 Example

To provide a clear overview of our investigation, we selected a specific test problem. Thus, the
numerical method discussed in earlier sections were applied to the following initial-boundary value
problem for a loaded parabolic equation

∂u

∂t
= xt

∂2u

∂x2
− (x+ 2t)u(t, x)

+ xtu(0.02, x) + 2x2tu(0.04, x) + (x+ t)u(0.06, x) + 4xtu(0.08, x) + 5xt2u(0.1, x)

+ (4x3 + 8tx2 − 8tx)cos25πt− 100πx2sin25πt+
(

2 +
7

2
x− x2

)
t2 +

97

50
x− 3

25
x2

+
(

8x4 − 404

25
x3 +

31

25
x2 +

27

50
x− 3

50

)
t+ 1, (t, x) ∈ (0, 0.1)× (0, 0.5),

(24)

u(0, x) = 4x2, x ∈ [0, 0.5], (25)

u(t, 0) = t, u(t, ω) = 2t+ cos25πt, t ∈ [0, 0.1]. (26)

The analytical solution of the given problem (24)–(26) is û(t, x) = 2xt+ 4x2cos25πt+ t.
We take τ = 0.1 and produce a discretization by x: xi = iτ, i = 0, 5. Using this, the problem

(24)–(26) is replaced by the following boundary value problem for loaded differential equation

dũ

dt
= A(t)ũ+

5∑
j=1

Kj(t)ũ(ξj) + F(t), t ∈ (0, 0.1), (27)

ũ(0) = Φ, ũ ∈ R4. (28)

Here ξ1 = 0.02, ξ2 = 0.04, ξ3 = 0.06, ξ4 = 0.08, ξ5 = 0.1,

ũ =


u1(t)
u2(t)
u3(t)
u4(t)

 , A(t) =


−22t− 0.1 10t 0 0

20t −42t− 0.2 20t 0
0 30t −62t− 0.3 30t
0 0 40t −82t− 0.4

 , Φ =


0.04
0.16
0.36
0.64

 ,

Kj(t) =


j · 0.1j · t 0 0 0

0 j · 0.2j · t 0 0
0 0 j · 0.3j · t 0
0 0 0 j · 0.4j · t

 , j = 1, 2,

K3(t) =


0.1 + t 0 0 0

0 0.2 + t 0 0
0 0 0.3 + t 0
0 0 0 0.4 + t

 ,

Ki(t) =


i · 0.1 · ti−3 0 0 0

0 i · 0.2 · ti−3 0 0
0 0 i · 0.3 · ti−3 0
0 0 0 i · 0.4 · ti−3

 , i = 4, 5,

F(t) =



(
1

250 −
18t
25

)
cos25πt− πsin25πt+ 617

50 t
2 − 28t

3125 + 1491
1250(

4
125 −

32t
25

)
cos25πt− 4πsin25πt+ 133

50 t
2 − 59t

3125 + 1729
1250(

27
250 −

42t
25

)
cos25πt− 9πsin25πt+ 74

25 t
2 − 987t

6250 + 982
625(

32
125 + 952t

25

)
cos25πt− 16πsin25πt+ 2081

25 t2 − 2969t
6250 + 1098

625


.
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To solve linear initial value problem for loaded differential equations (27), (28) we will use the algo-
rithm of Dzhumabaev parameterization method. According to the scheme of this method, the interval

[0, 0.1) is partitioned into subintervals by loading points: [0, 0.1) =
5⋃
s=1

[ξs−1, ξs). Using the above

proposed algorithm, we compose system (21) and by solving this system (21) we find the numerical
values of the unknown parameters µ:

µ1 =


0.02399999
0.02799997
0.03199992
0.03599988

 , µ2 =


0.00799998
−0.10400007
−0.29600015
−0.56800025

 , µ3 =


0.07199999
0.08399997
0.09599992
0.10799986

 ,

µ4 =


0.136
0.272
0.488

0.78400001

 , µ5 =


0.11999999
0.13999996
0.15999993
0.17999994

 .

We find the values of approximate solution at the remaining points of the subintervals of problem (27),
(28) by solving Cauchy problems (22), (23). Then u?(ξh̃j , sτ) = u?s(ξ

h̃
j ), s = 1, 4, j = 0, 50, τ = 0.1, will

be a numerical solution to linear boundary value problem for loaded differential equation of parabolic
type (24)–(26).

The graph of the exact solution û(t, x) and the found numerical solutions u?(t, x) of the boundary
value problem for a parabolic equation (24)–(26) are shown in Figure.

Figure. Exact (a) and numerical (b) solutions for example

For the difference of the corresponding values of the exact û(t, x) and constructed solutions u?(t, x) of
the boundary value problem for a parabolic equation (24)–(26) the following estimate is true:

max
j=0,50,i=1,4

‖û(ξh̃j , xi)− u?(ξh̃j , xi)‖ < 0.0000003.

Conclusion

The initial-boundary value problem for a loaded parabolic equation in a rectangular domain is
investigated. Using discretization with respect to the variable x, the problem under consideration
is reduced to the initial problem for a system of loaded ordinary differential equations. Using the
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results of works [12,13], an estimate for the solution of the initial-boundary value problem for a loaded
parabolic equation is established. The parameterization method is used to solve the initial problem
for a system of loaded ordinary differential equations. Algorithms for finding a solution to the problem
under study are constructed and their convergence is shown. Conditions for the unique solvability of
the initial problem for a system of loaded ordinary differential equations are established. Further, the
proposed approach will be applied to solving boundary value problems for a loaded parabolic equation.
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