MATHEMATICS

https://doi.org/10.31489/2025M1/4-11

Research article

On Graded J_{gr} -Prime Submodules

M. Alnimer, K. Al-Zoubi*, M. Al-Dolat

Jordan University of Science and Technology, Irbid, Jordan (E-mail: mfalnimer21@sci.just.edu.jo, kfzoubi@just.edu.jo, mmaldolat@just.edu.jo)

In this paper, several results concerning graded \mathfrak{J}_{gr} -prime submodules over a commutative graded ring were obtained. For example, we give characterization of graded \mathfrak{J}_{gr} -prime submodules and results related to residual of graded \mathfrak{J}_{gr} -prime submodules. Also, the relations between graded \mathfrak{J}_{gr} -prime submodules and graded prime submodules of \mathfrak{D} were studied. In addition, we present the necessary and sufficient condition for graded submodules to be graded \mathfrak{J}_{gr} -prime submodules.

Keywords: graded \mathfrak{J}_{qr} -prime submodule, graded prime submodule, graded submodule.

2020 Mathematics Subject Classification: 13A02, 16W50.

Introduction

The study of graded rings and modules has attracted the attentions of many researchers for a long time due to their important applications in many fields in such as geometry and physics. For example, graded Lie algebra plays a significant role in differential geometry such as Frolicher-Nijenhuis as well as Nijenhuis-Richardson bracket [1]. In addition, they solve many physical problems related to supermanifolds, supersymmetries and quantizations of systems with symmetry [2,3].

In recent years, graded prime submodules have attracted the attention of many mathematicians, for example [4–8]. In addition, many other generalizations of graded prime have been investigated. For example, in [9], the authors introduce the concept of graded weakly prime submodules of graded modules as a generalization of graded prime submodule. In [10] Al-Zoubi and Alghueiri mentioned the concept of graded \mathfrak{J}_{gr} -prime submodules. Here, we discuss the concept of graded \mathfrak{J}_{gr} -prime submodule and we study several results concerning it. For example, we characterize graded \mathfrak{J}_{gr} -prime submodules. Also, the relations between graded \mathfrak{J}_{gr} -prime submodules and graded prime submodules were studied. In addition, the necessary and sufficient condition for graded submodules to be graded \mathfrak{J}_{gr} -prime submodules were investigated.

^{*}Corresponding author. *E-mail: kfzoubi@just.edu.jo*

Received: 26 May 2024; Accepted: 21 November 2024.

 $[\]odot$ 2025 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1 Preliminaries

Throughout this article, we assume that \mathfrak{A} is a commutative \mathfrak{G} -graded ring with identity and \mathfrak{D} is a unitary graded \mathcal{A} -module. A left \mathfrak{A} -module \mathfrak{D} is called a graded \mathfrak{A} -module if there exists a family of additive subgroups $\{\mathfrak{D}_{\alpha}\}_{\alpha\in\mathfrak{G}}$ of \mathfrak{D} such that $\mathfrak{D} = \bigoplus_{\alpha\in\mathfrak{G}} \mathfrak{D}_{\alpha}$ and $\mathfrak{A}_{\alpha} \mathfrak{D}_{\beta} \subseteq \mathfrak{D}_{\alpha\beta}$ for all $\alpha, \beta \in \mathfrak{G}$. Also if an element of \mathfrak{D} belongs to $\bigcup_{\alpha\in\mathfrak{G}} \mathfrak{D}_{\alpha} = h(\mathfrak{D})$, then it is called a homogeneous. Let $\mathfrak{A} = \bigoplus_{\alpha\in\mathfrak{G}} \mathfrak{A}_{\alpha}$ be a \mathfrak{G} -graded ring. A submodule \mathcal{V} of \mathfrak{D} is said to be a graded submodule of \mathfrak{D} if $\mathcal{V} = \bigoplus_{\alpha\in\mathfrak{G}} (\mathcal{V}\cap\mathfrak{D}_{\alpha}) := \bigoplus_{\alpha\in\mathfrak{G}} \mathcal{V}_{\alpha}$. In this case, \mathcal{V}_{α} is called the α -component of \mathcal{V} [11, 12]. Let \mathfrak{A} be a \mathfrak{G} -graded ring and \mathfrak{D} - a graded \mathfrak{A} -module. A graded submodule \mathcal{V} of \mathfrak{D} is said to be a graded maximal (briefly, Gr-maximal) submodule if $\mathcal{V} \neq \mathfrak{D}$ and if there is a graded submodule L of \mathfrak{D} such that $\mathcal{V} \subseteq L \subseteq \mathfrak{D}$, then $\mathcal{V} = L$ or $L = \mathfrak{D}$ [13]. The graded Jacobson radical of a graded module \mathfrak{D} , denoted by $\mathfrak{J}_{gr}(\mathfrak{D})$, is defined to be the intersection of all Gr-maximal submodules of \mathfrak{D} , if \mathfrak{D} has no Gr-maximal submodule then we shall take, by definition, $\mathfrak{J}_{gr}(\mathfrak{D}) = \mathfrak{D}$ [12]. A proper graded submodule \mathcal{V} of \mathfrak{D} is called a graded prime submodule if whenever $rm \in \mathcal{V}$ where $r \in h(\mathfrak{A})$ and $m \in h(\mathfrak{D})$, then $r \in (\mathcal{V} : \mathfrak{A} \mathfrak{D})$ or $m \in \mathcal{V}$ [6]. A proper graded submodule \mathcal{V} of \mathfrak{D} is called a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} if whenever $r_g \in h(\mathfrak{A})$ and $m_{\lambda} \in h(\mathfrak{D})$ with $r_g m_{\lambda} \in \mathcal{V}$, then either $m_{\lambda} \in \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$ or $r_g \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) : \mathfrak{A}$), where $\mathfrak{J}_{gr}(\mathfrak{D})$ is the graded Jacobson radical of \mathfrak{D} [10].

