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On the solvability of one inverse problem for a fourth-order equation
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In this paper, for a fourth-order equation in a rectangular domain, an inverse problem of finding the
unknown right-hand side, which depends on one variable, is considered. Criteria for the uniqueness and
existence of a solution to the inverse problem under consideration for a fourth-order equation are established.
The solution to the problem is constructed as the sum of a series in eigenfunctions of the corresponding
spectral problem. The uniqueness of the solution to the inverse problem follows from the completeness
of the system of eigenfunctions. Sufficient conditions are established for the boundary functions that
guarantee theorems of existence and stability of the solution to the problem. In a closed domain, absolute
and uniform convergence of the found solution to the inverse problem in the form of a series in the class of
regular solutions is shown, as well as series obtained by term-by-term differentiation with respect to ¢t and
x three and four times, respectively. The stability of the solution of the inverse problem in the norms of
the space of square-summable functions and in the space of continuous functions with respect to changes
in the input data has also been proven.
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Introduction

Boundary value and inverse problems for fourth-order differential equations are widely used in
modeling processes in various fields of science and technology: in studying the dynamics of compressible
stratified fluid, wave propagation in dispersive media, ship vibrations, oscillations of rods, beams
and plates. Such problems are often reduced to studying fourth-order equations with various types
of conditions. Numerous studies have been devoted to boundary value problems for fourth-order
equations.

In the monograph by Smirnov [1], problems for a model equation of mixed type of the fourth order
in various geometric domains are considered. In the work by Amirov and Khojanov [2], the global
solvability of initial-boundary value problems for nonlinear analogues of the Boussinesq equation is
proved, which expands the range of studied problems of mathematical physics.

The inverse problem for a parabolic equation of the fourth order with a complex-valued coefficient is
considered in [3], where a theorem on the existence and uniqueness of a solution is proved. The articles
[4-6] consider boundary value problems with local conditions for fourth-order equations in rectangular
domains. Thus, in [4] the problems with the third derivative with respect to time are analyzed, and in
[5] and [6] — problems with the lowest term and mixed type of equation, respectively.

In the works |7, 8] the boundary value problems with nonlocal conditions are studied. The authors
prove that the eigenfunctions and associated functions of the corresponding spectral problem form a
Riesz basis, and the solution to the problem is expressed as a biorthogonal series. This is important
for constructing analytical solutions in complex domains.

In the works [9, 10] the boundary value problems for fourth-order mixed-type equations are studied.
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Initial-boundary value problems for beam and plate vibrations are studied in the works of Sabitov
and co-authors [11-13|. The use of the method of separation of variables allows us to establish
solvability conditions and construct explicit representations of solutions for equations taking into
account rotational motion and various types of fixings.

Some boundary-value problems for nonhomogeneous biharmonic equation is presented in [14], where
the conditions for periodic boundary are studied. In the work of Urinov and Azizov [15], an inverse
problem for a fourth-order equation with an unknown right-hand side is considered, a uniqueness
theorem is proved, and a constructive solution method is given.

A classification of fourth-order equations with two independent variables is given in the monograph
by Dzhuraev and Sopuev [16]|, where an extensive bibliography on this topic is also presented and
various types of boundary value problems are considered.

Inverse problems, as shown in [17-19], have numerous applications in seismology, geophysics,
biomedicine, and computed tomography. Here, both problems of restoring the right-hand side and
coefficient inverse problems are considered. In particular, Sabitov and Martemyanova [17]| investigated
a nonlocal inverse problem for a mixed-type equation, and Khojanov [18, 19| proposed methods for
restoring special types of right-hand sides in parabolic equations.

General approaches to solving inverse problems and theoretical foundations are presented in classical
monographs [20-22|, which present regularization methods, a functional-analytical apparatus, and
examples of formulations in mathematical physics.

Thus, the present study continues the development of the theory of fourth-order equations,
relying on the indicated scientific achievements, and is aimed at formulating and solving new classes
of boundary and inverse problems with practical significance.

