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Controllability and Optimal Fast Operation of Nonlinear Systems
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A new method for solving the problem of controllability and optimal transient behavior of nonlinear systems
subject to boundary conditions and constraints on control values was proposed. Unlike existing methods,
this new approach is based on constructing a general solution of the integral equation for a linear controlled
system, followed by transforming the original problem into a special initial optimal control problem. We
propose a new method for studying the global asymptotic stability of dynamical systems with a cylin-
drical phase space with a countable equilibrium position based on a non-singular transformation of the
equation of motion and estimation of improper integrals along the solution of the system. Conditions for
global asymptotic stability were obtained without involving any periodic Lyapunov function, as well as the
frequency theorem. The effectiveness of the proposed method is shown with an example.
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Introduction

The first work on controllability of linear systems without constraints on control values is the
paper by R.E. Kalman [1]. In [1], minimal norm control is constructed for systems with constant
coefficients, and a rank criterion for controllability is established. Controllability of linear systems
based on l-problem methods is explored in [2]. Various issues such as minimal control vector dimension,
controllability of nonlinear systems with small parameters, and consequences of controllability for
linear systems are discussed in [3]. Positional control of linear systems based on Lyapunov functions is
examined in [4]. Geometric interpretations of controllability of linear systems are studied in [5], and
the relationship between controllability and stabilization of dynamic systems is investigated in [6].

The problem of optimal transient performance was first studied by L.S. Pontryagin and his stu-
dents [7]. Optimal fast operation under phase coordinate constraints is detailed in [8], and solutions
under uncertainty conditions are considered in [9]. Applications of the maximum principle to various
specific problems are presented in [10].

It is noteworthy that the problem of optimal fast operation is closely related to controllability.
The aforementioned works explore specific cases of the general problems of controllability and fast
operation without phase or integral constraints and without boundary condition restrictions. Cur-
rent and unresolved issues in controllability and optimal fast operation include obtaining necessary
and sufficient conditions for the solvability of general controllability and fast operation problems and
developing constructive methods for solving general problems of controllability and fast operation of
ordinary differential equations.

This paper proposes a new method for investigating controllability and optimal transient behavior
of ordinary differential equations based on the study of solvability and the construction of a general
solution of a Fredholm integral equation of the first kind with a fixed parameter.
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The solvability and construction of solutions of Fredholm integral equations of the first kind are
among the complex and unresolved problems in mathematics [11]. Known results on the solvability of
integral equations apply when the operator kernel is symmetric [12].

Results on solvability and construction of solutions of Fredholm integral equations of the first
kind and their applications to the qualitative theory of differential equations are presented in [12, 13].
Specific results on applying the study of Fredholm integral equations of the first kind to solving problems
of controllability and optimal control are found in [13]. A general theory of boundary value problems
for dynamic systems is provided in [12], and research on the dynamics of processes described by
integro-differential equations is detailed in [9].

The theory of controllability for nonlinear systems described by ordinary differential equations
remains a relatively underexplored area in the mathematical theory of control. It is shown that the
problem of controllability of ordinary differential equations, by constructing a general solution of a
Fredholm integral equation of the first kind with a fixed parameter, can be reduced to an initial
optimal control problem. Solutions to the problem of optimal fast operation can be derived from
solving the general controllability problem.

1 Problem Statement

Consider a controlled process described by ordinary differential equations:

ẋ = A(t)x+B(t) f(x, u, t), t ∈ I = [t0, t1], (1)

with boundary conditions
x(t0) = x0 ∈ Rn, x(t1) = x1 ∈ Rn, (2)

subject to control constraints

u(t) ∈ Λ(t) = {u(t) ∈ L2(I,Rm1)|u(t) ∈ V (t) ⊂ Rm1 almost everywhere t ∈ I}. (3)

Here, A(t), B(t) are matrices with piecewise continuous elements of sizes n×n and n×m, respec-
tively. The vector function f(x, u, t) is continuous in all variables (x, u, t) ∈ Rn×Rm1 × I, satisfying
conditions

|f(x, u, t)− f(y, u, t)| ≤ l(t)|x− y|, ∀(x, u, t), (y, u, t) ∈ Rn ×Rm1 × I, (4)

|f(x, u, t)| ≤ c0(|x|+ |u|2) + c1(t), t ∈ I, (5)

l(t) > 0, l(t) ∈ L1(I, R1), c0 = const > 0, c1(t) ≥ 0, c1(t) ∈ L2 (I, R1). (6)

From (4)–(6) it follows that differential equation (1) with initial condition x(t0) = x0, for any fixed
control u(t) ∈ L2(I,Rm1), has a unique solution. Assume Λ(t), t ∈ I is a given bounded convex closed
set in L2(I, Rm1). In particular, if A(t) ≡ 0, B(t) = In, where In, is the n× n, identity matrix, then
equation (1) takes the form ẋ = f(x, u, t).

Definition 1. The system (1)–(3) is called controllable, if there exists a control u(t) ∈ Λ(t), that
transforms the solution of differential equation (1) from initial state x0 = x(t0) at time t0 to state
x1 = x(t1) at time t1.

Along with system (1)–(3), consider the linear controllable system

ẏ = A(t)y +B(t) w(t), t ∈ I = [t0, t1], (7)

y(t0) = x0 ∈ Rn, y(t1) = x1 ∈ Rn, (8)

w(t) ∈ L2(I, Rm). (9)

78 Bulletin of the Karaganda University



Controllability and Optimal ...

The following problems are solved:
Problem 1. Find all control sets U(t) ⊂ L2(I, Rm), where each element U(t) function w(t) ∈ U(t)

transforms the solution of differential equation (7) under conditions (8), (9) from initial point x0 = y(t0)
to point x1 = y(t1).

Problem 2. Find control u(t) ∈ Λ(t), that transforms the trajectory of system (1)–(3) from initial
state x0 = x(t0) at time t0, to state x1 = x(t1) at time t1.