2 Results

Theorem 1. If \mathcal{V} is a graded prime submodule of \mathfrak{D} , then \mathcal{V} is a graded \mathfrak{J}_{qr} -prime submodule of \mathfrak{D} .

Proof. Let $rm \in \mathcal{V}$, where $r \in h(\mathfrak{A})$ and $m \in h(\mathfrak{D})$, since \mathcal{V} is a graded prime submodule of \mathfrak{D} , then $r \in (\mathcal{V} :_{\mathfrak{A}} \mathfrak{D})$ or $m \in \mathcal{V}$. If $r \in (\mathcal{V} :_{\mathfrak{A}} \mathfrak{D})$, then $rM \subseteq \mathcal{V}$, but $\mathcal{V} \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$, thus $rM \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$, it follows that $r \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$. If $m \in \mathcal{V}$, since $\mathcal{V} \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$, then $m \in \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$. Hence \mathcal{V} is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} .

In the following example, it is shown that the converse of Theorem 1 is not necessarily true.

Example 1. Let $\mathfrak{G} = \mathbb{Z}_2$, $\mathfrak{A} = \mathbb{Z}$ be a \mathfrak{G} -graded ring with $\mathfrak{A}_0 = \mathbb{Z}$, $\mathfrak{A}_1 = \{0\}$. Let $\mathfrak{D} = \mathbb{Z}_{12}$ be a graded \mathfrak{A} -module with $\mathfrak{D}_0 = \mathbb{Z}_{12}$ and $\mathfrak{D}_1 = \{\overline{0}\}$. Now, consider $\mathcal{V} = \{\overline{0}, \overline{4}, \overline{8}\} = \langle \overline{4} \rangle$ be a graded submodule of \mathbb{Z}_{12} . Then \mathcal{V} is not graded prime submodule of \mathfrak{D} , since there exist $2 \in h(\mathfrak{A})$ and $\overline{2} \in h(\mathfrak{D})$ such that $2 \cdot \overline{2} = \overline{4} \in \mathcal{V}$, but $\overline{2} \notin \mathcal{V}$ and $2 \notin (\mathcal{V} :_{\mathfrak{A}} \mathfrak{D}) = 4\mathbb{Z}$. However, an easy computation shows that \mathcal{V} is a graded \mathfrak{J}_{qr} -prime submodule of \mathfrak{D} .

Example 2. Let $\mathfrak{G} = \mathbb{Z}_2$, $\mathfrak{A} = \mathbb{Z}$ be a \mathfrak{G} -graded ring with $\mathfrak{A}_0 = \mathbb{Z}$, $\mathfrak{A}_1 = \{0\}$, and $\mathfrak{D} = \mathbb{Z} \times \mathbb{Z}$ be a graded \mathfrak{A} -module with $\mathfrak{D}_0 = \mathbb{Z} \times \mathbb{Z}$, $\mathfrak{D}_1 = \{(0,0)\}$. The graded submodule $\mathcal{V} = 2\mathbb{Z} \times \langle 0 \rangle$ is not graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} . Since $(6,0) = 2(3,0) \in \mathcal{V}$, but $(3,0) \notin \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) = \mathcal{V} + \{(0,0)\} = \mathcal{V}$ and $2 \notin (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D}) = (\mathcal{V} :_{\mathfrak{A}} \mathfrak{D}) = (2\mathbb{Z} \times \langle 0 \rangle :_{\mathfrak{A}} \mathbb{Z} \times \mathbb{Z}) = \langle 0 \rangle$, hence $\mathcal{V} = 2\mathbb{Z} \times \langle 0 \rangle$ is not graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} .

