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This article consists of three sections. In the first section the concept of Vekua space is introduced, where
for elliptic systems of the first order, the theorem on the representation of the solution of a homogeneous
equation and the theorem on the continuity of the solution of an inhomogeneous equation are valid. In
the second section the Vekua method for solving boundary value problems for a polyharmonic equation is
described. In the third section the Otelbaev method describes the correct boundary value problems for a
polyharmonic equation in a multidimensional sphere.
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1 Vekua space for analytic functions

The question of the existence of solutions in the classical sense and of methods for finding these
solutions has not lost interest. It is particularly interesting to consider equations of order higher than
two using the method of potential theory.

Recently, the theory of boundary value problems for polyharmonic equations and elliptic systems
has attracted the attention of mathematicians, due to their great theoretical and practical importance.
For example, hydrodynamic and elasticity problems can be formulated using these equations.

The object of our research is polyharmonic equations. Vekua’s method is applicable for fixed
boundary conditions on the surface of the domain, and the equation itself can change, i.e. minor terms
can be added to the main equation. Otelbaev’s method is used for fixed equations, but the boundary
conditions can vary.

The problem is that in these methods under what conditions both methods are applicable. This
article is devoted to this problem of the applicability of the Vekua and Otelbaev methods.

In [1] I.N. Vekua proved that for a first-order elliptic system

Lu = ∂zu+ a(z)u+ b(z)u = f, z ∈ Ω, (1.1)

when a, b, f ∈ Lp(Ω), p > 2, any solution from W 1
2 (Ω) is continuous in Ω, and any solution of the

corresponding homogeneous system is representable in the form

u(z) = Φ(z)eω(z), (1.2)
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where Φ(z) is analytic in Ω and ω(z) are continuous functions in Ω. Here Ω is any open set,
∂z = 1

2(∂x + i∂y), i2 = −1.
It is not possible to transfer this result to the case 1 ≤ p ≤ 2. Therefore, the problem naturally

arises: What should be the Banach space B of a function that is continuously embedded in L1, such
that a) any solution of equation (1.1) from L1,loc, when a, b, f ∈ B, is continuous in Ω and b) any
solution of the corresponding homogeneous system can be represented in the form (1.2), where ω(z) is
continuous in Ω?

This problem was first posed by M.O. Otelbaev in his works [2, 3] and in the same article gave
a comprehensive answer to this problem. To solve this problem, the paper introduces the concept of
Vekua spaces (V -spaces), namely: a Banach function space B is a Vekua space if for any a(z), b(z) and
f(z), the theorem on the continuity of the solution of an inhomogeneous equation and the theorem on
the representation of solutions of a homogeneous equation are valid.

Let C be the complex plane of points z = x+iy, and letQ be the square {−π ≤ x ≤ π,−π ≤ y ≤ π}.
Let us assume that a certain norm ‖ · ‖B is defined on the set of trigonometric polynomials F . Let
B(Q) denote the Banach space obtained by completing F with respect to the ‖ · ‖B norm.

Let us give the exact definition of Vekua space (V -space). Throughout what follows we will assume
that B(Q) satisfies the following three properties:

1◦. A multiplication operator is defined in the space B(Q). The operator of multiplication by
the characteristic function of any rectangle located in Q, and the operator of multiplication by any
function ψ ∈ C∞π (Q) are bounded, where C∞π (Q) is the space of infinitely smooth periodic functions
with period 2π in each variable x, y.

2◦. If f ∈ B(Q) and a ∈ C, then f(z+a), |f | ∈ B(Q) and ‖f(z+a)‖B ≤ C ‖f‖B, ‖ |f | ‖B ≤ C ‖f‖B.
Here and below, C will denote, generally speaking, various positive constants.