Problem 3. (Optimal Quick Action). Find control u(t) ∈ Λ(t) ⊂ L2(I, Rm) that moves the
trajectory of system (1)–(3) from poin x0 = x(t0) to point x1 = x(t1) in the shortest time, where t0 is
fixed and t1 is not fixed.

The problem of optimal quick action is formulated as

J(x, u, t1) =

∫ t1

t0

1 · dt = t1 − t0 → inf

subject to conditions (1)–(3).

2 Linear Controllable System

Consider solving Problem 1.
The solution of differential equation (7) takes the form

y(t) = Φ(t, t0) x0 +

∫ t

t0

Φ(t, τ)B(τ)w(τ)dτ, t ∈ I, (10)

where Φ(t, τ) = θ(t)θ−1(τ), θ(t) is the fundamental matrix of solutions of the linear homogeneous
equation ξ̇ = A(t)ξ. Note that the matrix θ(t), t ∈ I of order n × n is a solution of the matrix
equation θ̇(t) = A(t) θ(t), θ(t0) = In, where In is the identity matrix of order n × n. From (10) at
t ∈ t1, considering y(t1) = x0, we obtain

y(t1) = x1 = Φ(t1, t0)x0 +

∫ t1

t0

Φ (t1, t)B(t)w(t)dt.

Then ∫ t1

t0

Φ (t1, t)B(t)w(t)dt = x1 − Φ(t1, t0)x0.

Here, considering Φ(t1, t) = Φ(t1, t0) Φ(t0, t), Φ−1(t1, t0) = Φ(t0, t1), we have∫ t1

t0

Φ(t0, t)B(t)w(t) dt = Φ (t0, t1)x1 − x0. (11)

Let
K(t) = Φ(t0, t)B(t), a = Φ(t0, t1)x1 − x0, t ∈ I, a ∈ Rn. (12)

From (11) it follows that the control w(t) ∈ L2(I, Rm) drives the trajectory of system (7)–(9) from
any point x0 to any point x1, when u(t) satisfies the integral equation (11). The following theorem
establishes the necessary and sufficient condition for the solvability of integral equation (11) for any
vector a ∈ Rn from (12).

Theorem 1. The integral equation (11) has solutions for any vector a ∈ Rn if and only if the matrix

W (t0, t1) =

∫ t1

t0

Φ(t0, t) B(t) B∗(t) Φ∗(t0, t) dt =

∫ t1

t0

K(t) K∗(t)dt, (13)
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of order n× n is positive definite, where (*) denotes transposition.
The proof of Theorem 1 can be found in reference [1]. The following two theorems present new

results in the theory of controllability of linear systems.
Theorem 2. Suppose the matrix W (t0, t1) defined by formula (13) is positive definite. Then the

general solution of the integral equation (11) for any a ∈ Rn is given by

w(t) = v(t) + λ1(t, x0, x1) +N1(t) z(t1, v) ∈ L2(I,Rm), (14)

where v(t) ∈ L2(I, Rm) is any function. The function z(t) = z(t, v), t ∈ I is the solution of the
differential equation

ż = A(t)z +B(t) v(t), z(t0) = 0, v(t) ∈ L2(I,Rm), (15)

where

λ1(t, x0, x1) = B∗(t) Φ∗(t0, t) W
−1(t0, t1) a, N1(t) = −B∗(t) Φ∗(t0, t) W

−1(t0, t1) Φ(t0, t1), t ∈ I.
(16)

Proof. Introduce the following sets

W = {w (t) ∈ L2(I,Rm)|
∫ t1

t0

K(t) w(t) dt = a}, (17)

U = {w(t) ∈ L2(I,Rm)|w(t) = v(t)+λ1(t, x0, x1)+N1(t) z(t1, v), v(t) ∈ L2(I,Rm)−any function}.
(18)

The set W contains all solutions of the integral equation (11), when W (t0, t1) > 0. The theorem
asserts that a function w(t) ∈ L2(I, Rm) belongs toW if and only if it belongs to U . To proveW = U ,
it suffices to show U ⊂W and W ⊂ U .

Show U ⊂W . Indeed, if w(t) ∈ U , then from (18) the equality∫ t1

t0

K(t)w(t)dt =

∫ t1

t0

K(t) [v(t) + λ1(t, x0, x1) +N1(t) z(t1, v)]dt =

∫ t1

t0

K(t) v(t)dt+

+

∫ t1

t0

K(t) λ1(t, x0, x1)dt+

∫ t1

t0

K(t) N1(t)dt z(t1, v) =

=

∫ t1

t0

K(t) v(t)d+

∫ t1

t0

K(t)B∗(t)Φ∗(t0, t)dt W
−1(t0, t1) a+

+

∫ t1

t0

K(t) [−B∗(t) Φ∗(t0, t)]dt W
−1(t0, t1) Φ(t0, t1) z(t1, v).

Hence, considering that the solution of differential equation (15) has the form

z(t) = Φ(t, t0) z(t0) +

∫ t

t0

Φ(t, τ) B(τ) v(τ)dτ =

∫ t

t0

Φ(t, τ) B(τ) v(τ)dτ,

z(t1) =

∫ t1

t0

Φ(t1, t) B(τ) v(τ)dt = Φ(t1, t0)

∫ t

t0

Φ(t0, t) B(t) v(t)dt,

we get (K(t) = Φ(t0, t) B(t))∫ t1

t0

K(t) w(t)dt =

∫ t1

t0

Φ(t0, t)B(t) v(t) dt+

∫ t

t0

Φ(t0, t) B(t) B∗(t) Φ∗(t0, t)dt W
−1(t0, t1) a−
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−
∫ t

t0

Φ(t0, t) B(t) B∗(t)Φ∗(t0, t)dt W
−1(t0, t1) Φ(t0, t1) Φ(t1, t0)

∫ t1

t0

Φ(t0, t) B(t) v(t) dt =

=

∫ t1

t0

Φ(t0, t) B(t) v(t) dt+ a−
∫ t1

t0

Φ(t0, t) B(t) v(t) dt = a.