Remark 1. Let \mathfrak{A} be a \mathfrak{G} -graded ring and \mathfrak{D} a graded \mathfrak{A} -module.

1) If $\mathfrak{J}_{gr}(\mathfrak{D}) = 0$, then every graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} is a graded prime submodule of \mathfrak{D} .

2) If $\mathfrak{J}_{gr}(\mathfrak{D})$ is contained in every graded submodule of \mathfrak{D} , then every graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} is a graded prime submodule of \mathfrak{D} .

A graded \mathfrak{A} -module \mathfrak{D} is called a *Gr*-torsion free if whenever $r \in h(\mathfrak{A})$ and $m \in h(\mathfrak{D})$ with rm = 0, then either r = 0 or m = 0 [5].

The following theorem characterizes graded \mathfrak{J}_{qr} -prime submodules.

Theorem 2. Let \mathcal{V} be a proper graded submodule of \mathfrak{D} and $P = (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$. Then the following statements are equivalent:

1) \mathcal{V} is a graded \mathfrak{J}_{qr} -prime submodule.

Mathematics Series. No. 1(117)/2025

2) For every graded submodule \mathcal{K} of \mathfrak{D} and for every graded ideal \mathcal{U} of \mathfrak{A} such that $\mathcal{U}\mathcal{K} \subseteq \mathcal{V}$ implies that either $\mathcal{K} \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$ or $\mathcal{U} \subseteq P = (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$.

- 3) $\mathfrak{D}/(\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}))$ is a *Gr*-torsion free \mathfrak{A}/P -module.
- 4) The graded submodule $(\mathcal{V} + \mathfrak{J}_{qr}(\mathfrak{D}) :_{\mathfrak{D}} \langle r \rangle) = \mathcal{V} + \mathfrak{J}_{qr}(\mathfrak{D})$, for each $r \in h(\mathfrak{A}) P$.
- 5) The graded ideal $(\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \langle x \rangle) = P$, for each $x \in h(\mathfrak{D}) (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}))$.

Proof. (1) \Rightarrow (2) Let \mathcal{K} be a graded submodule of \mathfrak{D} and \mathcal{U} be a graded ideal of \mathfrak{A} such that $\mathcal{U}\mathcal{K} \subseteq \mathcal{V}$. Suppose $\mathcal{K} \not\subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$, then there exists $k \in \mathcal{K} \cap h(\mathfrak{D}) - (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}))$. Let $i \in \mathcal{U} \cap h(\mathfrak{A})$. Since $k \in \mathcal{K}$, then $ik \in \mathcal{U}\mathcal{K} \subseteq \mathcal{V}$, so $ik \in \mathcal{V}$. But \mathcal{V} is a graded \mathfrak{J}_{gr} -prime submodule, then either $i \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$ or $k \in \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$. But $k \notin \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$, thus $i \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$. Hence $\mathcal{U} \subseteq (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D}) = P$.

 $(2) \Rightarrow (3) \text{ Assume that } (r+P)(m+\mathcal{V}+\mathfrak{J}_{gr}(\mathfrak{D})) = \mathcal{V}+\mathfrak{J}_{gr}(\mathfrak{D}) \text{ and } r+P \neq P, \text{ where } r+P \in h(\mathfrak{A}/P) \text{ and } m+\mathcal{V}+\mathfrak{J}_{gr}(\mathfrak{D}) \in h(\mathfrak{D}/(\mathcal{V}+\mathfrak{J}_{gr}(\mathfrak{D}))). \text{ Then } rm+\mathcal{V}+\mathfrak{J}_{gr}(\mathfrak{D}) = \mathcal{V}+\mathfrak{J}_{gr}(\mathfrak{D}), \text{ thus } rm \in \mathcal{V}+\mathfrak{J}_{gr}(\mathfrak{D}) \text{ it follows that } \langle r \rangle \langle m \rangle \subseteq \mathcal{V}+\mathfrak{J}_{gr}(\mathfrak{D}), \text{ by hypothesis, we get either } \langle m \rangle \subseteq \mathcal{V}+\mathfrak{J}_{gr}(\mathfrak{D})+\mathfrak{J}_{gr}(\mathfrak{D}) + \mathfrak{J}_{gr}(\mathfrak{D}) \text{ or } \langle r \rangle \subseteq (\mathcal{V}+\mathfrak{J}_{gr}(\mathfrak{D})+\mathfrak{J}_{gr}(\mathfrak{D}):\mathfrak{A}(\mathfrak{D})). \text{ That is either } \langle m \rangle \subseteq \mathcal{V}+\mathfrak{J}_{gr}(\mathfrak{D}) \text{ or } \langle r \rangle \subseteq (\mathcal{V}+\mathfrak{J}_{gr}(\mathfrak{D}):\mathfrak{A}(\mathfrak{D}):\mathfrak{A}(\mathfrak{D})) = P, \text{ then } r \in P, \text{ thus } r+P = P \text{ as a contradiction. So we have } \langle m \rangle \subseteq \mathcal{V}+\mathfrak{J}_{gr}(\mathfrak{D}) \text{ implies } m \in \mathcal{V}+\mathfrak{J}_{gr}(\mathfrak{D}). \text{ Hence } m+\mathcal{V}+\mathfrak{J}_{gr}(\mathfrak{D}) = \mathcal{V}+\mathfrak{J}_{gr}(\mathfrak{D}). \text{ Therefore, } \mathfrak{D}/(\mathcal{V}+\mathfrak{J}_{gr}(\mathfrak{D})) \text{ is a } Gr\text{-torsion free } \mathfrak{A}/P\text{-module.}$