3◦. B(Q) is continuously embedded in L1(Q) (B(Q) ↪→ L1(Q)).
Let P1(Q) denote the completion of F with respect to norm

〈f〉1,Q = sup
z∈Q

∫
Q

P (z − ζ) |f(ζ)| dQζ ,

where P (·) is periodic function, with period 2π in each variable, such that

P (z) =

{
|z|−1, at |z| ≤ 1, z ∈ Q,
1, at |z| ≥ 1, z ∈ Q. (1.3)

We will denote the integral operator with kernel P (z − ξ) by P . Let’s introduce one more operator

Tf =

∫
Q

T (z − ζ) f(ζ) dQζ ,

where T (·) is a continuous function for |z| > 0, z ∈ Q, and 2π-periodic function for each variable, such
that

T (z) =

{
C |z|−1 +K1(z), at |z| ≤ 1, z ∈ Q,
K2(z), at |z| ≥ 1, z ∈ Q. (1.4)

Here, K1(z) and K2(z) are continuous functions for |z| > 0, in addition, |Kj(z)| ≤ C |z|−1+ε0 , ε0 > 0,
j = 1, 2.

Let us recall the definition of Lorentz spaces.
Let 1 ≤ p, q <∞. The completion of F by the norm

|f : L(p, q)| =
(∫ ∞

0
{[µ(z ∈ Q : |f(z) ≥ t|)]

1
p t}dt

t

) 1
q

,

144 Bulletin of the Karaganda University



Some methods for ...

where µ(·) is the Lebesgue measure, will be called the Lorentz space L(p, q).
The main result of the work [2] is the following statement.
Theorem 1.1. A function space B with properties 1◦ − 3◦ is a Vekua space if and only if B ↪→ P1.
This result implies that a symmetric space is a V space if and only if it is continuously embedded

in the Lorentz space L(2; 1).

Thus, we can say that the widest space to which Vekua’s theory can be extended is P1(·), and
among all symmetric spaces, this is L(2; 1).

In the prove of the main result, we used information about the complete continuity of some integral
operators, in particular the operators introduced in (1.3) and (1.4). Such statements play a very
important role in Vekua’s theory [1].

Theorem 1.2. Let Bs
p,θ be completion of F according to the Besov norm

‖f‖Bsp,θ(Q) =

‖f‖θWn,p(Q) +

∞∫
0

(
ω2
p(f

(n), t)

t2

)θ1/θ

,

where ω2
p(f

(n), t) = sup
|h|≤t
‖∆2

hf‖p is continuity modulus, ∆hf = f(x+ h)− f(x).

If s ≥ 2
p − 1, θ = 1, or s > 2

p − 1 and p ≥ 1, then Bs
p,θ(Q) is V -space.

Remark 1.1. It can be shown that if the relations on s, p, θ specified in the theorem are violated,
then Bs

p,θ(Q) is not a Vekua space.
Remark 1.2. We will say that ϕ(·) ∈ Bloc in a neighborhood of the point z0 if ψ(z)ϕ(z) ∈ B(Q) for

ψ(z) ∈ C∞0 (Q), ψ(z) = 1 in the neighborhood of z0.
The theory constructed in [2] is also applicable in local Vekua spaces.

Corollary of Theorem 1.2. Let
◦
W s
p (Q) be completion of C∞0 (Q) by the norm

‖(−∆)s/2u‖Lp(Rn) =

∫
Rn

|F−1|ξ|sFu|pdx

1/p

,

where |ξ|2 = ξ2
1 + ξ2

2 + . . .+ ξ2
n, F is Fourier transform. It can be shown that

◦
W s
p (Q) is a Vekua space

if and only if s > 2
p − 1. In particular, for s = 0, the space Lp(Q) is a Vekua space if and only if p > 2.

2 On one Vekua method for solving boundary value problems for polyharmonic equations

Now we turn to the study of similar problems for polyharmonic equations in an arbitrary multidi-
mensional domain.

In the monograph by I.N.Vekua [1], the calculus theory of the simplest problems for polyharmonic
equations is given, namely: it is required to solve the equation

∆mu+ a1∆m−1u+ a2∆m−2u+ · · ·+ amu = 0 (2.1)

under boundary conditions

u|s = ϕ0, ∆u|s = ϕ1, ∆2u|s = ϕ2, . . . , ∆m−1u|s = ϕm−1, (2.2)

where ϕ0, . . . , ϕm−1 are given functions on the boundary S = ∂Ω of a bounded domain Ω ⊆ Rn, ai ∈ R,
i = 1,m.
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The solution of this problem (2.1), (2.2) is decomposed into the solution of m Dirichlet problems
for equations of the form

∆v − k2
i v = 0, i = 1, 2, . . . ,m,

where k2
i are the roots of the characteristic equation

pm + a1p
m−1 + a2p

m−2 + · · ·+ am = 0.