Therefore, w(t) ∈W, U ⊂W .
Show that W ⊂ U . Suppose w∗(τ) ∈W . Then from (17) it follows that∫ t1

t0

K(t) w∗(t)dt = a.

Note that in relation (14), the function v(t) ∈ L2(I, Rm) is arbitrary. In particular, we can choose
v(t) = w∗(τ), t ∈ I. Now, the function w(t) ∈ U can be expressed as.

w(t) = v(t) + λ1(t, x0, x1) +N1(t) z(t1, v) = w∗(t) +B∗(t) Φ∗(t0, t)W
−1(t0, t1)a−

−B∗(t) Φ∗(t0, t) W
−1(t0, t1) Φ(t0, t1) Φ(t1, t0)

∫ t

t0

Φ(t0, t)B(t) w∗(t)dt = w∗(t)+

+B∗(t) Φ∗(t0, t) W
−1(t0, t1) a−B∗(t) Φ∗(t0, t) W

−1(t0, t1)a = w∗(t) ∈ U.

Therefore, w∗(τ) = w(τ) ∈ U. Hence, W ⊂ U . From U ⊂W and W ⊂ U , it follows that U = W . The
theorem is proved.

From (14)–(18), it follows that all control sets, each element of which transforms the trajectory of
the system (7)–(9) from point x0 to point x1, are determined by formula (18).

Key properties of solutions to integral equation (11):
1. Function w(t) ∈ U can be represented as w(t) = w1(t)+w2(t), where w1(t) = K∗(t)W−1(t0, t1)a

is a particular solution of integral equation (11), and

w2(t) = v(t)−K∗(t)W−1(t0, t1)

∫ t1

t0

K(η) v(η) dη, t ∈ I

is a solution of the homogeneous integral equation.∫ t1

t0

K(t) w2(t)dt = 0.

Indeed, ∫ t1

t0

K(t) w1(t)dt =

∫ t1

t0

K(t) K∗(t) W−1(t0, t1) a = a,∫ t1

t0

K(t) w2(t)dt =

∫ t1

t0

K(t) v(t)dt−
∫ t1

t0

K(t) K∗(t)W−1(t0, t1)

∫ t1

t0

K(η) v(η)dη = 0.

2. Functions w1(t) ∈ L2(I, Rm), w2(t) ∈ L2(I, Rm) are orthogonal in L2, w1⊥w2. Indeed,

〈w1, w2〉L2 =

∫ t1

t0

w∗1(t) w2(t)dt = a∗W−1(t0, t1)

∫ t1

t0

K(t) v(t)dt−

−a∗W−1(t0, t1)

∫ t1

t0

K(t)K∗(t)W−1(t0, t1)

∫ t1

t0

K(η) v(η)dη = 0.

3. Function w1(t) = K∗(t)W−1(t0, t1)a, t ∈ I, is a solution of integral equation (11) with minimal
norm in L2(I, Rm). Indeed, ‖w‖2 ≥ ‖w1‖2 + ‖w2‖2, due to w1⊥w2. Hence, ‖w‖2 ≥ ‖w1‖2. If the
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function v(t) ≡ 0, t ∈ I, then the function w2(t) ≡ 0, t ∈ I. Therefore ‖w‖ = ‖w1‖, w(t) = w1(t),
t ∈ I.

4. The set of solutions of integral equation (11) is convex. Since w(t) ∈ U , U is a convex set.
Theorem 3. Let the matrix W (t0, t1) > 0. Then the solution of the differential equation (7)

corresponding to the control w(t) ∈ U is determined by the formula

y(t) = z(t1, v) + λ2(t, x0, x1) +N2(t)z(t1, v), t ∈ I, ∀v, v(t) ∈ L2(I,Rm), (19)

where

λ2(t, x0, x1) = Φ(t, t0)W (t, t1)W−1(t0, t1)x0 + Φ(t, t0)W (t0, t)W
−1(t0, t1)Φ(t0, t1)x1,

N2(t) = −Φ(t, t0)W (t0, t)W
−1(t0, t1)Φ(t0, t1), t ∈ I,

W (t0, t) =
∫ t
t0
K(τ)K∗(τ)dτ, W (t, t1) =

∫ t1
t K(τ)K∗(τ)dτ, t ∈ I.

(20)

Proof. Suppose the control is determined by formula (14). Then the function.

y(t) = Φ(t, t0) x0 +

∫ t

t0

Φ(t, τ) B(τ)[v(τ) + λ1(τ, x0, x1) +N1(τ) z(t1, v)]dτ =

=

∫ t

t0

Φ(t, τ) B(τ) v(τ) dτ + Φ(t, t0) x0 +

∫ t

t0

Φ(t, τ) B(τ) B∗(τ) Φ∗(t0, τ) dτ W−1(t0, t1),

[Φ(t1, t0)x1 − x0]−
∫ t

t0

Φ(t, τ) B(τ) B∗(τ) Φ∗(t0, τ) dτ W−1(t0, t1) Φ(t1, t0) z(t1, v).

Thus, considering that

W (t0, t) =

∫ t

t0

K(τ)K∗(τ)dτ =

∫ t

t0

Φ(t0, τ)B(τ) B∗(τ) Φ∗(t0, τ)dτ, W (t, t1) = W (t0, t1)−W (t0, t),

we obtain

y(t) = z(t, v) + [Φ(t, t0)−Φ(t, t0) W (t0, t)W
−1(t0, t1)] x0 + Φ(t, t0) W (t0, t) W

−1(t0, t1) Φ(t1, t0) x1−

−Φ(t, t0) W (t0, t) W
−1(t0, t1) Φ(t1, t0) z(t1, v) = z(t, v) + Φ(t, t0) W (t, t1) W−1(t0, t1) x0+

+Φ(t, t0) W (t0, t) W
−1(t0, t1) Φ(t0, t1)x1 − Φ(t, t0)W (t0, t)W

−1(t0, t1) Φ(t0, t1)z(t1, v) =

= z(t, v) + λ2(t, x0, x1) +N2(t)z(t1, v),

where λ2(t, x0, x1), N2(t), t ∈ I, are from (20). The theorem is proved.