 $(3) \Rightarrow (4) \text{ Let } r \in h(\mathfrak{A}) - P \text{ and let } m \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{D}} \langle r \rangle) \cap h(\mathfrak{D}). \text{ Then } \langle r \rangle m \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) \text{ it follows}$ that $rm \in \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}).$ Thus $(r+P)(m+\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})) = \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}), \text{ since } r \notin P \text{ and } \mathfrak{D}/(\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}))$ is a *Gr*-torsion free \mathfrak{A}/P -module we get $m + \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) = \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}), \text{ thus } m \in \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}).$ Hence $(\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{D}} \langle r \rangle) \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) \text{ for each } r \in h(\mathfrak{A}) - P.$ Now, let $m \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})) \cap h(\mathfrak{D}) \text{ and}$ $r \in h(\mathfrak{A}) - P, \text{ then } rm \in \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) \text{ it follows that } \langle r \rangle m \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}), \text{ thus } m \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{D}} \langle r \rangle).$ Hence $\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) \subseteq (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{D}} \langle r \rangle) \text{ for each } r \in h(\mathfrak{A}) - P.$

 $(4) \Rightarrow (5) \text{ Let } x \in h(\mathfrak{D}) - (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})). \text{ Let } r \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \langle x \rangle) \cap h(\mathfrak{A}). \text{ Suppose the contrary, } r \notin P. \text{ Since } r \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \langle x \rangle) \cap h(\mathfrak{A}), \text{ then } r \langle x \rangle \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) \text{ it follows that } rx \in \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}), \text{ thus } \langle r \rangle x \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}). \text{ That is } x \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{D}} \langle r \rangle) \text{ but by hypothesis } (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{D}} \langle r \rangle) = \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}), \text{ for each } r \in h(\mathfrak{A}) - P, \text{ so we get } x \in \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) \text{ a contradiction. Hence, } r \in P. \text{ Therefore, } (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \langle x \rangle) \subseteq P. \text{ Now, let } r \in P \cap h(\mathfrak{A}) = (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D}) \cap h(\mathfrak{A}). \text{ Then } rM \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}). \text{ In particular, } rx \in \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}), \text{ thus } r \langle x \rangle \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) \text{ implies } r \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \langle x \rangle). \text{ Hence } P \subseteq (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \langle x \rangle). \text{ Therefore } (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \langle x \rangle) = P.$

 $(5) \Rightarrow (1)$ Let $rm \in \mathcal{V}$, where $r \in h(\mathfrak{A})$ and $m \in h(\mathfrak{D})$. Suppose $m \notin \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$, we need to prove that $r \in P$. Since $rm \in \mathcal{V} \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$, then $r\langle m \rangle \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$ it follows that $r \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \langle m \rangle)$, apply hypothesis, we have $(\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \langle m \rangle) = (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D}) = P$, hence $r \in P$. Therefore, \mathcal{V} is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} .

Theorem 3. If \mathcal{V} is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} , then $(\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$ is a graded \mathfrak{J}_{gr} -prime ideal of \mathfrak{A} .

Proof. We show that P is a graded prime ideal of \mathfrak{A} , where $P = (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$. Let $ab \in P$, where $a, b \in h(\mathfrak{A})$. Suppose $a \notin P$, then there exists $x \in h(\mathfrak{D})$ such that $ax \notin \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$. Since $ab \in P$, then $abM \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$. In particular, $b(ax) \in \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$. Thus $b(ax) + \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) = \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$, it follows that $(b + P)(ax + \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})) = \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$. Since \mathcal{V} is a graded \mathfrak{J}_{gr} -prime submodule, by Theorem 2, we get $\mathfrak{D}/(\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}))$ is a Gr-torsion free \mathfrak{A}/P -module. But $ax \notin \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$, then b + P = P, so we have $b \in P$. Therefore, $P = (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$ is a graded prime ideal of \mathfrak{A} , then Pis a graded \mathfrak{J}_{gr} -prime ideal of \mathfrak{A} , by Theorem 1.

