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In the article, the boundary value problem for the wave equation with a fractional time derivative and with
initial conditions specified in the form of a fractional derivative in the Riemann-Liouville sense is solved. The
definition domain of the desired function is the upper half-plane (x,t). To solve the problem, the Fourier
transform with respect to the spatial variable was applied, then the Laplace transform with respect to
the time variable was used. After applying the inverse Laplace transform, the solution to the transformed
problem contains a two-parameter Mittag-Leffler function. Using the inverse Fourier transform, a solution
to the problem was obtained in explicit form, which contains the Wright function. Next, we consider limiting
cases of the fractional derivative’s order which is included in the equation of the problem.
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Introduction

The mathematical apparatus of fractional order integrodifferentiation plays a significant role in
various fields of science and engineering, including physics, biology, economics, etc [1]. Its application
makes it possible to more accurately model and analyze phenomena that cannot be described by
classical differential equations or integrals. Applications include: modeling the dynamics of complex
systems with long-term dependence and memory, such as financial markets, environmental systems,
communication networks, etc., analysis of nonlinear processes and phenomena, including diffusion,
thermal conductivity, wave propagation, etc., solving optimization and control problems under condi-
tions of uncertainty and changing conditions.

Fractional derivatives can be interpreted as a way to account for memory effects and temporal
nonlocality in systems. In the classical differential model, all changes in the system instantly affect
its state. However, in reality, many systems have memories and histories that influence their future
behavior. Fractional order derivatives take this memory into account, allowing the modeling of systems
with long-term dependencies and time delays in response to external influences. In addition, they can
also take into account spatial correlations and coordinate nonlocality in systems where the influence
on the state at a given point in space depends not only on neighboring points, but also on more distant
ones [2].

Fractional derivative equations are a way to describe the evolution of physical systems with losses.
They can model systems in which energy, mass, or other physical quantities are lost over time or
space. The fractional derivative usually characterizes the degree of loss or dissipation in the system.
For example, in diffusion processes, fractional derivatives can describe an anomalous distribution of
particles due to long-term correlations or heterogeneity of the medium. Wave processes with losses
can also be described using fractional derivatives, which makes it possible to take into account energy
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dissipation in the system [3]. In mathematical modeling of continuous media with memory, equations
arise describing a new type of wave motion that occupies an intermediate position between ordinary
diffusion and classical waves [4, 5].

A loaded differential equation is an equation with a loaded term, which can contain differential
or integrodifferential operators. This loaded term can be expressed as a function containing both the
variables themselves and their derivatives.

Loaded equations allow you to model more complex physical or mathematical systems that cannot
always be described by simple equations. For example, in problems of mathematical physics or control
theory, loaded differential equations can be used to take into account the influence of external factors
or additional conditions on the dynamics of the system.

Such equations play an important role in research related to the theory of boundary value problems,
stability and control of dynamic systems, as well as in other areas of science and engineering where
adequate consideration of the load on the system under study is required. In [6], the class of flat
problems on the effect of moving loads on the surface of an aminated plate is studied. However, the
presence of a loaded operator is accompanied by some difficulties during research, since it is not always
possible to use direct research methods. For problems with loads, adaptation and development of
specialized numerical methods are required [7]. All this emphasizes both the theoretical and practical
significance of studying various boundary value problems for loaded differential equations. It is obvious
that the presence of a loaded term gives rise to new, still unexplored problems in the theory of boundary
value problems, therefore there is a need to develop new methods for solving the evolving theory of
loaded differential equations [8].

Loaded differential equations can be considered as weak or strong perturbations of differential
equations. In some cases, boundary value problems remain correct in natural classes of functions,
where the loaded term is interpreted as a weak perturbation [9]. If the uniqueness of the solution to
the boundary value problem is violated, then the load can be considered as a strong perturbation [10].
It turns out that the nature of the load (weak or strong perturbation) depends both on the order of
the derivatives included in the loaded (perturbed) part of the operator, and on the manifold on which
the trace of the desired function is specified.