3 Controllability of Nonlinear Systems

Consider the solution to problem 2.
Comparing systems (1)–(3) and (7)–(9), it is easy to see that they coincide when replacing the

function w(t) with f(x, u, t). This leads to considering the following optimization problem: minimize
the functional

J(v, u) =

∫ t1

t0

|v(t) + λ1(t, x0, x1) +N1(t)z(t1, v)− f(y(t), u(t), t)|2dt→ inf, (21)

subject to the constraints

ż = A(t)z +B(t)v(t), z(t0) = 0, t ∈ I = [t0, t1], (22)
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v(t) ∈ L2(I,Rm), u(t) ∈ Λ(t) ⊂ L2(I,Rm1), (23)

where the function y(t), t ∈ I, is determined by formula (19).
Theorem 4. Suppose the matrix W (t0, t1) > 0. Then the system (1)–(3) is controllable if and only

if the value J(v∗, u∗) = 0, where the pair (v∗(t), u∗(t)) ∈ L2(I,Rm) × Λ(t) is the optimal control in
problem (21)–(23).

Proof. Necessity. Suppose the system (1)–(3) is controllable. We will show that J(v∗, u∗) = 0. From
the controllability of the system (1)–(3), it follows that there exists a solution to the differential equation
(1) the function x(t) = x(t; t0, x0, u∗), t ∈ I, such that x(t0) = x0, x(t1) = x1 for u∗ = u∗(t), t ∈ I.
Then f(x(t; t0, x0, u∗), u∗(t), t) = w∗(t) ∈ L2(I,Rm), and the system (1)–(3) can be written as
(x(t) = x(t; t0, x0, u∗)).

ẋ(t; t0, x0, u∗) = A(t)x(t; t0, x0, u∗) +B(t) w∗(t), t ∈ I = [t0, t1],

x(t0; t0, x0, u∗) = x0, x(t1; t0, x0, u∗) = x1, u∗(t) ∈ L2(I,Rm).

Let y(t) = x(t; t0, x0, u∗), t ∈ I. The function y(t), t ∈ I satisfies ẏ = A(t)y + B(t)w∗(t), y(t0) = x0,
y(t1) = x1. Therefore, the function w∗(t) ∈ L2(I,Rm) translates the trajectory y(t), t ∈ I from the
point x0 the point x1. According to Theorem 1, w∗(t) ∈ U , where w∗(t) = v∗(t) + λ1(t, x0, x1) +
N1(t)z(t1, v∗), t ∈ I. Thus,

J(v∗, u∗) =

∫ t1

t0

|v∗(t) + λ1(t, x0, x1) +N1(t)z(t1, v∗)− f(y(t), u∗(t), t)|2dt = 0.

Necessity is proved.
Sufficiency. Let the functional value J(v∗, u∗) = 0, for the pair (v∗(t), u∗(t)) ∈ L2(I,Rm) ×

Λ(t). We will demonstrate that the system (1)–(3) is controllable. Note that J(v, u) ≥ 0. Hence,
J(v∗, u∗) = 0 if and only if

v∗(t) + λ1(t, x0, x1) +N1(t) z(t1, v∗) = f(y(t, v∗), u∗(t), t), t ∈ I,

where we denote

w∗(t) = v∗(t) + λ1(t, x0, x1) +N1(t) z(t1, v∗) = f(y(t, v∗), u∗(t), t), t ∈ I,

with y(t0, v∗) = x0, y(t1, v∗) = x1. Now the system (7)–(9) can be written as

ẏ(t, v∗) = A(t)y(t, v∗) +B(t) w∗(t), y(t0) = x0, y(t1) = x1, w∗(t) ∈ L2(I,Rm).

From this, it follows that y(t, v∗) = x(t; t0, x0, u∗), x(t0) = x0, x(t1) = x1. Therefore, system (1)–(3)
is controllable. Sufficiency is proven. The theorem is proved.

Below are solutions to the optimization problem (21)–(23). It should be noted that: 1) in the opti-
mization problem (21)–(23), unlike the original boundary value problem (1)–(3), boundary conditions
are absent; 2) the optimization problem (21)–(23) is an initial problem of optimal control and can be
solved using known methods of successive approximations.

Let us introduce the following notations:

F0(q0, t) = |v + T1(t)x0 + T2(t)x1 +N1(t) z(t1, v)− f(y, u.t)|2 , (24)

where
λ1(t, x0, x1) = T1(t)x0 + T2(t)x1,

T1(t) = −B∗(t)Φ∗(t0, t)W−1(t0, t1), T2(t) = B∗(t)Φ∗(t0, t)W
−1(t0, t1) Φ∗(t0, t1),
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λ2(t, x0, x1) = C1(t)x0 + C2(t)x1,

C1(t) = Φ(t, t0)W (t, t1), W−1(t0, t1), C2(t) = Φ(t, t0)W (t0, t), W
−1(t0, t1) Φ(t0, t1),

y(t) = z(t, v) + C1(t)x0 + C2(t)x1 +N2(t) z(t1, v), t ∈ I,

q = (v, u, z, z(t1)) ∈ Rm ×Rm1 ×Rn ×Rn.

