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Introduction

Many applied problems lead to nonlinear Hammerstein’s equations of the form

ε
dy

dt
=

1∫
0

K (t, s) f (s, y (s, ε)) ds, y (0, ε) = y0.

In the general case, it is impossible to obtain its solution in explicit form. However, if K (t, s) is
represented as a sum of products of functions with separated variables, then the study of this equation
can be reduced to an algebraic system of equations. We will not consider the general case, but will
show how this issue can be solved for a singularly perturbed equation of the form

εdy(t)dt =
1∫
0

a1 (t) b1 (s) f (y (s, ε) , s) ds+

+
1∫
0

a2 (t) b2 (s) f (y (s, ε) , s) ds, y (0, ε) = y0.

(1)

Here f (y, s) is a known continuous nonlinear function, aj (t) , bj (t) are known continuous functions on
the segment [0, 1], y = y (t, ε) is an unknown scalar function, ε > 0 is a small parameter (the segment
[0, 1] is taken to simplify the calculations; instead, you can take any segment [0, T ]). Linear version of
this problem:

εdydt =
1∫
0

a1 (t) b1 (s) y (s, ε) ds+
1∫
0

a2 (t) b2 (s) y (s, ε) ds+

+h (t) , y (0, ε) = y0

(2)
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was considered in [1]. Before examining the nonlinear equation (1), we present the results of this work.
For a complete understanding, let us recall the scheme for solving equation (2) indicated in [1].

1 Linear singularly perturbed Fredholm’s equations

Integrating (2) over t, assuming that it has a continuous solution, we obtain the equivalent problem

εy (t, ε) =
t∫
0

a1 (θ) dθ
1∫
0

b1 (s) y (s, ε) ds+

+
t∫
0

a2 (θ) dθ
1∫
0

b2 (s) y (s, ε) ds+
t∫
0

h (θ) dθ + εy0.

Using the notation
t∫
0

aj (θ) dθ = qj (t) ,
t∫
0

h (θ) dθ + εy0 = h1 (t, ε) , we reduce the last equation to the

integral equation

εy (t, ε) = q1 (t)

1∫
0

b1 (s) y (s, ε) ds+ q2 (t)

1∫
0

b2 (s) y (s, ε) ds+ h1 (t, ε) (3)

with a degenerate kernel and solve it using a well-known scheme (see, for example, [2]). Enter constants

w1 =

1∫
0

b1 (s) y (s, ε) ds, w2 =

1∫
0

b2 (s) y (s, ε) ds. (4)

Then the solution to equation (3) will be written in the form

y (t, ε) =
1

ε
(q1(t)w1 + q2 (t)w2 + h1 (t, ε)) . (5)

Substituting this into (4), we obtain a system of algebraic equations
εw1 =

1∫
0

b1 (s) ((q1 (s)w1 + q2 (s)w2)) ds+
1∫
0

b1 (s)h1 (s, ε) ds,

εw2 =
1∫
0

b2 (s) ((q1 (s)w1 + q2 (s)w2)) ds+
1∫
0

b2 (s)h1 (s, ε) ds

⇔

⇔


εw1 = c11w1 + c12w2 +H1 (ε) ,

εw2 = c21w1 + c22w2 +H2 (ε) ,
(6)

relative to the unknown constants w1 and w2. Here it is indicated:

cij =

1∫
0

bi (s) qj (s) ds, Hj (ε) =

1∫
0

bj (s)h1 (s, ε) ds, i, j = 1, 2.