The study of boundary value problems with loaded terms, presented in the form of integrals or
fractional derivatives, can lead to different results depending on the specifics of the equation and the
conditions of the problem. There may also be difficulties associated with the analysis and evaluation of
integral operators in the resulting integral equations, since their kernels contain special functions. In
[11,12], the intervals for changing the order of the fractional derivative, that is contained in the loaded
term, are determined, for which the theorems of existence and uniqueness of solutions to boundary
value problems and arising integral equations are valid. We also note that the boundary value problems
of heat conduction and the Volterra integral equations arising in their study with singularities in the
kernel, similar to the singularities in this paper, were considered in [13,14].

Also, integral equations with singularities in the kernel arise when studying boundary value problems
in non-cylindrical domains that degenerate into a point at the initial moment of time [15–20].

Fractional derivatives in equations add new aspects and difficulties in the study of boundary value
problems, since they take into account not only the previous state of the system, but also its history. The
fractional order differentiation operation is a combination of differentiation and integration operations.
Recently, work has appeared on the study of inverse boundary value problems with a load of fractional
order. In [21], the inverse problem with a nonlinear gluing condition for a loaded equation of parabolic-
hyperbolic type is studied for solvability. The problem is reduced to the study of the nonlinear Fredholm
integral equation of the second kind. In [22], as an application of the analyticity of the solution, the
uniqueness of an inverse problem in determining the fractional orders in the multi-term time-fractional
diffusion equations from one interior point observation is established.
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In this article, the boundary value problem for the fractional wave equation was solved, and
two limiting cases were considered. The article is structured as follows. In Section 1, we introduce
some necessary definitions and mathematical preliminaries of fractional calculus, special functions and
boundary value problems which will be needed in the forthcoming Sections. The problem statement
for the Riemann-Liouville fractional derivative wave equation in the upper half-plane (x,t) is given
in Section 2. The initial conditions are given as a fractional derivative. Solving the problem is the
content of Section 3: the Fourier transform for a spatial variable was consistently applied, followed by
the Laplace transform for a temporal variable, the inverse Laplace transform and the inverse Fourier
transform. Next, the limiting cases of the order of the fractional derivative are considered in Section 4.
In the last Section the main result is formulated.

1 Preliminaries

Definition 1. [23] Let f(t) ∈ L1[a, b]. Then, the Riemann-Liouville integral of the order β is defined
as follows

rD
−β
a,t f(t) =

1

Γ (β)

∫ t

a

f (τ)

(t− τ)1−β
dτ, β, a ∈ R, β > 0. (1)

Definition 2. Let f(t) ∈ L1[a, b]. Then, the Riemann-Liouville derivative of the order β is defined
as follows

rD
β
a,tf(t) =

1

Γ (n− β)

dn

dtn

∫ t

a

f (τ)

(t− τ)β−n+1
dτ, β, a ∈ R, n− 1 < β < n. (2)

From formula (2) it follows that

rD
0
a,tf(t) = f(t), rD

n
a,tf(t) = f (n)(t), n ∈ N.

Taking into account formula (1), formula (2) can be rewritten as

rD
β
a,tf(t) =

dn

dtn
rD

β−n
a,t f(t), β, a ∈ R, n− 1 < β < n.

The entire function of the form

Eλ,µ(z) =
∞∑
n=0

zn

Γ(λn+ µ)
, λ > 0, µ ∈ C, (3)

is called the Mittag-Leffler function.
The entire function of the form

φ(λ, µ; z) =

∞∑
n=0

zn

n!Γ(λn+ µ)
, λ > −1, µ ∈ C, (4)

is called the Wright function.
The formula for the integral Laplace transform of the Mittag-Leffler function is valid [24]

L
[
tγ−1Ea,γ(λta)

]
=

sa−γ

sa − λ
, |λ| < |s|a, a > 0, γ > −1. (5)

Also the formula for the integral Laplace transform of the Wright function is valid [25]

L
[
tβ−1φ(ρ, β,−λtρ)

]
= s−β exp(−λs−ρ), −1 < ρ < 0, λ > 0. (6)
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2 Statement of the problem

In the domain Ω = {(x, t) | −∞ < x < +∞; t > 0} find a solution to the problem:

Dα
0tu(x, t)− uxx(x, y) = f(x, t), (7)

Dα−1
0t u|t=0 = ϕ(x); Dα−2

0t u|t=0 = ψ(x), lim
x→∞

u(x, t) = 0, (8)

where Dα
0tf(t) is the Riemann-Liouville derivative of an order α ∈ (1; 2).