Lemma 1. Suppose matrix W (t0, t1) > 0, the function f(y, u, t) is defined and continuous with
respect to (y, u, t) ∈ Rn×Rm1 × I together with partial derivatives with respect to (y, u) ∈ Rn×Rm1 .
Then the partial derivatives are

∂ F0(q, t)

∂v
= 2[v + T1(t)x0 + T2(t)x1 +N1(t)z(t1)− f(z + C1(t) + C2(t) +N2(t)z(t1), u, t)], (25)

∂ F0(q, t)

∂u
= −2fu(y, u, t)[v + T1(t)x0 + T2(t)x1 +N1(t)z(t1)− f(y, u, t)], (26)

∂ F0(q, t)

∂z
= −2fx(y, u, t)[v + T1(t)x0 + T2(t)x1 +N1(t)z(t1)− f(y, u, t)], (27)

∂ F0(q, t)

∂z(t1)
= 2[N∗1 (t) +N∗2 (t)fx(y, u, t)][v + T1(t)x0 + T2(t)x1 +N1(t)z(t1)− f(y, u, t)]. (28)

Relations (25)–(28) are derived directly from (24) by differentiation.
Lemma 2. Suppose the conditions of Lemma 1 hold and the inequality

〈F0q(q1, t)− F0q(q2, t), q1 − q2〉 ≥ 0, ∀q1, q2 ∈ Rm+m1+2n, (29)

is satisfied, where

F0q(q, t) =
∂ F0(q, t)

∂q
= (

∂ F0

∂v
,
∂ F0

∂u
,
∂ F0

∂z
,
∂ F0

∂z(t1)
), t ∈ I.

Then the functional (21) under conditions (22), (23) is convex.
Proof. Inequality (29) is a necessary and sufficient condition for the convexity of the function

F0(q, t) with respect to q. Therefore,

F0(αq1 + (1− α)q2) ≤ αF0(q1, t) + (1− α)F0(q2, t), t ∈ I,

∀q1, q2 ∈ RN , N = m1 +m+ 2n, ∀α, α ∈ [0, 1].

Since for any v1(t), v2(t) ∈ L2(I,Rm), the value z(t, α v1 + (1− α) v2) = α z(t, v1) + (1− α) z (t, v2),
∀α, α ∈ [0, 1], t ∈ I, then

J(α v1 + (1− α) v2, α u1 + (1− α)u2) =

∫ t1

t0

F0(α v1 + (1− α) v2, α u1 + (1− α)u2),

z(t, α v1 + (1− α) v2), z(t1, αv1 + (1− α) v2))dt ≤ α
∫ t1

t0

F0(q1, t)dt+ (1− α)

∫ t1

t0

F0(q2, t)dt =

= αJ (v1, u1) + (1− α)J (v2, u2), ∀ v1, v2 ∈ L2(I,Rm), ∀u1, u2 ∈ L2(I,Rm1).

Thus, the lemma statement follows. Lemma is proved.
Definition 2. The partial derivatives (25)–(28) are said to satisfy the Lipschitz condition if∣∣∣∂ F0(q+∆q,t)

∂v − ∂ F0(q,t)
∂v

∣∣∣ ≤ L1 |∆q| ,
∣∣∣∂ F0(q+∆q,t)

∂u − ∂ F0(q,t)
∂u

∣∣∣ ≤ L2 |∆q| ,∣∣∣∂ F0(q+∆q,t)
∂z − ∂ F0(q,t)

∂z

∣∣∣ ≤ L3 |∆q| ,
∣∣∣∂ F0(q+∆q,t)

∂z(t1) − ∂ F0(q,t)
∂z(t1)

∣∣∣ ≤ L4 |∆q| ,
(30)
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where Li = const > 0, i = 1, 4,∆q = (∆v, ∆u, ∆z, ∆z(t1)).
Theorem 5. Suppose the conditions of Lemma 1 and inequalities (30). Then the functional (21)

under conditions (22), (23) is continuously differentiable in the Frechet sense, and the gradient

J ′(v, u) = (J ′v(v, u), (J ′u(v, u)) ∈ L2(I,Rm)× L2(I,Rm1)

at any point (v, u) ∈ L2(I,Rm)× L2(I,Rm1) is defined by

J ′v(v, u) =
∂ F0(q(t), t)

∂v
−B∗(t)ψ(t), J ′u(v, u) =

∂ F0(q(t), t)

∂u
, (31)

where q(t) = (v(t), u(t), z(t, v), z(t1, v)), the function z(t) = z(t, v), t ∈ I is a solution of differential
equation (22), and ψ(t), t ∈ I is a solution of equation

ϕ̇ =
∂ F0(q(t), t)

∂z
−A∗(t)ψ, ψ(t1) = −

∫ t1

t0

∂ F0(q(t), t)

∂z(t1)
dt. (32)

Moreover, the gradients J ′(v, u) satisfy the Lipschitz condition

‖J ′(v1, u1)− J ′(v2, u2)‖ ≤ l1(‖v1 − v2‖2 + ‖u1 − u2‖2)
1/.2,

∀(v1, v2) ∈ L2(I,Rm), ∀(u1, u2) ∈ L2(I,Rm1).
(33)

Proof. Note that for any v(t), v(t) + h(t) ∈ L2(I,Rm), ∆z(t) = z(t, v + h) − z(t, v) satisfies the
differential equation

∆ż(t) = A(t)∆z(t) +B(t)h(t), ∆z(t0) = 0, t ∈ I,

where

∆z(t) =

∫ t

t0

Φ(t, τ) B(τ) h(τ)dτ, |∆z(t)| ≤
∫ t1

t0

‖Φ(t, τ)‖ ‖l(τ)‖ |h(τ)|dτ ≤ c1‖h‖L2 .

The increment of the functional

∆J = J(v + h, u+ ∆u)− J(v, u) =

∫ t1

t0

[h∗(τ)Fov(q(t), t) + ∆u∗(t)Fou(q(t), t)+

+z∗(t)Foz(q(t), t) + ∆z∗(t1)Foz(t1)(q(t), t)]dt+R,

where |R| ≤ c2(‖h‖2 + ‖∆u‖2), due to estimate (30),

F0v(q, t) =
∂ F0(q, t)

∂v
, F0u(q, t) =

∂ F0(q, t)

∂u
,

F0z(q, t) =
∂ F0(q, t)

∂z
, F0z(t1)(q, t) =

∂ F0(q, t)

∂z(t1)
.