Let σ (C) = {λ1, λ2} be the spectrum of the matrix C = (cij) (λ1, λ2 may coincide). Let’s reduce the
matrix C to normal form in the space C2 (see, for example, [3]). The following cases of normal forms
of a matrix are possible:

1) J1 =

(
λ1 0
0 λ2

)
(λ1 6= λ2) ,
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2) J2 =

(
λ 0
0 λ

)
(λ1 = λ2 = λ) ,

3) J3 =

(
λ 1
0 λ

)
(λ1 = λ2 = λ) ,

two of which are diagonal, and one have a Jordan’s structure. There exists (see, for example, [4]) a
transformation matrix T = Tj such that T−1CT = Jj , j = 1, 2, 3. But then the same matrix T leads
to the matrix

εI − C ≡
(
ε− c11 −c12
−c21 ε− c22

)
of the normal form, i.e. T−1 (εI − C)T will take one of the following forms:

1) J1 (ε) =

(
ε− λ1 0

0 ε− λ2

)
(λ1 6= λ2) ,

2) J2 (ε) =

(
ε− λ 0

0 ε− λ

)
(λ1 = λ2 = λ) ,

3) J3 (ε) =

(
ε− λ 1

0 ε− λ

)
(λ1 = λ2 = λ) .

In this case, the solution of the system (6) will be written in one of the following forms:

w = w (ε) =
(
TJ−1j (ε)T−1

)
H (ε) , j = 1, 2, 3. (7)

Let us first assume that detC 6= 0. Then the eigenvalues λj 6= 0. We have in the case j = 1 :

w =

[
T

(
(ε− λ1)−1 0

0 (ε− λ2)−1
)
T−1

]
H (ε) . (8)

Since (ε− λj)−1 = − 1
λj

1
1− ε

λj

= − 1
λj

∞∑
k=0

(
ε
λj

)k
is the analytic function with respect to ε, and the

inhomogeneity H (ε) = {h1 (ε) , h2 (ε)} linearly depends on ε, then w (ε) is an analytic function with
respect to ε, and the solution (5) of the problem (2) will have a first-order pole with respect to ε.

In the case j = 2 expression (7) for w has the form

w =
(
TJ−12 (ε)T−1

)
H (ε) = T

( 1
ε−λ 0

0 1
ε−λ

)
T−1H (ε) =

= − 1

λ
T

(
1

1− ε
λ

0

0 1
1− ε

λ

)
T−1H (ε) ,

i.e. the vector w = w (ε) is again an analytic function with respect to ε, and therefore the solution (5)
of the problem (2) will have a pole of first order with respect to ε.

In the case j = 3 the vector w :

w =
(
TJ−13 (ε)T−1

)
H (ε) = T

(
ε− λ 1

0 ε− λ

)−1
T−1H (ε) =

= T

[
1

ε−λ − 1
(ε−λ)2

0 1
ε−λ

]
T−1H (ε) = T

[ − 1
λ

1
1− ε

λ
− 1
λ2

1

(1− ελ)
2

0 − 1
λ

1
1− ε

λ

]
T−1H (ε)
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is again an analytic function with respect to ε, and therefore the solution (5) of the problem (2) will
have a pole of first order with respect to ε.

Let detC = 0. Three cases have to be considered here:

a) λ1 = λ2 = 0, b) λ1 = 0, λ2 6= 0, c) λ1 6= 0, λ2 = 0.

In the case a), expression (8) for w takes the form

w =

(
T

(
1
ε 0
0 1

ε

)
T−1

)
H (ε) =

1

ε
H (ε)

if C = 0, and the form

w =

(
T

(
1
ε − 1

ε2

0 1
ε

)
T−1

)
H (ε) =

1

ε2
T

(
ε −1
0 ε

)
H (ε)

if the matrix C is similar to a Jordan’s cell
(

0 1
0 0

)
. In this case the solution (5) of the problem (2)

will have a second-order pole with respect to ε and a third-order pole with respect to ε, if the matrix

C is similar to a jordan’s cell
(

0 1
0 0

)
.

In the case b), the expression (7) takes the form

w = T

(
ε−1 0

0 (ε− λ2)−1
)
T−1H (ε) =

1

ε

[
1 0
0 − 1

λ2
ε

1− ε
λ2

]
H (ε) ,

therefore the solution (5) of the problem (2) will have a second-order pole with respect to ε. In the
case c), we also obtain that the solution (5) of the problem (2) has a second-order pole with respect
to ε.

Let us write the results obtained in the form of a theorem.

Theorem 1. Let the functions aj (t) , bj (t) , h (t) in the equation (2) be continuous on the segment
[0, 1] . Then the following statements are true.