A graded ring \mathfrak{A} is called a graded integral domain if whenever ab = 0, where $a, b \in h(\mathfrak{A})$, then either a = 0 or b = 0 [10].

In the following example, it is shown that the converse of Theorem 3 is not necessarily true.

Example 3. Let $\mathfrak{G} = \mathbb{Z}_2$, $\mathfrak{A} = \mathbb{Z}$ be a \mathfrak{G} -graded ring with $\mathfrak{A}_0 = \mathbb{Z}$, $\mathfrak{A}_1 = \{0\}$, and $\mathfrak{D} = \mathbb{Z} \times \mathbb{Z}$ be a graded \mathfrak{A} -module with $\mathfrak{D}_0 = \mathbb{Z} \times \mathbb{Z}$, $\mathfrak{D}_1 = \{(0,0)\}$. The graded submodule $\mathcal{V} = 2\mathbb{Z} \times \langle 0 \rangle$ is not graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} , by Example 2. However, $P = (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) : \mathfrak{A} \mathfrak{D}) = (2\mathbb{Z} \times \langle 0 \rangle : \mathfrak{A} \mathbb{Z} \times \mathbb{Z}) = \langle 0 \rangle$ is a graded prime ideal of \mathbb{Z} . Since if $ab \in P = \langle 0 \rangle$, where $a, b \in h(\mathbb{Z})$, then ab = 0 implies either a = 0 or b = 0 as \mathbb{Z} is a graded integral domain. Thus $a \in P$ or $b \in P$, by Theorem 1, we have P is a graded \mathfrak{J}_{qr} -prime ideal of \mathbb{Z} .

The following example shows that the residual of graded \mathfrak{J}_{gr} -prime submodule is not necessarily a graded \mathfrak{J}_{gr} -prime ideal of \mathfrak{A} .

Example 4. Let $\mathfrak{G} = \mathbb{Z}_2$, $\mathfrak{A} = \mathbb{Z}$ be a \mathfrak{G} -graded ring with $\mathfrak{A}_0 = \mathbb{Z}$ and $\mathfrak{A}_1 = \{0\}$. Let $\mathfrak{D} = \mathbb{Z}_{12}$ be a graded \mathfrak{A} -module with $\mathfrak{D}_0 = \mathbb{Z}_{12}$ and $\mathfrak{D}_1 = \{\overline{0}\}$. Consider $\mathcal{V} = \{\overline{0}, \overline{4}, \overline{8}\} = \langle \overline{4} \rangle$ is a graded \mathfrak{J}_{gr} -prime submodule of \mathbb{Z} -module \mathbb{Z}_{12} , but $(\mathcal{V} :_{\mathbb{Z}} \mathbb{Z}_{12})$ is not graded \mathfrak{J}_{gr} -prime ideal of \mathbb{Z} , since there exists $2 \in h(\mathbb{Z})$ such that $2 \cdot 2 = 4 \in (\mathcal{V} :_{\mathbb{Z}} \mathbb{Z}_{12})$, but $2 \notin (\mathcal{V} :_{\mathbb{Z}} \mathbb{Z}_{12}) + \mathfrak{J}_{gr}(\mathbb{Z}) = (\mathcal{V} :_{\mathbb{Z}} \mathbb{Z}_{12}) + \{0\} = (\mathcal{V} :_{\mathbb{Z}} \mathbb{Z}_{12}) = 4\mathbb{Z}$ and $2 \notin ((\mathcal{V} :_{\mathbb{Z}} \mathbb{Z}_{12}) + \mathfrak{J}_{gr}(\mathbb{Z}) :_{\mathbb{Z}} \mathbb{Z}) = ((\mathcal{V} :_{\mathbb{Z}} \mathbb{Z}_{12}) :_{\mathbb{Z}} \mathbb{Z}).$

Theorem 4. If \mathcal{V} is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} with $\mathfrak{J}_{gr}(\mathfrak{D}) \subseteq \mathcal{V}$, then $(\mathcal{V} :_{\mathfrak{A}} \mathfrak{D})$ is a graded \mathfrak{J}_{gr} -prime ideal of \mathfrak{A} .