1 Formulation of the problem
In the domain Q = {(z,t) : 0 < x < p, 0 <t < B}, we consider the equation
Lu = uyy — gz — b2u = f (.’L‘) ) (1)

where b = const.
Problem 1. Find functions u (z,t) and f (z) in the domain Q that satisfy the conditions
u(wt) € Ch (Q)NCE (), f(r) €C0.p)N L2 (0,p), 2)
Lu(z,t) = f (), (3)
u(@,0) =@ (@), u(z,0)=¢ (), u(z,f)=~E), wpf)=p), 0<z<p, (4)
w(0,t) =u(p,t) =0, ugy (0,1) = uzy (p,t) =0, 0<t <0, (5)
0

where ¢ (2), £ (x), ¥ (x), p () are the given functions, and o (0) = o® (p) =0, €@ (0) = €@ (p) =0,

1=0,2,9(0) =4 (p) =0, u(0) = pu(p) = 0.
By the classical solution of the inverse boundary value problem (2)—(5) we mean a pair {u (z,t), f (z)}
of functions u (x,t) € C;lf’ (Q) and f (z) € C (0, B), satisfying conditions (2)—(5) in the usual sense.

2 Uniqueness and existence of a solution to the inverse problem

We solve problems (2)—(5) at f(x) = 0 using the method of separation of variables u (x,t) =
= X (z)T (t). Then we have the following spectral problem for the function X (z):

XV (2) =X (2) =0, 0<z<p, (6)
X(0) =X (p) = X"(0) = X" (p) = 0,
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where 7 is the separation constant. Problem (6) has a solution

2 k
Xk(x):fsinkkx, Ne=i="T k=1,2,... (7)
p p
We look for a solution to problem (2)—(5) in the form
w(z,t) = Tp(t) Xi (), (8)
k=1
f@)=> fuXe(x), (9)
k=1
where
P
Ty (t) = / u(z,t) X, (z) dz, (10)
0
P
fi= [ 1) X (a)da (1)
0
Based on (10), we introduce the functions
p—e
The(t) = / u(z,t) X (z) dz, (12)

where ¢ is a fairly small number. We differentiate equalities (12) three times and take into account (1),
we have

T,gis (t) = /P—E [f(a:) + Ugpar (2, 1) + b2 (z, t)] X (x) dx. (13)

In integral (13), integrating four times by parts and passing to the limit at e — 0 taking into account
boundary conditions (5), we have the differential equations:

T (t) — oi Ty (t) = f, (14)

where v3 = A} + b2
General solutions of equation (14) take the form

3 3
Ty (t) = ape”™ + e~ 2kt (bk cos \gvkt + ¢, sin {vﬂ) — vk_?’fk, (15)

where ag, b, ¢ are arbitrary constants.
To determine the coefficients ay, bg, ¢ and f we use conditions (4), which go over

T (0) = ¢, Th (0) =y, Th (B) =& T (B) = i, (16)

where

ok = [ o (x) Xy (x) dz, P =[5 ¢ (x) Xj, (x) do,

§k = fé)g () Xy (x) dx, pp = fé)u(m) X (x) dx.
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Substituting solutions (15) into (16), we obtain a system of equations for determining ay, b, cx
and f:

ak + by — vy fr = @p,s

2a; — b + \/ng = 21),;11[)]“

(18)
ape2"? 4 by, cos @vkﬁ + ¢ sin @vkﬁ - v,;?’e%”kﬁfk = gke%%ﬁ’
akegvkﬁ — by, cos (@v;ﬁ - %) — ¢ sin (?vkﬁ — %) = vk_luke%”’“ﬁ.
The determinant of system (18) takes the form:
3 1 3 1
Ak (B) = 2eVk P (chvk,@ — Cos \vak,é' . chivkﬁ —/3sin \vak,é' . sh2vkﬁ> ) (19)
Now we represent (19) in the form
3
A (B) = 2ePchu,B - |1 — Ay sin (\gvkﬂ + ’yk> ) (20)
1
where v = arcsin 7#5:}571, Ay = V=GRS 2225:571.
Lemma 1. For any S > 0 the following estimate is valid
Ak (B)] > Coe*+?, (21)

where Cj is a positive constant.

Proof. Taking into account Ay < 1, from (20), we have

A (B)] = e (e el 1 - 4y

sin (?vkﬁ + 'yk> “ > 2B . [1— A > Cope®h.

The lemma is proved.

Then system (18) has a unique solution

1 1 - /3 1 . 3
ap = TooninB) [ka(pk(i?%ﬁ sin %Ukﬁ + \/gl/Jk + 2¢k62vk’8 sin (%Ukﬁ — %) —

(22)
—2vk§ke%”kﬁ sin @vk,ﬁ’ + V3upev’ — Z/Lke%”kﬁ sin (@’Ukﬂ + %ﬂ )
Suib 3 .
by, = WZ(B) [\/gvkwkezvkﬁ + 2ug g sin <§vk6 - %) -
2y sin (Yo — 5 ) = 2v/3une? cos (LupB + 5 ) — VBupeed - (23)

—2vp€ sin (@vkﬁ — %) — 2y sin @vkﬁ + Qﬂuke”kﬁsh%vkﬁ} ,

78 Bulletin of the Karaganda University



On the solvability of ...