1. If detC 6= 0, then the solution y (t, ε) of the problem (2) exists in the class C1 [0, 1] , is unique

in this class and is represented as a Laurent’s series y (t, ε) =
∞∑

k=−1
εkyk (t) .

2. If detC = 0 and σ (C) = {λ1, λ2} , then the following statements hold:
a) when λ1 = λ2 = 0 the solution y (t, ε) of the problem (2) exists in the class C1 [0, 1] , is unique

in this class and is represented as a Laurent’s series y (t, ε) =
∞∑

k=−2
εkyk (t) , if C = 0, and in the form

of Laurent’s series y (t, ε) =
∞∑

k=−3
εkyk (t) , if C is similar to a Jordan cell

(
0 1
0 0

)
.

b) for λ1 = 0, λ2 6= 0 or λ1 6= 0, λ2 = 0 the solution y (t, ε) of the problem (2) exists in the class

C1 [0, 1] , is unique in this class and is represented as a Laurent’s series y (t, ε) =
∞∑

k=−2
εkyk (t) .

From this theorem it follows that in the general case the solution y (t, ε) tends to infinity as t > 0
and ε → +0. Only in exceptional cases y (t, ε) may tend to a finite limit. For example, if detC 6= 0,
then for the existence of a finite limit it is necessary to require that y−1 (t) ≡ 0. This condition must be
expressed through the initial data of the problem (2). This was done in [1], but it is quite cumbersome
and we do not present it. In the case of one term in (2), i.e. in the case a2 (t) ≡ 0 or b2 (t) ≡ 0
condition y−1 (t) ≡ 0 becomes more visible. Let’s show it.
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Noting a1 (t) = a (t) , b1 (t) = b (t) , we rewrite equation (2) in the form

ε
dy

dt
=

1
∫
0
a (t) b (s) y (s, ε) ds+ h (t) , y (0, ε) = y0. (9)

Applying the procedure described above to (9), we obtain the following solution:

y (t, ε) = 1
ε


t∫
0

a(x)dx
1∫
0

b(s)

(
s∫
0

h(θ)dθ+εy0
)
ds

ε−
1∫
0

b(s)

(
s∫
0

a(x)dx

)
ds

+
t∫
0

h (θ) dθ + y0ε

 . (10)

Summing up the expression in square brackets, we write the solution in the form

y (t, ε) = ε−1

ε−
1∫
0

b(s)

(
s∫
0

a(x)dx

)
ds

[
−εy0

1∫
0

b (s)

(
s∫
0

a (x) dx

)
ds+

+ε2y0 +
t∫
0

a (s) ds
1∫
0

b (s)

(
s∫
0

h (θ) dθ + εy0
)
ds−

−
t∫
0

h (s) ds
1∫
0

b (s)

(
s∫
0

a (x) dx

)
ds+ ε

t∫
0

h (s) ds

]
.

The free term on ε in the square bracket does not allow one to go to the final limit as ε→ +0, therefore
it must be removed. Let’s calculate it:(

t
∫
0
a (s) ds

)(
1
∫
0
b (s)

(
s
∫
0
h (θ) dθ

)
ds

)
−
(
t
∫
0
h (s) ds

)(
1
∫
0
b (s)

(
s
∫
0
a (x) dx

)
ds

)
.

This means that if for any t ∈ [0, 1] the condition(
t
∫
0
a (s) ds

)(
1
∫
0
b (s)

(
s
∫
0
h (θ) dθ

)
ds

)
≡

≡
(
t
∫
0
h (s) ds

)(
1
∫
0
b (s)

(
s
∫
0
a (x) dx

)
ds

)
,

(∗)

is satisfied, then there is a finite limit y (t, ε) → ȳ (t) as ε → +0. This condition is necessary and
sufficient for the existence of a finite limit lim

ε→+0
y (t, ε) = ȳ (t) .