Similarly, the boundary value problem

∂nu|s = ψ0, ∂n∆u|s = ψ1, ∂n∆2u|s = ψ2, . . . , ∂n∆m−1u|s = ψm−1

reduces to m Neumann problems for equations (2.1). Here, ∂n = ∂
∂n is outward normal to boundary

S = ∂Ω.
For the case of two independent variables I.N. Vekua gave a general theory of linear boundary value

problems based on the methods of the theory of analytic functions and on the theory of singular integral
equations with Cauchy kernels. The main works in this area are the monographs of I.N. Vekua [1],
N.I. Muskhelishvili [4].

Let us briefly outline the idea of the method proposed by I.N. Vekua. Let us assume that the
problem of finding a function u(x), x = (x1, ..., xn), that satisfies the equation

∆mu = f(x), x ∈ Ω (2.3)

and homogeneous boundary conditions

R1(u) = 0, ..., Rm(u) = 0, (2.4)

in a simply connected domain Ω, admits a solution for any function f(x) ∈ Lp(Ω), p ≥ 1, and the
solution of this problem (2.3), (2.4) is represented in the form

u(x) = L0f =

∫
Ω

G(x, y)f(y)dy, dy = dy1...dyn. (2.5)

It is important to note that for the case when Ω is a multidimensional ball and Rk = ∂k−1/∂nk−1

(k-th outer normal to the boundary surface), function G is constructed explicitly (see, for example,
[5–8]).

Considering now the problem of finding a solution to the more general equation

F (x, u,Du, ...,D2mu) = 0, Dpu = ∂pu/∂xk11 ...∂x
kn
n ,

n∑
j=1

kj = p

with the same boundary conditions

R1(u) = 0, ..., Rm(u) = 0,

we can look for its solution in the form (2.5). This will lead us for f(x) to the functional equation
F (x, L0f, ..., L2mf) = 0 with operators Lkf = DkL0f, k = 0, 1, ..., 2m.

The operators Lkf are linear and completely continuous for k ≤ 2m−1. As for the operators L2mf ,
their boundedness in Lp, p > 1, is proved by using Zygmund-Calderon equality [9], which generalizes of
the well-known Riesz inequality for the singular operator with a Cauchy type kernel. In this way, the
problem with unbounded operatorsDku is reduced to the equivalent problem of studying the functional
equation F (x, L0f, ..., L2mf) = 0 with bounded operators Lkf. Using the basic principles of functional
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analysis, it is possible to prove the solvability of this equation for a very wide range of problems
for linear and quasilinear differential equations of elliptic type. It should be noted that this method
allows the study of boundary value problems with minimal assumptions regarding the coefficients of
the equation and the domain. In addition, by using the embedding theorems of S.L. Sobolev [10] and
using formula (2.5), it is possible to prove almost extremely accurate theorems on the nature of the
smoothness of the generalized solution depending on the degree of smoothness of the coefficients.

3 Description of correct boundary value problems for polyharmonic equations in a ball

Let m be a natural number and in an n-dimensional ball Ω = {x : |x| < r } consider Dirichlet
problem for a polyharmonic equation

∆mu(x) = f(x), x ∈ Ω, (3.1)

∂ju(x)

∂njx
= ϕj(x), 0 ≤ j ≤ m− 1, x ∈ ∂Ω. (3.2)

The classical solution u(x) ∈ C2m(Ω) ∩ Cm−1(Ω) of the Dirichlet problem (3.1), (3.2) exists, is
unique, and it represented using the Green’s function G2m,n(x, y) in the following form [10]

u(x) =

∫
Ω
G2m,n(x, y)f(y)dy +

m−1∑
j=0

∫
∂Ω

[
∂

∂ny
∆j
yG2m,n(x, y) ·∆m−1−j

y ϕ(y)−

−∆j
yG2m,n(x, y) · ∂

∂ny
∆m−1−j
y ϕ(y)

]
dSy,

where
∂

∂ny
is outer normal to boundary ∂Ω.