1
e2 kP

_ 3 V3 - 3
C = m |:’Uk(10k€2vkﬁ — 2’Uk(,0k COS <T’Uk;ﬁ - g) + 2wk€2vk'g+

+21)y, cos (@vkﬁ - %) — 2v/31).e%%P sin (@vkﬂ + %) - kake%”kﬁ+

3 3
+2vE&y cos <\2ka6 — 73T> + Mkeg”’“ﬁ + 2, cos \Q[Ukﬁ — 3,uke%”’“ﬁ , (24)
2 3
fiv = ity {own [ 2637 cos (S~ 5) 1] +
+y, [—2e%”kﬂ cos (@vkﬁ + %) + 1} + v [26%1)’“8 cos (@vkﬁ + %) - 62”’“5] + (25)

+ 1 [—26%1}’“6 cos (@vkﬁ — %) + 621)’“’3} } .

So we obtained a solution of problem (2)—(5) in the form (8)-(9), where Xy (x), T} (t) and fj are
determined from (7), (15) and (25), respectively, and the coefficients ag, by, ¢x are determined from
(22)—(24).

Now we will prove the uniqueness of the solution of problem (2)—(5). Let £(z) =0, pu(z) =0,
e(x)=0, Y (x) =0on [0, p]. Then ¢ =0, Y =0, & =0, ux = 0 from (15) and (25) it follows
that Tj () =0 on [0, 5] and fi =0 for all k € N. Then from equalities (10)—(11) we have that for all
t €0, 5]

/pu(x,t)Xk(x)deO, /pf(:n)Xk(m)deO, ke N.
0 0

From here, due to the completeness of (7) in space Lz [0, p|] and the continuity of the function u (z,t)
and f (x) respectively, on the domain © and (0, p), it follows that w (z,¢) =0 in Q and f(z) =0 on
(0,p). So it’s proven.

Theorem 1. If there is a solution of the problem (2)—(5), then it is unique.

Lemma 2. For large natural k, the following estimates are valid:

1 1
Ty ()] < C4 [|<Pk:! + kTS | + [ + K18 !ukl] ,

T ()] < Co [R5 Lionl + Tl + K15 Je] + ]
(26)
T (1)) < O [k ioul + k5 ] + K25 |6l + K el

T ()] < Ca (K ioul + K25 Joul + K 1ol + K25 L))

Here and below C}; are positive constants.

Proof. From (22)—(25), taking Lemma 1 into account, we obtain the following estimates:

axl < Cse™2% (Jion] + K715 o] + (6] + K715 |ue] €547
1 1

bkl < Co (Jioel + k715 [l + [l + k715 Lual)
1 11

lexl < Cr (lonl + k7" el + 16el + k715 L)

1ol < o (K ioul + K25 [l + K2 1ol + K23 L]
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From (15) we have
1 1
Ty (1)) < |ag| e + [be| €72 + |ex] e 2% + 03 | fi - (28)

We substitute (27) into (28). This estimate implies the validity of the first estimate required in the
lemma. The proof of the validity of the remaining estimates is shown similarly. The lemma is proved.

Lemma 3. Let ¢ (z), & (x) € C°[0,p], ¢ (0) = o) (p) = 0, £2D (0) = @) (p) = 0, i =0,1,2;
W (), () € CH[0,p], @) (0) = @) (p) = 0, u®) (0) = @) (p) = 0, i = 0, 1. Then the represen-
tations are valid ) )
~(5) _ 7(4) =(5) =(4)
Pk stok S )\*iﬂ)k y k= )\5£ &k = )\45 (29)

where

7 = \[fo 0O () cos \pwdw, Py = \[fo ) sin \pwdz,
(5) \[fo ) cos Apxdz, /124) = \/%f(f p® (z) sin \yzde.

Integrating the first and third integrals in (17) by parts five times, and the second and fourth integrals
by parts four times, taking into account the conditions of the lemma, we obtain representations (29).