Note that the condition (∗) is automatically satisfied if a (t) ≡ h (t) . It is curious that in this case

the limit ȳ (t) will coincide with the solution of the equation
1
∫
0
b (s) ȳ (s) ds + 1 = 0 degenerate with

respect to (9). Let us prove this.
Let h (t) ≡ a (t) . Then the condition (∗) is satisfied and the solution of the problem (2) will be

written in the form

y (t, ε) = −
−y0

(
1∫
0

b(s)

(
s∫
0

a(x)dx

)
ds

)
+εy0+

(
t∫
0

a(s)ds

)(
1∫
0

b(s)y0ds

)
+

(
t∫
0

h(s)ds

)
(
−ε+

1∫
0

b(s)

(
s∫
0

a(x) dx

)
ds

) =

=
y0

(
1∫
0

b(s)

(
s∫
0

a(x)dx

)
ds

)
−εy0−

(
t∫
0

a(s)ds

)(
1∫
0

b(s)y0 ds

)
−
(
t∫
0

a(s)ds

)
(
−ε+

1∫
0

b(s)

(
s∫
0

a(x)dx

)
ds

) .
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Passing here to the limit when ε→ +0, we obtain

ȳ (t) = 1
1∫
0

b(s)

(
s∫
0

a(x) dx

)
ds

[
y0
(

1∫
0

b (s)

(
s∫
0

a (x) dx

)
ds

)
−

−
(

t∫
0

a (s) ds

)(
1∫
0

b (s) y0 ds

)
−
(

t∫
0

a (s) ds

)]
.

(11)

Let us show that ȳ (t) is the solution to the degenerate equation

1∫
0

b (s) · ȳ (s) ds+ 1 = 0. (12)

Substituting (11) into the left side of the equation (12), we will have

1∫
0

1
1∫
0

b(s)

(
s∫
0

a(x)dx

)
ds

[
b(s)

(
−
(
s∫
0

a (s) ds

)
y0
(

1∫
0

b (s) ds

)
+

+y0
(

1∫
0

b (s)

(
s∫
0

a (x) dx

)
ds

)
−
(
s∫
0

a (s) ds

))]
+ 1.

We must show that
1∫
0

b (s)

(
−

 s∫
0

a (x) dx

 y0

 1∫
0

b (s) ds

+

+ y0

 1∫
0

b (s)

 s∫
0

a (x) dx

 ds

− s∫
0

a (x) dx

)
ds−

−
1∫
0

b (s)

 s∫
0

a (x) dx

ds ≡ 0.

Removing the terms underlined above and then canceling both sides by y0, we arrive at the identity

1
∫
0
b (s)

(
−
(
s
∫
0
a (x) dx

)(
1
∫
0
b (s) ds

)
+

(
1
∫
0
b (s)

(
s
∫
0
a (x) dx

)
ds

))
ds ≡ 0.

The proof of this identity for arbitrary functions a (t) and b (t), continuous on an interval [0, 1], is
problematic. However, in the case of polynomials a (t) and b (t), it can be proved by induction on the
powers of the polynomials.

The following results were obtained.

Theorem 2. Let the functions a (t) , b (t) , h (t) in equation (9) be continuous on the segment [0, 1] .
Then:

1) equation (9) has a unique solution y (t, ε) ∈ C1 [0, 1] in the form (10), which for arbitrary a (t) and

h (t) ∈ C [0, 1] has a first-order pole with respect to ε if C =
1∫
0

b (s) ·
s∫
0

a (θ) dθ 6= 0, and a second-order

pole with respect to ε if C = 0;
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2) in order for y (t, ε) to be analytical in ε (for sufficiently small ε > 0), it is necessary and sufficient
that the identity (∗) holds;

3) for a (t) ≡ h (t) ∗, the exact solution y (t, ε) of the equation (2) uniformly (for t ∈ [0, 1] ) tends
to the solution (11) of the degenerate equation (12) when ε→ +0.

Remark 1. In work [1] statement 3) of this theorem was not given. Here it is proved for the first
time.

Remark 2. It follows from Theorems 1 and 2 that there is no boundary layer in the solutions of
problem (2).

Let’s look at examples.