The Green’s function of the Dirichlet problem (3.1), (3.2) is defined as follows

∆mG2m,n(x, y) = δ(x− y), x, y ∈ Ω, (3.3)

∂jG2m,n(x, y)

∂njx
= 0, x ∈ ∂Ω, y ∈ Ω, 0 ≤ j ≤ m− 1, (3.4)

where δ(x− y) is the Dirac delta function.
In further studies we will use the following notation

X2 = X2(x, y) = |x− y|2, Y 2 = Y 2(x, y) =
∣∣∣y
r

∣∣∣2∣∣∣x− y

|y|2
r2
∣∣∣2,

Z2 = Z2(x, y) =

(
1−

∣∣∣y
r

∣∣∣2)(1−
∣∣∣x
r

∣∣∣2) r2.

Theorem 3.1. [5] a) In the case of odd n, as well as for even n, if 2m < n the Green’s function of
the Dirichlet problem (3.3), (3.4) can be represented as

G2m,n(x, y) = d2m,n

[
X2m−n − Y 2m−n−

−
m−1∑
k=1

(−1)k

k!
(m− n

2
)...
(
m− n

2
− k + 1

)
Y 2m−n−2kZ2k

]
, (3.5)
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and
d2m,n =

1

(m− 1)! (2m− n)(2(m− 1)− n)...(4− n)(2− n)
· Γ(n/2)

2mπn/2
,

where Γ(·) is gamma function;
b) In the case of even n and 2m ≥ n, the Green’s function of the Dirichlet problem (3.3), (3.4) can

be represented as
G2m,n(x, y) = d2m,n

[
X2m−n lnX − Y 2m−n lnY−

−
m−n/2∑
ν=1

(−1)νCm−n/2ν

[
lnY +

m−n/2∑
µ=m−n/2+1−ν

1

2µ

]
Z2νY 2m−2ν−n+

+(−1)m−n/2
n/2−1∑
ν=1

22m+2ν−n

2νCm+ν
ν+n/2

Z2(m+ν)Y −2ν−n
]
, (3.6)

and

d2m,n =
(−1)n/2−1

Γ(m)Γ(m− n/2 + 1) · 22m−1πn/2
.

In this case, Ω = {x ∈ Rn : |x| < r } or Ω is simply connected domains homeomorphic to the ball.
Let us choose the domain of definition of the maximal operator L̂

D(L̂) = W 2m
2 (Ω).

On the domain D(L̂) we define the operator L̂ by the formula

L̂u = ∆mu, ∀u ∈ D(L̂).

Recall that the domain of the maximal operator

R(L̂) = L2(Ω),

and KerL̂ its kernel is not trivial.
The Dirichlet boundary value problem for the polyharmonic equation

L0u :=


∆m
x u(x) = f(x), x ∈ Ω = {x : |x| < r },
∂ju(x)

∂njx
= 0, 0 ≤ j ≤ m− 1, x ∈ ∂Ω,

has a unique solution u(x) for any f ∈ L2(Ω), which has an integral representation

L−1
0 f = u(x) =

∫
Ω
GD2m,n(x, y)f(y)dy, (3.7)

where GD2m,n(x, y) ≡ G2m,n(x, y) is Green’s function of the Dirichlet problem from (3.5) or (3.6).
Note that the zero Dirichlet boundary conditions for a polyharmonic equation are equivalent to the

following boundary conditions for the same equation.
Theorem 3.2. a) For any f ∈ L2(Ω), the function u(x), given by formula (3.7) with m = 2p, is a

solution to the boundary value problem:

∆m
x u(x) = f(x), x ∈ Ω,

u(x) |∂Ω = 0,
∂

∂nx
u(x)

∣∣∣∣
∂Ω

= 0, ∆xu(x) |∂Ω = 0,
∂

∂nx
∆xu(x)

∣∣∣∣
∂Ω

= 0,
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. . . . . . . . . ∆p−1
x u(x)

∣∣
∂Ω

= 0,
∂

∂nx
∆p−1
x u(x)

∣∣∣∣
∂Ω

= 0.

b) For any f ∈ L2(Ω), the function u(x), given by formula (3.7) with m = 2p+ 1, is a solution to
the boundary value problem:

∆m
x u(x) = f(x), x ∈ Ω,

u(x) |∂Ω = 0,
∂

∂nx
u(x)

∣∣∣∣
∂Ω

= 0, ∆xu(x) |∂Ω = 0,
∂

∂nx
∆xu(x)

∣∣∣∣
∂Ω

= 0,

. . . . . . . . .
∂

∂nx
∆p−1
x u(x)

∣∣∣∣
∂Ω

= 0, ∆p
xu(x) |∂Ω = 0.