We call a function u(x, t) a regular solution to equation (7) in the domain G if t1−µu(x, t) ∈ C
(
G
)

for some µ > 0; in G, u(x, t) has continuous derivatives with respect to x of the first and second order;
the functions Dα−1

0t u(x, t) and Dα−2
0t u(x, t) are continuously differentiable as functions of t for a fixed

x at interior points of G; and u(x, t) satisfies equation (7) at all points of G.

3 Solving the problem

We apply Fourier transform to problem (7)-(8) with respect to the variable x:

Dα
0tU(p, t) + p2U(p, t) = F (p, t), (9)

Dα−1
0t U |t=0 = ϕ̄(p), Dα−2

0t U |t=0 = ψ̄(p), (10)

where F (p, t); ϕ̄(p); ψ̄(p) are the Fourier images of input data in problem (7)-(8).
Let’s apply Laplace transform to equation (9) with respect to the variable t taking into account

conditions (10). Then we obtain

sαū(p, s)− ϕ̄(p)− sψ̄(p) + p2ū(p, s) = f̄(p, s),

where f̄(p, s) is the image of the function F (p, t), or

ū(p, s) =
f̄(p, s)

sα + p2
+

ϕ̄(p)

sα + p2
+

s

sα + p2
ψ̄(p). (11)

Applying the inverse Laplace transform to (11) with respect to the variable s and taking into
account formula (5), we get

U(p, t) =
(
(tα−1Eα,α(−p2tα)) ∗ F (p, t)

)
(t)+

+ tα−1Eα,α(−p2tα)ϕ̄(p) + tα−2Eα,α−1(−p2tα)ψ̄(p), (12)

where Eλ,µ(z) is the Mittag-Leffler function (3) and ∗ is the convolution operation.
Applying the inverse Fourier transform to (12) with respect to the variable p, we obtain

u(x, t) =

∫ t

0

∫ +∞

−∞
G1(x− ξ, τ)f(ξ, t− τ)dξdτ +

∫ +∞

−∞
G1(x− ξ, τ)ϕ(ξ)dξ+

+

∫ +∞

−∞
G2(x− ξ, τ)ψ(ξ)dξ, (13)

where

G1(x, t) =
1

π

∫ +∞

0
tα−1Eα,α(−p2tα) cos (px)dp;
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G2(x, t) =
1

π

∫ +∞

0
tα−2Eα,α−1(−p2tα) cos (px)dp.

While derivation of formula (13) the well-known formula for the inverse Fourier transform with
respect to the function f(p) was used

1

π

∫ +∞

−∞
e−ipxf(p)dp =

1

π

∫ +∞

0
f(p) cos (px)dp.

The function G1(x, t) was found in [24; 141]

G1(x, t) =
1

2
t
α
2
−1φ

(
−α

2
,
α

2
;−|x|

t
α
2

)
,

where φ(λ, µ; z) is the Wright function (4), according to the following scheme.
Let’s apply Laplace transform to the second term in (13) with respect to the variable t and use

formula:

L[tγ−1Ea,γ(λta)] =
sa−γ

sa − λ

with a = α, γ = α− 1, λ = −p2.
Subtracting the last integral and taking into account formula 3.723 from [26], we get

g1(x, s) =
1

2
s−

α
2 exp(−|x|s

α
2 ). (14)

Applying the inverse Laplace transform to (14) with respect to the variable s taking into account
formula (6) with λ = x, β = α

2 , ρ = −α
2 , λ ∈ (1; 2), we get

G1(x, t) =
1

2
t
α
2
−1φ

(
−α

2
;
α

2
;−|x|t−

α
2

)
. (15)

Similarly, applying Laplace transform to the third term in (13) with respect to the variable t taking
into account formula (6) with k = 0, a = α, b = α− 1, λ = p2, we obtain

g2(x, s) =
1

π

∫ ∞
0

s cos px

sα + p2
dp =

1

2
s1−

α
2 exp(−|x|s

α
2 ).