The term

∆z∗(t1)

∫ t1

t0

Foz(t1)(q(t), t) = −
∫ t1

t0

∆z∗(t) ψ(t)dt−
∫ t1

t0

∆z∗(t) ψ̇(t)dt =

= −
∫ t1

t0

h∗(t) B∗(t) ψ(t)−
∫ t1

t0

∆z∗(t)Foz(q(t), t)dt.

Thus, the increment of the functional

∆J =

∫ t1

t0

{h∗(t) [Fov(q(t), t)−B∗(t) ψ(t)] + ∆u∗(t) Fou(q(t), t)}dt+R.
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From here, the first statement (31) of the theorem follows. Let’s show that estimate (33), where
ψ(t), t ∈ I is a solution of differential equation (32).

Let ξ(t) = (v(t), u(t)), t ∈ I. Then,

J ′(ξ1)− J ′(ξ2) = (Fov(q(t) + ∆q(t), t)− Fov(q(t), t)−B∗(t) ∆ψ(t),

Fou( q(t) + ∆q(t), t)− Fou(q(t), t)), ξ1 = (v1, u1), ξ2 = (v2, u2).

Therefore,
|J ′(ξ1)− J ′(ξ2)| = |Fov(q(t) + ∆q(t), t)− Fov(q(t), t)|+B∗max |∆ψ(t)|+

+|Fou( q(t) + ∆q(t), t)− Fou(q(t), t)| ≤ (L1 + L2) |∆q(t), t)|+B∗max |∆ψ(t)|,

where B∗max = sup
t0≤t≤t1

‖B∗(t)‖. Norm

‖J ′(ξ1)−J ′(ξ2)‖2 =

∫ t1

t0

|J ′(ξ1)−J ′(ξ2)|2dt ≤ 2 (L1 +L2)

∫ t1

t0

|∆q(t)|2dt+2(B∗max)2

∫ t1

t0

|∆ψ(t)|2dt ≤

≤ 2 c2
3 (L1 + L2) ‖∆ξ‖2 + 2 (B∗max)2

∫ t1

t0

|∆ψ(t)|2dt,

where ‖∆q‖ ≤ c3 ‖∆ξ‖2, ‖∆ξ‖2 = (‖h‖2 + ‖∆u‖2), ∆ξ = (h, ∆u). It can be shown that |∆ψ(t)| ≤
(L4 c3

√
t1 − t0 + L3 c3

√
t1 − t0) eA

∗
max(t1−t0)‖∆ξ‖, t ∈ I, where A∗max = sup

t0≤t≤t1
‖A∗(t)‖. Then

‖J ′(ξ1)− J ′(ξ2)‖2 ≤ l21 ‖∆ξ‖2, where

l1 = [2 c2
3 (L1 + L2)2 + 2 (B∗max)2 (t1 − t0)2(L3 + L4)2 c2

3 e
A∗

max(t1−t0)]
1/2.

Hence, estimate (33) is proven. Theorem is proved.
Theorem 6. Suppose the conditions of Theorem 5 are satisfied, and the sequences {vn} ⊂ L2(I,Rm),

{un} ⊂ Λ(t) ⊂ L2(I,Rm1) are defined by relations

vn+1 = vn − αn J ′v(vn, un), un+1 = PΛ[un − αn J ′u(vn, un)], n = 0, 1, 2, ... .
0 < ε0 ≤ αn ≤ 2

l1+2ε1
, ε1 > 0, n = 0, 1, 2, ... ,

(34)

where PΛ[·] is the projection of a point onto the set Λ. Then:
1) The numerical sequence {J(vn, un)} strictly decreases;
2) ‖vn − vn+1‖ → 0, ‖un − un+1‖ → 0 as n→ 0.

If, in addition, inequality (29), is satisfied, the set M(v0, u0) = {(v, u) ∈ L2(I,Rm) × Λ(t)|J(v, u) ≤
J(v0, u0)} is bounded, then

3) The sequences {vn}, {un} are minimizing sequences,

lim
n→∞

(vn, un) = J∗ = inf J(v, u), (v, u) ∈ X ∈ L2(I,Rm)× Λ(t);

4) The sequences {vn}, {un}, weakly converge to the set U∗, where

U∗ = {(v∗, u∗) ∈ X|J(v∗, u∗) = J∗ = inf J(v, u) = minJ (v, u), (v, u) ∈ X};

5) The rate of convergence estimate is valid:

0 ≤ J(vn, un)− J∗ ≤
m0

n
, n = 1, 2, ... , m0 = const > 0;
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6) The controllability problem (1), (2), (4) has a solution if and only if J(v∗, u∗) = J∗ = 0, in which
case x∗(t) = z(t, v∗) + λ2(t, x0, x1) +N2(t) z(t1, v∗), t ∈ I;

7) If J(v∗, u∗) > 0, это x∗(t), t ∈ I is the best approximate solution to the controllability problem
(1), (2), (4).

Proof. From the property of projection onto sets (34), we have

〈vn+1 − vn + αn J
′
v (vn, un), v − vn+1〉L2 = 0, ∀v, v ∈ L2(I,Rm) (35)

〈un+1 − un + αn J
′
u (vn, un), u− un+1〉L2 ≥ 0, ∀u, u ∈ Λ. (36)

Let θ = (v, u), θn = (vn, un), J ′(vn, un) = (J ′v(vn, un), J ′u(vn, un)). Then (35), (36) can be written
as

〈J ′(θn), θ − θn+1〉L2 ≥
1

αn
〈θn − θn−1, θ − θn−1〉, ∀θ, θ ∈ X. (37)

From the inclusion J(v, u) ∈ C1,1(X) the inequality

J(θ1)− J(θ2) ≥ 〈J ′(θ1), θ1 − θ2〉H −
l1
2
‖θ1 − θ2‖2, ∀θ1, θ2 ∈ X.