Based on the representation of the solution (3.7) of the Dirichlet problem, we present other well-
posed boundary value problems for an inhomogeneous polyharmonic equation. To do this, we apply
Otelbaev’s theorem [5] to describe correct restrictions of the maximal operator L̂.

Now we can describe the domain of the maximal operator L̂ in terms of the Green’s function G2m,n.

Lemma 3.1. [5] The domain of the maximal operator L̂ has the representation

D(L̂) = {w : w(x) =

∫
Ω
G2m,n(x, y)f(y)dy+

+

m−1∑
j=0

∫
∂Ω

[
∂∆j

yG2m,n(x, y)

∂ny
·∆m−1−j

y h(y)−∆j
yG2m,n(x, y) · ∂∆m−1−j

y h(y)

∂ny

]
dSy,

∀f ∈ L2(Ω), ∀h ∈W 2m
2 (Ω).

In particular, if

∆m−1−j
y h(y)|y∈∂Ω = 0,

∂

∂ny
∆m−1−j
y h(y)|y∈∂Ω = 0, j = 0, ...,m− 1,

then we obtain that the D(L0) is domain of the operator L0.
Now the next question arises: how to describe the domains of other possible correct restrictions of

the maximal operator L̂?
Let K be an operator putting each function f(x) ∈ L2(Ω) into correspondence to a unique function

h(x) ∈W 2m
2 (Ω), such that ‖Kf‖L2(Ω) ≤ C‖f‖L2(Ω).

Using the chosen operator K, we construct the set

DK = {w(x) ∈ D(L̂) : h = Kf}.

On the set DK we define the operator
L̂
∣∣∣
DK

= LK .

From Otelbaev’s theorem [5] it follows that LK is a correct restriction of the maximal operator L̂.
In conclusion, we give another description of the operator LK in terms of boundary conditions.

Theorem 3.3. [5] Let K be an arbitrary continuous operator acting from L2(Ω) to D(L̂). Then the
inhomogeneous operator equation LKw = f is equivalent to the following boundary value problem

a) for m = 2p

∆m
x w(x) = f(x), x ∈ Ω,

w |∂Ω = K(∆m
x w )|∂Ω,

∂

∂nx
w

∣∣∣∣
∂Ω

=
∂

∂nx
K(∆m

x w )

∣∣∣∣
∂Ω

, . . . . . . . . .
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∆p−1
x w

∣∣
∂Ω

= ∆p−1
x K(∆m

x w )
∣∣
∂Ω
,

∂

∂nx
∆p−1
x w

∣∣∣∣
∂Ω

=
∂

∂nx
∆p−1
x K(∆m

x w )

∣∣∣∣
∂Ω

;

b) for m = 2p+ 1

w |∂Ω = K(∆m
x w )|∂Ω,

∂

∂nx
w

∣∣∣∣
∂Ω

=
∂

∂nx
K(∆m

x w )

∣∣∣∣
∂Ω

, . . . . . . . . .

∂

∂nx
∆p−1
x w

∣∣∣∣
∂Ω

=
∂

∂nx
∆p−1
x (K∆m

x w )

∣∣∣∣
∂Ω

, ∆p
xw |∂Ω = ∆p

x(K∆m
x w )|∂Ω.

In [11,12] the Fredholm property and index of the generalized Neumann problem containing powers
of normal derivatives in the boundary conditions are investigated. The problems of solvability of
various boundary value problems for differential-operator equations are studied in the works [13–19].
Applications of the Green function to problems in mechanics and physics can be found, in [20–24].