Applying the inverse Laplace transform and taking into account the formula (6) with λ = x,
ρ = −α

2 , β = −α
2 , we get

G2(x, t) =
1

2
t
α
2
−2φ

(
−α

2
;
α

2
− 1;−|x|t−

α
2

)
. (16)

Substituting (15) and (16) into (13), we obtain a solution to the original problem (7)-(8):

u(x, t) =
1

2

∫ t

0

∫ +∞

−∞
τ
α
2
−1φ

(
−α

2
,
α

2
;−|x− ξ|

τ
α
2

)
f(ξ, t− τ)dξdτ+

+
1

2

∫ +∞

−∞
t
α
2
−1φ

(
−α

2
,
α

2
;−|x− ξ|

t
α
2

)
ϕ(ξ)dξ +

1

2

∫ +∞

−∞
t
α
2
−2φ

(
−α

2
,
α

2
− 1;−|x− ξ|

t
α
2

)
ψ(ξ)dξ.
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4 Limiting cases

Let’s consider the limiting cases of the fractional derivative’s order α.
I. α = 1. Then problem (7)-(8) will take the form:

ut − uxx = f(x, t), (17)

u|t=0 = ϕ(x), (18)

∫ t

0
u(x, τ)dτ |t=0 = ψ(x). (19)

In the domain Ω the solution of problem (17)-(18) has the form [27]:

u(x, t) =

∫ ∞
−∞

ϕ(ξ)G(x, ξ, t)dξ +

∫ t

0

∫ ∞
−∞

f(ξ, τ)G(x, ξ, t− τ)dξdτ, (20)

where

G(x, ξ, t) =
1

2
√
πt

exp

(
−(x− ξ)2

4t

)
. (21)

We show that condition (19) is the overdetermination condition for α = 1 in problem (17)-(18).
The solution of problem (17)-(18) has the form (20).
By virtue of Fubini’s theorem, we have:∫ t

0
u(x, τ)dτ =

∫ ∞
−∞

ϕ(ξ)

∫ t

0
G(x, ξ, t) dτdξ +

∫ ∞
−∞

∫ t

0
f(ξ, θ)

∫ t

0
G(x, ξ, τ − θ) dτdθdξ,

where function G(x, ξ, t) is defined by formula (21).
We calculate it using formula 3.471(2) [26; 354]∫ t

0
G(x, ξ, τ)dτ =

∫ t

0

1

2
√
πτ

exp

(
−(x− ξ)2

4τ

)
dτ =

√
2

x− ξ
t
3
4 exp

(
−(x− ξ)2

8τ

)
W− 3

4
, 1
4

(
(x− ξ)2

4(t− τ)

)
,

and∫ t

θ
G(x, ξ, τ − θ)dτ =

∫ t−θ

0
G(x, ξ, λ)dλ =

√
2

x− ξ
(t− θ)

3
4 exp

(
−(x− ξ)2

8(t− τ)

)
W− 3

4
, 1
4

(
(x− ξ)2

4(t− τ)

)
,

where Wα,β(z) is the Whittaker function [26; 1073].
Since for large values of z [26; 1075]

Wα,β ∼ e−
z
2 zα

(
1 +

∞∑
k=1

(β2 − (α− 1
2)2)(β2 − (α− 3

2)2)...(β2 − (α− k + 1
2)2)

k!zα

)

and with given limt→0
(x−ξ)2

4t and 0 < θ < t, then

lim
t→0

∫ t

0
G(x, ξ, τ)dτ =

∥∥∥∥z =
(x− ξ)2

4t
⇒ t =

(x− ξ)2

4t

∥∥∥∥ =

= lim
z→∞

√
2√

|x− ξ|

√
|x− ξ|
√

2z
3
4

exp
(
−z

4

)
z

3
4 = lim

z→∞
e−

z
4 = 0.
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Similarly

lim
t→0

∫ t

0
G(x, ξ, τ − θ)dτ = 0.

Then the condition Dα−2
0t u|t=0 = ψ(x) in problem (17)-(18) is excess when α = 1.