Theorem 2. Let the functions ¢ (x), ¥ (x), & () and p (x) satisfy the conditions of Lemma 3. Then
there is a unique solution of problem (2)—(5), which is determined by the series (8)—(9).

Proof. We formally differentiate series (8) term by ¢ three times and by x four times and have

Uy (v,1) = Z 7" () X (), (30)

k=1
Ugpra (2,1) = Y MNTh (8) X (2) . (31)

k=1

From (26) we have
2 ¢ 4 22 4 22
04\/;Z<k ol + k73 [p| + K 6] + k75 |Hk|)‘ (32)
k=1

Based on (29), the convergence of series (32) is proved, i.e., the following series

erF (B il £+ )

converges. From convergence (32), due to the Weierstrass criterion, series (8), (30), (31) uniformly
converge in the domain €2 and series (9) on [0, p]. The theorem is proved.

8 Stability of the solution

Let us introduce the following norms:

uf<x>||W;[op=</ (Z‘f’“) )| a )) nenw.
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Theorem 3. Let the conditions of Theorem 2 be satisfied, then for solution (8), (9) of Problem 1

the following estimates are valid:
(2 Dl < Co [lelliy + 1015, + 1€l + llallz,]
1 @)l a0z < Cro [Illwg + 1hwe + I€lws + lelwg]
lu @, )lleqay < Cur [Illwg + Illg + 1€l + ellig | -

1 @)oo < Crz [I9lhwg + 1l + lellwg + el -

Proof. From (8), (21) and the first inequality of Lemma 2 we have

o0 00 —11 11 2
(o)1, = SR T2 (1) < 3, ol + 445 el + Jeel + K~ el ] <

2 _922
<ACE SR, [lenl® + k72 el + lel” + k2 |l <

2 2 2 2
< C3 [llell3, + I3, + g, + i3, ]

From inequality (37) estimate (33) follows:

If (z )”LQ[O,p] S Ikl < 3R, <k4 il + K25 [obe] + k€] + K23 ’Mk|)

<4CEY 2, [(k4 lorl)® + (’fQ% |¢k\)2 + (k&) + <k2§ |Mk|)1 :

The coefficients @y, Vi, & and pg can be represented in the form

L (9 L ~3) L 74 L _(3)
Pk = 1%L > ¢3:*¢ 5 §k:75 ) M3 = T3 My
NP TR TR e T
where
\[fo © ) sin Apzdex, \/>féj¢ ) cos Apwdz,
D= J2 D @) sin v, 7Y = —\/% Ji 1 () cos N
Then

15 @I o1 < 1R T3 |+ 5]+ [0 + ] <
< 4C3 [[le@|7, + 1@ 17, + @17, + @17, ] <

< 2 [lllig + 1 1g + €N + lelig ]
The validity of estimate (34) follows from (38).

Let (z, t) be an arbitrary point from the domain Q. From the first estimate (26) we have

o0

1 1
Ju (2,0 < C1 Y (Iorl + k715 el + Jeil + 5715 ] ).

k=1
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The coeflicients @y, & are presented in the form

1
Ak

D _ P
sa;”:\f | ¢ @) cos v 5,9’=\F | ¢ @) cos e
P Jo P Jo

From (39) we have

I @ =1

where

ule ) < O (W7 ]+ 7 el + D4 ) <
< Cra (S )’ [(zzi \eoé”(zf + () + (S ‘@g)f)% L (s w)él _

< (i3 [H‘P’HLQ + H¢HL2 + ||‘5/HL2 + ||M||L2] <Cn [HSOHW,} + ||¢||W29 + ||5”W21 + HHHWQU} .

This implies estimate (35). Based on the last estimate (27), we have

@)1 < O 332 (K loul + k2 fond + K feul + k2 el ) <
<cu it (] <6 ] )

<O (52, &) (zzol \@5’\2)5 " <22°1 Mf)f)% T <ZZ°1 15,5?’\2)5 T <22°1 ‘u;(f)f)%]

IN

< Cus (116" g, + 197 g, + 16N, + 1V, ) < Cro (el + 1w + lellwg + sl ) -
From this inequality follows (36). The theorem is proved.
Conclusion

In this paper, the inverse problem for a fourth-order equation is considered. The solution is
constructed as a series. The uniqueness of the solution to the inverse problem follows from the
completeness of the system of eigenfunctions. The stability of the solution to the inverse problem
is proven. The results obtained can be used for further development of various direct and inverse
problems for a fourth-order equation.
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