Proof. Since \mathcal{V} is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} , then $(\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$ is a graded \mathfrak{J}_{gr} -prime ideal of \mathfrak{A} by Theorem 3. But $\mathfrak{J}_{gr}(\mathfrak{D}) \subseteq \mathcal{V}$, thus $(\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D}) = (\mathcal{V} :_{\mathfrak{A}} \mathfrak{D})$. Therefore, $(\mathcal{V} :_{\mathfrak{A}} \mathfrak{D})$ is a graded \mathfrak{J}_{gr} -prime ideal of \mathfrak{A} .

Theorem 5. Let \mathfrak{A} be a \mathfrak{G} -graded ring, \mathfrak{D} – a graded \mathfrak{A} -module and \mathcal{V} – a proper graded submodule of \mathfrak{D} . Then the following statements are equivalent:

1) \mathcal{V} is a graded \mathfrak{J}_{qr} -prime submodule of \mathfrak{D} .

2) $(\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D}) = (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \langle c \rangle)$ for each $c \in h(\mathfrak{D}) - (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}))$.

3) $(\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D}) = (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathcal{K})$ for each graded submodule \mathcal{K} of \mathfrak{D} such that $\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) \subsetneq \mathcal{K}.$

Proof. $(1) \Rightarrow (2)$ By Theorem 2.

(2) \Rightarrow (3) Let \mathcal{K} be a graded submodule of \mathfrak{D} such that $\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) \subsetneq \mathcal{K}$. It is clear that $(\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D}) \subseteq (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathcal{K})$ since if $r \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D}) \cap h(\mathfrak{A})$, then $rM \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$, but $\mathcal{K} \subseteq \mathfrak{D}$ implies $rK \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$, thus $r \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathcal{K})$, hence $(\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D}) \subseteq (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathcal{K})$. Now, let $s \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathcal{K}) \cap h(\mathfrak{A})$, then $sK \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$, but $\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) \subseteq \mathcal{K}$ so there exists $x \in \mathcal{K} \cap h(\mathfrak{D})$ and $x \notin \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$. In particular $sx \in \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$, it follows that $s\langle x\rangle \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$ implies $s \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \langle x\rangle)$ but by hypothesis we have $(\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \langle x\rangle) = (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$, so $s \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$, hence $(\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathcal{K}) \subseteq (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$. Therefore, $(\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D}) = (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathcal{K})$ for each $\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) \subseteq \mathcal{K}$.

 $(3) \Rightarrow (1) \text{ Let } rm \in \mathcal{V} \text{ and } m \notin \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}), \text{ where } r \in h(\mathfrak{A}) \text{ and } m \in h(\mathfrak{D}). \text{ Take } \mathcal{K} = \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) + \langle m \rangle, \text{ where } \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) \subsetneq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) + \langle m \rangle \text{ (since } m \in \mathcal{K} - (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}))), \text{ it follows that } rK = r(\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})) + r\langle m \rangle \subseteq (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})) + \mathcal{V} = \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}), \text{ so } r \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathcal{K}). \text{ But by hypothesis, we have } (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathcal{K}) = (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D}), \text{ thus } r \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D}). \text{ Therefore, } \mathcal{V} \text{ is a graded } \mathfrak{J}_{gr}\text{-prime submodule of } \mathfrak{D}.$

A proper graded submodule \mathcal{V} is called a graded small (*Gr*-small) of \mathfrak{D} if $\mathfrak{D} = \mathcal{V} + L$ for some graded submodule L of \mathfrak{D} implies that $L = \mathfrak{D}$. A graded \mathfrak{A} -module \mathfrak{D} is said to be a graded hollow (*Gr*-hollow) module if every proper graded submodule \mathcal{V} of \mathfrak{D} is a *Gr*-small [13].

Theorem 6. Let \mathfrak{A} be a \mathfrak{G} -graded ring, \mathfrak{D} a Gr-hollow \mathfrak{A} -module and $\mathfrak{J}_{gr}(\mathfrak{D})$ a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} , then every proper graded submodule of \mathfrak{D} is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} .

Proof. Let \mathcal{V} be a proper graded submodule of \mathfrak{D} and let $rm \in \mathcal{V}$ where $r \in h(\mathfrak{A})$ and $m \in h(\mathfrak{D})$. Since \mathfrak{D} is a *Gr*-hollow then \mathcal{V} is a *Gr*-small, so $rm \in \mathcal{V} \subseteq \sum \{A : A \text{ is a } Gr\text{-small}\} = \mathfrak{J}_{gr}(\mathfrak{D})$ by [14; Theorem 2.10]. But $\mathfrak{J}_{gr}(\mathfrak{D})$ is a graded $\mathfrak{J}_{gr}\text{-prime submodule of } \mathfrak{D}$. Thus either $m \in \mathfrak{J}_{gr}(\mathfrak{D}) + \mathfrak{J}_{gr}(\mathfrak{D}) = \mathfrak{J}_{gr}(\mathfrak{D}) \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$ or $rM \subseteq \mathfrak{J}_{gr}(\mathfrak{D}) + \mathfrak{J}_{gr}(\mathfrak{D}) \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$. So either $m \in \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$ or $r \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) : \mathfrak{A} \mathfrak{D})$. Therefore, \mathcal{V} is a graded $\mathfrak{J}_{gr}\text{-prime submodule of } \mathfrak{D}$.