Therefore, specifically for θ1 = θn, θ
2 = θn+1, we obtain

J(θn)− J(θn−1) ≥ 〈J ′(θn), θn − θn+1〉 −
l1
2
‖θn − θn−1‖2. (38)

From (37), (38), (34), we have

J(θn)− J(θn−1) ≥ (
1

αn
− l1

2
) ‖θn − θn−1‖2 ≥ ε1 ‖θn − θn−1‖2, n = 0, 1, 2, ... (39)

From here, statements 1) and 2) of the theorem follow.
If inequality (29), is satisfied, then the functional (21) under conditions (22), (23) is convex, the

setM(v0, u0) is bounded, closed, and convex in H. Therefore, the setM(v0, u0) is weakly precompact.
The functional J(v, u) is weakly lower semicontinuous on the set M(v0, u0) and achieves its infimum,
U∗ 6= �, � empty set.

Let’s show that the sequence {ξn} = {vn, un} is minimizing. Indeed, from the convexity of
J(ξ) ∈ C1,1(M(v0, u0)), it follows that

J(ξn)− J(ξ∗) ≤ 〈J ′(ξn), ξn − ξ∗〉H ≤ ‖J ′(ξn)‖ ‖ξn − ξ∗‖ ≤ ‖J ′(ξn)‖ D, (40)

where ξ∗ = (v∗, u∗) ∈ U∗ ⊂M(v0, u0), D is diameter of M(v0, u0).
From (40), it follows that the sequence {ξn} ⊂M(ξ0) is minimizing, and ξn

weak→ ξ∗ weakly as n→∞,
where ξn

weak→ ξ∗ as n → ∞ means a special convergence of the sequence {ξn} to an element ξ∗. Thus,
statements 3) and 4) are proven.

Let an = J(ξn)− J(ξ∗). Then from (39), (40) we have

an − an−1 ≥
1

2l1
‖J ′(ξn)‖2, an ≤ D ‖J ′(ξn)‖. (41)

From (41) the rate of convergence estimate 5) follows. The theorem is proven.
Optimal Performance. Let t0 be fixed, t1 be unfixed. It is necessary to find the smallest value

t1 = t∗, for which the system (1), (2), (4) is controllable. It is necessary to find a pair (t∗, u∗(t)),
where u∗(t) ∈ Λ(t) ⊂ L2(I,Rm1).
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I. Setting t1 > t∗,. Using the algorithm outlined above, we find the control u∗t1(t), where t0, t1 are
known quantities.

Next, we choose t11 = t1
2 . We find a pair (v∗∗, u∗∗) ∈ X, t ∈ [t0, t11]. If J(v∗∗, u∗∗) = 0, for this

pair, then we choose t12 = t1
4 , t12 < t11 and solve optimization problem (41).

In case where J(v∗∗, u∗∗) > 0, optimization problem (41) is solved for 3t1
4 and so on. As a result,

the value t∗ is determined with the given accuracy ε = t1n − t∗.
II. Sequential Approximation Method. Consider the following optimization problem: minimize the

functional

J(v, u, t1) =

∫ t1

t0

|v(t)+λ1(t, x0, x1)+N1(t)z(t1, v)−f(y(t), u(t), t)|2dt =

∫ t1

t0

F0(q(t), t1, t)dt→ inf

subject to conditions (42), (43), t1 > t0. Find Frechet derivatives, J ′v(v, u, t1), J ′u(v, u, t1),

J ′t1(v, u, t1) = F0(q(t1), t1, t1) +

∫ t1

t0

∂ F0(q(t), t1, t)

∂t1
dt.

Next, we construct sequences {vn}, {un}, {t1n}, where

t1n+1 = t1n − αnJ ′t1(vn, un, t1n), n = 0, 1, 2, ...

4 Solution of the Model Problem

As an example, consider the Duffing equation with control [12].

ẍ+ x+ 2x3 = u(t), t ∈ I = [0, t1].

This equation can be represented as

ẋ1 = x2, ẋ2 = −x1 − 2x3
1 + u(t), t ∈ [0, t1] = I, (42)

where
x1(0) = 1, x2(0) = 0, x1(t1) = 0, x2(t1) = 0, (43)

u(t) ∈ Λ = {u(t) ∈ L2(I,R1)| − 2 ≤ u(t) ≤ +2 almost everywhere t ∈ I}. (44)

The system (42)–(44) is a mathematical model describing the motion of a rigid spring under the
influence of external force u(t) ∈ Λ. Consider the problem of optimal performance. For (42)–(44), the
linear controllable system takes the form

ẏ1 = y2, ẏ2 = w(t), t ∈ [0, t1] = I, u(t) ∈ Λ,

y1(0) = 1, y2(0), y1(t1) = 0, y2(t1) = 0.

For this example,

A =

(
0 1
0 0

)
, B =

(
0
1

)
, y =

(
y1

y2

)
, y(0) =

(
1
0

)
= x0, y(t1) = x1 =

(
0
0

)
.

Matrices

eAt =

(
1 t
0 1

)
, e−At =

(
1 −t
0 1

)
, θ(t) = eAt, Φ(t, τ) = eA(t−τ).
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Calculate the following vectors and matrices:

a = Φ(τ, t1)x1 − x0 =

(
−1
0

)
, W (0, t1) =

∫ t1

0
e−AtBB∗e−A

∗τdτ =

(
t31
3 − t21

2

− t21
2 t1

)
> 0,

W−1(0, t1) =

(
12
t31

6
t21

6
t21

4
t1

)
, λ1(t, x0, x1) = T1(t)x0 + T2(t)x1 =

12

t31
− 6

t21
,

N1(t) =

(
12

t31
− 6

t21
, −6t

t21
− 2

t1

)
, λ2(t, x0, x1) =

 t31+2t3−3t1t2

t31
6t2−6t t1

t31

 ,

N2(t) =

 2t3−3t2t1
t31

−t3+t1t2

t21
6t3−6t t1

t31

−3t2+2t t1
t21

 .