Example 1. Consider the problem

ε
dy

d t
= 5 t2

1∫
0

(
4s2 − 5s

)
y (s, ε) ds+ 2t− 1, y (0, ε) = y0. (13)

Substituting a (t) = 5t2, b (t) = 4t2 − 5t, h (t) = 2t − 1 into formula (10), we find a solution to this
problem in the form

y (t, ε) = y0 − t

ε
+
t2

ε
− 1

4

t3
(
70y0ε− 13

)
ε (9ε+ 5)

.

The condition (∗) that has the form 13
36 t

3 ≡ −5
9 t

2 + 5
9 t, is not satisfied, and therefore the solution to

problem (13) has a first-order pole in ε.

Example 2. Now consider the problem

ε
dy

d t
= 3(t− 1)2

1
∫
0

(
2s− 6

5

)
y (s, ε) ds+ 5 t+ 1, y (0, ε) = y0.

Here: a (t) = 3(t−1)2, b (t) = 2t− 6
5 , h (t) = 5 t+1, C =

1∫
0

b (s) ·
(
s∫
0

a (x) dx

)
ds = 0 and the condition

(∗) is not met. Calculating the solution using formula (10), we obtain the following solution:

y (t, ε) =
y0

60
· −12t3 + 36t2 + 60ε− 36t

ε
+

150εt2 + 19t3 + 60εt− 57t2 + 57t

60ε2
.

It can be seen that the solution has a pole of second order in ε.

Example 3. Consider another problem

ε
dy

dt
=
(
2− 5 t2

) 1∫
0

s3y (s, ε) ds+
(
2− 5t2

)
, y (0) = y0. (14)

Here a(t) ≡ h (t) =
(
2− 5t2

)
, it means that the condition (∗) is fulfilled in an obvious way and

therefore there is a finite limit lim
ε→+0

y (t, ε) = ȳ (t) . Let’s make sure of this. Solving problem (14) using

the above method, we obtain the following solution:

y (t, ε) =
1

4

−175y0t3 − 700t3 + 420εy0 + 210y0t− 68y0 + 840t

−17 + 105 ε
.

∗ In this case the identity (∗) is obvious.
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We see that the solution is analytic with respect to ε for sufficiently small values ε > 0, and there is a
uniform passage to the limit

y (t, ε)→ ȳ (t) =
175

68
y0t3 +

175

17
t3 − 105

34
ty0 + y0 − 210

17
t (ε→ +0) .

Substituting ȳ (t) into the right side of the degenerate equation 0 =
1∫
0

s3 ××ȳ (s) ds+ 1, we have

1∫
0

s3
(

175

68
y0s3 +

175

17
s3 − 105

34
sy0 + y0 − 210

17
s

)
ds+ 1 ≡ 0.

Thus, the function ȳ (t) is the solution of a degenerate equation, which is consistent with statement 3)
of Theorem 2.

2 Nonlinear singularly perturbed Hammerstein equations

Let’s move on to studying the nonlinear equation (1). In the works known to us [5–7] more general
linear, nonlinear differential and integro-differential equations are considered and systems are than
in our work. However, they are devoted to the construction of asymptotic solutions and the study
phenomena of initial and boundary jumps. Assuming that there is a continuous solution of this
equation, integrating it by t over the segment [0, t], we obtain the integral equation

εy (t, ε) = q1 (t)
1∫
0

b1 (s) f (y (s, ε) , s) ds+

+q2 (t)
1∫
0

b2 (s) f (y (s, ε) , s) ds+ εy0,

(3∗)

where the notations qj (t) =
t∫
0

aj (θ) dθ, j = 1, 2, are introduced. Let us introduce constants

w1 =

1∫
0

b1 (s) f (y (s, ε) , s) ds, w2 =

1∫
0

b2 (s) f (y (s, ε) , s) ds. (15)

Then the solution of the equation (3∗) will be written in the form

y (t, ε) =
1

ε

(
q1(t)w1 + q2 (t)w2 + εy0

)
. (16)

Substituting (16) into (15), we obtain an algebraic system of equations

w1 =
1∫
0

b1 (s) f
(
1
ε

(
q1 (s)w1 + q2 (s)w2 + εy0

)
, s
)
ds,

w2 =
1∫
0

b2 (s) f
(
1
ε

(
q1 (s)w1 + q2 (s)w2 + εy0

)
, s
)
ds.