A nonempty subset $S \subseteq h(\mathfrak{A})$ of a \mathfrak{G} -graded ring \mathfrak{A} is called multiplicatively closed subset (briefly, m.c.s.) of \mathfrak{A} if $0 \notin S$, $1 \in S$ and $x \cdot y \in S$ for all $x, y \in S$. Let $S \subseteq h(\mathfrak{A})$ be a multiplicatively closed subset of \mathfrak{A} and \mathcal{V} be a graded submodule of \mathfrak{D} then $\mathcal{V}(S) = \{x \in \mathfrak{D} : \text{there exists } t \in S \text{ such that} tx \in \mathcal{V}\}$ be a graded submodule of \mathfrak{D} is said to be the component of \mathcal{V} determined by S, or simply the S-component of \mathcal{V} . We conclude from definition $\mathcal{V} \subseteq \mathcal{V}(S)$.

Lemma 1. Let P be a proper graded ideal of \mathfrak{A} . Then P is a graded prime ideal of a graded ring \mathfrak{A} if and only if $h(\mathfrak{A}) - P$ is a m.c.s. of \mathfrak{A} .

Proof. Let P is a proper graded submodule of \mathfrak{D} , then $0 \in P$, $1 \notin P$ (if $1 \in P$, then $P = \mathfrak{D}$, thus P is not proper a contradiction) and since P is a graded prime ideal of \mathfrak{A} , we have $0 \notin h(\mathfrak{A}) - P$, $1 \in h(\mathfrak{A}) - P$ and $ab \in h(\mathfrak{A}) - P$ for each $a, b \in h(\mathfrak{A}) - P$. Therefore, $h(\mathfrak{A}) - P$ is a m.c.s. of \mathfrak{A} . Conversely, suppose the contrary, P is not graded prime ideal of \mathfrak{A} , then there exist $x, y \in h(\mathfrak{A}) - P$ with $xy \in P$. Since $h(\mathfrak{A}) - P$ is m.c.s. of \mathfrak{A} , then $xy \in h(\mathfrak{A}) - P$ which is a contradiction.

Theorem 7. Let \mathfrak{A} be a \mathfrak{G} -graded ring, \mathfrak{D} – a graded \mathfrak{A} -module and \mathcal{V} – a graded submodule of \mathfrak{D} . Then \mathcal{V} is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} if and only if the graded ideal $P = (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$ is a graded prime of \mathfrak{A} and $\mathcal{V}(S) \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$ for each $S \subseteq h(\mathfrak{A})$ a *m.c.s.* of \mathfrak{A} such that $S \cap P = \phi$.

Proof. Let \mathcal{V} be a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} and $S \subseteq h(\mathfrak{A})$ be m.c.s. of \mathfrak{A} with $S \cap P = \phi$. Let $ab \in P$, where $a, b \in h(\mathfrak{A})$. Suppose $a \notin P$, then there exists $x \in h(\mathfrak{D})$ such that $ax \notin \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$. Since $ab \in P$, then $abM \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$. In particular, $b(ax) \in \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$, thus $b(ax) + +\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) = \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$, it follows that $(b+P)(ax+\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})) = \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$. Since \mathcal{V} is a graded \mathfrak{J}_{gr} -prime submodule, by Theorem 2, we get $\mathfrak{D}/(\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})) = \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$ is a Gr-torsion free \mathfrak{A}/P -module. But $ax \notin \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$, then b + P = P, so we have $b \in P$. Therefore, $P = (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$ is a graded prime ideal of \mathfrak{A} . Now, let $a \in \mathcal{V}(S) \cap h(\mathfrak{D})$, then there exists $s \in S$ such that $sa \in \mathcal{V}$. Since \mathcal{V} is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} , $S \cap (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D}) = \phi$ and $s \notin (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$, we have $a \in \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$. Hence $\mathcal{V}(S) \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$. Conversely, suppose not, let $rm \in \mathcal{V}$, where $r \in h(\mathfrak{A})$ and $m \in h(\mathfrak{D})$, but $r \notin (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$ and $m \notin \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$. Assume that P is a graded prime ideal of \mathfrak{A} , by Lemma 1, we have $h(\mathfrak{A}) - P$ is a m.c.s. of \mathfrak{A} . Since $(h(\mathfrak{A}) - P) \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$ it follows that $m \notin \mathcal{V}(h(\mathfrak{A}) - P) \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$. But $m \notin \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$ and $\mathcal{V}(h(\mathfrak{A}) - P) \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$ hence $\mathfrak{K} \in h(\mathfrak{A}) - P$ we have $sm \notin \mathcal{V}$, but $r \in h(\mathfrak{A}) - P$, then $rm \notin \mathcal{V}$ which is a contradiction. Therefore, \mathcal{V} is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} .