4 Example. General presentation of solutions of boundary value problems for biharmonic equations

As an example, we consider the following biharmonic equation

∆2u = f, z = x+ iy ∈ Ω, (4.1)

where f is a given function. This equation is often encountered in the study of two-dimensional
problems of linear elasticity theory. Let us construct regular solutions of equation (4.1) in the two-
dimensional region Ω of the plane of the complex variable z = x = iy. To find a particular solution
u1(x, y) of equation (4.1), we adopt the notation v = ∆u1. The function u1 will be a solution of
equation (4.1) if v(x, y) is a solution of the Poisson equation ∆v = f .

The solution to this equation is given by the formula [25]

v ≡ 4
∂2u1

∂z∂z
=

1

2π

∫
Ω
f(t) log |t− z|dξdη, t = ξ + iη.

Using the following obvious equality

∂2

∂z∂z
[(t− z)(t− z) log(t− z)(t− z)]− 2 = 2 log |t− z|,

equation (4.1) can be written as

∂2

∂z∂z
[u1 −

1

8π

∫
Ω
f(t)|t− z|2 log |t− z|dξdη] = − 1

8π

∫
Ω
f(t)dξdη ≡ C = const.

Therefore,

u1 =
1

8π

∫
Ω
f(t)|t− z|2 log |t− z|dξdη + Φ(z, z),

where
Φ(z, z) = Czz + ϕ1(z) + ϕ2(z),

and ϕ1 and ϕ2 are arbitrary analytic functions of the variables z and z, respectively. Since Φ is a
biharmonic function, the function

u1 =
1

8π

∫
Ω
f(t)|t− z|2 log |t− z|dξdη (4.2)
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can be taken as one of the particular solutions of equation (4.1).
If u(x, y) is the desired solution of equation (4.1), then the function w = u−u1 will be biharmonic,

i.e.
∆2w = 0. (4.3)

According to formula (85) from [25] the solution of equation (4.3) can be written in the form

w = zϕ(z) + zϕ(z) + ψ(z) + ψ(z). (4.4)

In the representation (4.4) of real biharmonic functions, the imaginary parts of the functions zϕ(z)
ψ(z) are not present. Therefore, without loss of generality, we can assume that the analytic functions
ϕ(z) and ψ(z) included in formula (4.4) at some point z1 of the domain Ω satisfy the conditions

ϕ(z1) = 0, Imϕ′(z1) = 0 (4.5)

and
Imψ′(z1) = 0. (4.6)

Thus we have proved the following theorem.
Theorem 4.1. a) To each pair of analytic functions ϕ(z), ψ(z) formula (4.4) associates a well-defined

biharmonic function w(x, y). The converse statement is also true.
b) For each biharmonic function w(x, y) there is a well-defined pair of analytic functions ϕ(z), ψ(z)

satisfying conditions (4.5), (4.6) and w(x, y) is represented by formula (4.4).
From this theorem we conclude that formula (4.4) gives a general representation of real biharmonic

functions. Further, in view of the fact that

u = w + u1,

on the basis of formulas (4.2) and (4.4) we arrive at the general complex representation of real solutions
of equations (4.1):

u(x, y) =
1

8π

∫
Ω
f(t)|t− z|2 log |t− z|dξdη + zϕ(z) + zϕ(z) + ψ(z) + ψ(z), (4.7)

where ϕ(z) and ψ(z) are arbitrary analytic functions of a complex variable z satisfying conditions (4.5),
(4.6). Formula (4.7) allows any linear problem for equation (4.1) to be reduced to the corresponding
problem for biharmonic functions.

Conclusion

The studies carried out in this article are of significant importance in the theory of boundary
value problems of linear and nonlinear partial differential equations, spectral theory, and the theory
of numerical methods for approximate solutions of individual classes of boundary value problems for
differential equations.

Thus, the object of our research was polyharmonic equations. Vekua’s method is applicable for
fixed boundary conditions on the surface of the domain, and the equation itself can change, i.e. minor
terms can be added to the main equation. Otelbaev’s method is applied for fixed equations, and the
boundary conditions can change.

The problem is to determine the conditions under which both methods are applicable. This article
is devoted to this problem and the applicability of the Vekua and Otelbaev methods. As an example,
a biharmonic equation is given, which has an applied character in the theory of elasticity. A general
complex representation of real solutions of the biharmonic equation is given in the form of formula (4.7).
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