On the other hand, for α = 1 out of (15)-(16) we have [28; 9]

G1(x, t) =
1

2
√
t
φ

(
−1

2
,
1

2
;−|x|√

t

)
=

1

2
√
πt

exp

(
−x

2

4t

)
.

Then, for α = 1, the solution of (20) coincides with (21).
II. α = 2. The problems (7)-(8) become as follows:

ut − uxx = f(x, t), u|t=0 = ϕ(x), ut|t=0 = ϕ(x).

The solution has the form [27; 258]

u(x, t) =
1

2
[ψ(x− t) + ψ(x+ t)] +

1

2

∫ x+t

x−t
ϕ(ξ)dξ +

1

2

∫ t

0

∫ x+(t−τ)

x−(t−τ)
f(ξ, τ)dξdτ. (22)

On the other hand, for α = 2 out of (15) we consider, that the function

G1(x, t) =
1

2
φ
(
−1, 1;

x

t

)
doesn’t exist.

Let’s apply α = 2 to (8).

U(p, t) = ((tE2,2(−p2t2)) ∗ F (p, t))(t) + tE2,2(−p2t2)ϕ(p) + tE2,1(−p2t2)ψ(p).

Known that sin z = zE2,2(−z2), cos z = E2,1(−z2). And we consider z = pt. Then

U(p, t) =

(
1

p
sin(pt) ∗ F (p, t)

)
(t) +

1

p
sin(pt)ϕ(p) + cos(pt)ψ(p).

Apply the inverse Laplace transform.
Since

sin(pt) =
1

2i
(eipt − e−ipt), cos(pt) =

1

2
(eipt + e−ipt),

then

u(x, t) =
1

2π

∫ +∞

−∞

1

2ip
((eipt − e−ipt) ∗ F (p, t))(t)eipxdp+

+
1

2π

∫ +∞

−∞

1

2ip
((eipt − e−ipt)ϕ(p)eipxdp+

1

2π

∫ +∞

−∞

1

2
((eipt + e−ipt)ψ(p)eipxdp.

Note that
1

ip
((eip(x+t) − e−ip(x−t)) =

∫ x+t

x−t
eipηdη.

Then, given the convolution formula with respect to the variable t, we get

u(x, t) =
1

4π

∫ t

0

{∫ +∞

−∞

∫ x+(t−τ)

x−(t−τ)
eipηdηF (p, τ)dp

}
dτ+
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+
1

4π

∫ +∞

−∞

∫ x+t)

x−t
eipηϕ(p)dηdp+

1

4π

∫ +∞

−∞
(eip(x+t) + eip(x−t))ψ(p)dp.

Changing the order of integration in the first and second integrals and considering that

1

2π

∫ +∞

−∞
eipηF (p, t)dp = f(η, t),

1

2π

∫ +∞

−∞
eipηϕ(p)dp = ϕ(η),

1

2π

∫ +∞

−∞
eip(x±t)ψ(p)dp = ψ(x± t)

are the originals of the function, we finally get

u(x, t) =
1

2

∫ t

0

∫ x+(t−τ)

x−(t−τ)
f(η, τ)dηdτ +

1

2

∫ x+t

x−t
ϕ(η)dη +

1

2
[ψ(x+ t) + ψ(x− t)].

Same as formula (22).

5 The main result

So, the following theorem has been proven.