(17)

If the function f (y, s) is known, then (17) is a nonlinear algebraic system of equations, the solvability of
which relative tow1 and w2 is not guaranteed by anything. Therefore, it is unlikely that in the general
case it will be possible to formulate the conditions for the solvability of the system (17) in terms of the
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initial data. In a specific case, when all the functions included in equation (1) are given, nothing can
be also said about solvability. In this case, difficulties arise in calculating the integrals included in (17).
Let’s try to solve system (17) using the Maple program. We present the corresponding algorithm.

Restart:
Set the initial data

f := f (z, t) ; q1 := q1 (t) ; q2 := q2 (t) ; b1 := b1 (t) ; b2 := b2 (t) .

We write system (17) for given data

w1 =
1∫
0

b1 (s) f
(
1
ε

(
q1 (s)w1 + q2 (s)w2 + εy0

)
, s
)
ds,

w2 =
1∫
0

b2 (s) f
(
1
ε

(
q1 (s)w1 + q2 (s)w2 + εy0

)
, s
)
ds.

A system of algebraic equations is obtained. We solve it using the solve operator. If we manage to
find the constants w1 = w0

1, w2 = w0
2, then the solution of the equation (1) is obtained as follows:

y (t, ε) =
1

ε

(
q1 (t)w1 + q2 (t)w2 + εy0

)
;

subs
({
c1 = c01, c2 = c02

}
, y (t, ε)

)
.

Let us demonstrate the implementation of this procedure using specific examples.

Example 4. Solve the Cauchy’s problem

ε
d

d t
y (t, ε) = 3t2

1∫
0

sy2 (s, ε) ds, y (0, ε) = y0. (18)

Here: q1 (t) = t3

3 , q2 (t) = 0, b1 (t) = t, b2 (t) = 0. Applying the algorithm described above, we obtain
the following solution to problem (18):

y (t, ε) = t3
(

4ε− 8

5
y0 ± 2

5

√
100ε2 − 80εy0 − 9 (y0)2

)
+ y0.

From this it is clear that for sufficiently small ε > 0 and y0 6= 0 equation (18) has no real solutions and
only for y0 = 0 it has two real solutions y (t, ε) = t3 (4ε± 4ε) , uniformly tending to zero as ε→ +0.

Example 5. Now consider the problem

ε
d

d t
y (t, ε) = 2t

1∫
0

sy3 (s) ds, y (0, ε) = m. (19)

Here, instead of quadratic nonlinearity, we took cubic nonlinearity f (y) = y3. Using the Maple program
algorithm described above, we find that problem (19) has only one real solution y (t) = t2

ε w+m, where
the constant w has the form

w =
[1

3

(
−10m3 − 144εm+ 6

√
3m6 + 72εm4 + 672ε2m2 − 384ε3

)1/3
−
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−
3
(
2
9m

2 − 8
3ε
)(

−10m3 − 144εm+ 6
√

3m6 + 72εm4 + 672ε2m2 − 384ε3
)1/3 − 4

3
m
]
· ε.

When ε→ +0 the solution y (t, ε) has a finite limit

ȳ (t) = t2

 1

3
(

6
√

3 |m|3 − 10m3
)1/3 − 2m2

3
(

6
√

3 |m|3 − 10m3
)1/3 − 4

3
m

+m.

For different signs of the initial condition m, the solution tends to different limits.

Remark 3. The results of studies for linear singularly perturbed problems are presented in the
works [8–24].

Conclusion

The properties of nonlinear singularly perturbed problems of type (1) differ significantly from the
properties of linear problems of type (2); linear problems are always uniquely solvable in the class
C1 [0, 1] with continuous initial data, and nonlinear problems may not have real solutions at all or have
several of them.
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