Then

w(t) = v(t) +
(

12t
t31
− 6

t21

)
+
(

12t
t31
− 6

t21

)
z1(t1, v)

(
−6t
t21

+ 2
t31

)
z2(t1, v),

y(t) =

(
y1(t)
y2(t)

)
, y1(t) = z1(t) +

t31+2t3−3t1t2

t31
+
(

2t3−3t2t1
t31

)
z1(t1, v) + −t3+t1t2

t21
z2(t1, v),

y2(t) = z2(t) + 6t2−6t t1
t31

+
(

6t2−3t2t1
t31

)
z1(t1, v) +

(
−3t2+2t t1

t21

)
z2(t1, v).

(45)

The optimal control problem (1) (21)–(23) for this example takes the form

J(v, u) =

∫ t1

t0

|v(t) + λ1(t, x0, x1) +N1(t)z(t1, v)− (−y1 − 2y3
1 + u(t))|2dt→ inf (46)

subject to conditions

ż1 = z2, ż2 = v(t), z1(0) = 0, z2(0) = 0, v(t) ∈ L2(I,R1), u ∈ Λ, (47)

where f(y, u, t) = −y1 − 2y3
1 + u(t), F0 = |w(t)− (−y1 − 2y3

1 + u)|2.
Partial derivatives:

∂ F0

∂v
= 2[v(t)− (−y1 − 2y3

1 + u(t)],
∂ F0

∂u
= −2[w(t)− (−y1 − 2y3

1 + u(t)],

∂ F0

∂z1
= −2(−1− 6y2

1)[w(t)− (−y1 − 2y3
1 + u],

∂ F0

∂z2
= 0,

∂ F0

∂z1(t1)
= 2[N∗1 (t) +N∗2 (t)fx(y, u, t)[w(t)− (−y1 − y3

1 + u],

where fx(y, u, t) =

(
−1− 3y2

1

0

)
, w(t), y1(t), y2(t), t ∈ I are determined by formula (45).

The Frechet derivative of the functional (46) under condition (47) is J ′(v, u) = (J ′v(v, u), J ′u(v, u)),
where J ′v(v, u) = ∂ F0

∂v −B
∗ψ(t), J ′u(v, u) = ∂ F0

∂u . The function ψ(t), t ∈ I = [0, t1] solving a differential
equation

ψ̇ =
∂ F0

∂z
−A∗ψ, ψ(t1) = −

∫ t1

0

∂ F0

∂z(t1)
dt.

Sequences {vn}, {un} are determined by the formulas:

vn+1 = vn − αnJ ′v(vn, un), un+1 = PΛ[un − αnJ ′u(vn, un)], n = 0, 1, 2, ...
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The solution of the optimization problem (44), (45) for t1 = 4 is:

v∗(t) =


−1, 0 ≤ t < 5

4 ,
+1, 5

4 ≤ t <
13
4

−1, 13
4 ≤ t < 4,

, u∗(t) =


− t2

2 + 2(1− t2

2 )3, τ ≤ t < 5
4 ,

t2

6 + 5t
2 + 57

16 + 2( t
2

2 −
5t
2 + 41

16)3, 0 ≤ t < 13
4 ,

( t
2

2 + 4t− 9) + 2(− t2

2 + 4t− 8)3, 13
4 ≤ t < 4.

−2 ≤ u∗(t) ≤ +2, t ∈ I = [0, 4],

x1∗(t) =


1− t2

2 , 0 ≤ t ≤ 5
4 ,

t2

2 −
5t
2 + 41

16 ,
5
4 ≤ t ≤

13
4 ,

− t2

2 + 4t− 8, 13
4 ≤ t ≤ 4,

x2∗(t) =


−t, 0 ≤ t ≤ 5

4 ,
t− 5t

2 ,
5
4 ≤ t ≤

13
4 ,

−t+ 4, 13
4 ≤ t ≤ 4.

The solution to the optimal performance problem for t1∗ = 2 is:

v∗(t) =

{
−1, 0 ≤ t < 1,
1, 1 ≤ t < 2,

u∗(t) =

{
− t6

4 + 3t4

2 −
7t2

2 + 2, 0 ≤ t < 1,
t6

4 − 3t5 + 15t4 − 40t3 + 121t2

2 − 50t+ 19, 1 ≤ t < 2,

−2 ≤ u∗(t) ≤ 2, t ∈ I = [0, 2].

x1∗(t) =

{
1− t2

2 , 0 ≤ t ≤ 1,
t2

2 − 2t+ 2, 1 ≤ t ≤ 2,
x2∗(t) =

{
−t, 0 ≤ t ≤ 1,
t− 2, 1 ≤ t ≤ 2.

5 Conclusion

A new method for solving the controllability problem of nonlinear systems described by ordinary
differential equations has been developed. The scientific novelty of the obtained results lies in the
following:

– all sets of controls for linear systems have been found, each element of which transforms the
system trajectory from any initial state to any desired final state (Theorem 2);

– a general solution to the linear controllable system corresponding to the control from the selected
set of all controls has been constructed (Theorem 3);

– necessary and sufficient conditions for the controllability of nonlinear systems have been derived
(Theorem 4);

– the controllability problem has been reduced to solving the initial optimal control problem for
nonlinear control systems (Lemmas 1, 2);

– the gradient of the functional has been found, minimizing sequences have been constructed, and
their convergence has been studied (Theorems 5, 6);

– an algorithm for solving the problem of optimal speed was formulated;
– theoretical research results have been demonstrated using an example by solving the nonlinear

Duffing equation control problem.
This completes the summary and conclusions of the paper regarding the methods and results

obtained for solving the optimal speed control problem for nonlinear systems.
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