Theorem 1. Let the function u(x, t) be a regular solution to equation (7), and satisfies the conditions (8).
Then for any point (x, t) ∈ Ω and α ∈ [1; 2] the relation holds

u(x, t) =
1

2

∫ t

0

∫ +∞

−∞
τ
α
2
−1φ

(
−α

2
,
α

2
;−|x− ξ|

τ
α
2

)
f(ξ, t− τ)dξdτ+

+
1

2

∫ +∞

−∞
t
α
2
−1φ

(
−α

2
,
α

2
;−|x− ξ|

t
α
2

)
ϕ(ξ)dξ +

1

2

∫ +∞

−∞
t
α
2
−2φ

(
−α

2
,
α

2
− 1;−|x− ξ|

t
α
2

)
ψ(ξ)dξ, (23)

where φ(λ, µ; z) is the Wright function (4).

Conclusion

It can be shown that the function

G(x, t, ξ) =
1

2
t
α
2
−1φ

(
−α

2
,
α

2
;−|x− ξ|

t
α
2

)
is a fundamental solution to the equation

Dα
0tu(x, t)− uxx(x, y) = 0, α ∈ (1; 2).

In the future, we plan to solve a BVP in which the equation contains a loaded term in the form of a
fractional derivative. When solving the problem, we will use the representation of the solution in the
form (23). We assume that for certain values of the fractional derivative’s order and of the type of
manifold on that the load is specified, the uniqueness of the BVP’s solution will be violated.
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Уақыт бойынша бөлшек туындысы бар толқындық теңдеудiң
шеткi есебi

М.Т. Космакова1, А.Н. Хамзеева1, Л.Ж. Касымова2
1Қолданбалы математика институты, Академик Е.А. Бөкетов атындағы Қарағанды университетi,
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2Әбiлқас Сағынов атындағы Қарағанды техникалық университетi, Қарағанды, Қазақстан

Мақалада уақыт бойынша бөлшек туындысы бар және Риман-Лиувилл мағынасында бөлшек туынды
ретiнде берiлген бастапқы шарттары бар толқындық теңдеудiң шеткi есебi шешiлдi. Қажеттi функ-
цияны анықтау аймағы жоғарғы жартылай жазықтық (x, t) болып табылады. Есептi шешу үшiн
кеңiстiктiк айнымалы бойынша Фурье түрлендiруi дәйектi түрде қолданылады, содан кейiн уақыт
айнымалысы бойынша Лаплас түрлендiрiледi. Керi Лаплас түрлендiруiн қолданғаннан кейiн түрлен-
дiрiлген есептi шешу Миттаг-Леффлердiң екiпараметрлi функциясын қамтиды. Керi Фурье түрлен-
дiруiн пайдаланғаннан кейiн, Райт функциясын қамтитын тапсырманың шешiмi айқын түрде алына-
ды. Әрi қарай, есептiң теңдеуiне кiретiн бөлшек туынды ретiнiң шеткi жағдайлары қарастырылған.

Кiлт сөздер: бөлшек туынды, Лаплас түрлендiруi, Фурье түрлендiруi, Миттаг-Леффлер функциясы,
Райт функциясы.

Краевая задача для волнового уравнения с дробной производной
по времени

М.Т. Космакова1, А.Н. Хамзеева1, Л.Ж. Касымова2
1Институт прикладной математики, Карагандинский университет имени академика Е.А. Букетова,

Караганда, Казахстан;
2Карагандинский технический университет имени Абылкаса Сагинова, Караганда, Казахстан

В статье решена краевая задача для волнового уравнения с дробной производной по времени и с
начальными условиями, заданными в виде дробной производной в смысле Римана-Лиувилля. Об-
ластью определения искомой функции является верхняя полуплоскость (x, t). Для решения задачи
последовательно применено преобразование Фурье по пространственной переменной, затем — преоб-
разование Лапласа по временной переменной. Решение преобразованной задачи после применения об-
ратного преобразования Лапласа содержит двухпараметрическую функцию Миттаг-Леффлера. По-
сле применения обратного преобразования Фурье получено решение поставленной задачи в явном
виде, которое содержит функцию Райта. Далее рассмотрены предельные случаи порядка дробной
производной, входящей в уравнение задачи.

Ключевые слова: дробная производная, преобразование Лапласа, преобразование Фурье, функция
Миттаг-Леффлера, функция Райта.
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