The following example shows that the intersection of two graded \mathfrak{J}_{gr} -prime submodules needs, not to be a graded \mathfrak{J}_{gr} -prime submodule.

Example 5. Let $\mathfrak{G} = \mathbb{Z}_2$ and $\mathfrak{A} = \mathbb{Z}$ be a \mathfrak{G} -graded ring with $\mathfrak{A}_0 = \mathbb{Z}$ and $\mathfrak{A}_1 = \{0\}$. Let $\mathfrak{D} = \mathbb{Z}_6$ be a graded \mathfrak{A} -module with $\mathfrak{D}_0 = \mathbb{Z}_6$ and $\mathfrak{D}_1 = \{\overline{0}\}$. Consider $\mathcal{V} = \langle \overline{2} \rangle = \{\overline{0}, \overline{2}, \overline{4}\}$ and $L = \langle \overline{3} \rangle = \{\overline{0}, \overline{3}\}$ are graded submodules of \mathbb{Z}_6 . Then $\mathcal{V} \cap L = \langle \overline{0} \rangle$ is not a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} , since there exist $3 \in h(\mathbb{Z})$ and $\overline{2} \in h(\mathbb{Z}_6)$ such that $3 \cdot \overline{2} = \overline{0} \in \mathcal{V} \cap L$, but $\overline{2} \notin (\mathcal{V} \cap L) + \mathfrak{J}_{gr}(\mathbb{Z}_6) = \langle \overline{0} \rangle + \langle \overline{0} \rangle = \langle \overline{0} \rangle$ and $3 \notin ((\mathcal{V} \cap L) + \mathfrak{J}_{gr}(\mathbb{Z}_6) :_{\mathbb{Z}} \mathbb{Z}_6) = 6\mathbb{Z}$. However, an easy computation and using the definition of graded \mathfrak{J}_{gr} -prime submodule to show that \mathcal{V} and L are graded \mathfrak{J}_{gr} -prime submodules of \mathfrak{D} .

The next theorem shows that the intersection of two graded \mathfrak{J}_{gr} -prime submodules is a graded \mathfrak{J}_{gr} -prime submodule under conditions.

Theorem 8. Let \mathfrak{A} be a \mathfrak{G} -graded ring, \mathfrak{D} a graded \mathfrak{A} -module and \mathcal{V} , L be two graded submodules of \mathfrak{D} such that $\mathcal{V} \subseteq \mathfrak{J}_{gr}(\mathfrak{D})$ or $L \subseteq \mathfrak{J}_{gr}(\mathfrak{D})$. If \mathcal{V} and L are graded \mathfrak{J}_{gr} -prime submodules of \mathfrak{D} , then $\mathcal{V} \cap L$ is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} .

Proof. Assume that \mathcal{V} and L are graded \mathfrak{J}_{gr} -prime submodules of \mathfrak{D} . Let $rm \in \mathcal{V} \cap L$, where $r \in h(\mathfrak{A})$ and $m \in h(\mathfrak{D})$, then $rm \in \mathcal{V}$ and $rm \in L$. If $\mathcal{V} \subseteq \mathfrak{J}_{gr}(\mathfrak{D})$, since \mathcal{V} is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} , then either $rM \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) = \mathfrak{J}_{gr}(\mathfrak{D}) \subseteq (\mathcal{V} \cap L) + \mathfrak{J}_{gr}(\mathfrak{D})$ or $m \in \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) = \mathfrak{J}_{gr}(\mathfrak{D}) \subseteq (\mathcal{V} \cap L) + \mathfrak{J}_{gr}(\mathfrak{D})$. Thus either $r \in ((\mathcal{V} \cap L) + \mathfrak{J}_{gr}(\mathfrak{D}) : \mathfrak{A} \mathfrak{D})$ or $m \in (\mathcal{V} \cap L) + \mathfrak{J}_{gr}(\mathfrak{D})$. Hence $\mathcal{V} \cap L$ is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} . Similarly, If $L \subseteq \mathfrak{J}_{gr}(\mathfrak{D})$, we get $\mathcal{V} \cap L$ is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} .

Theorem 9. Let \mathfrak{A} be a \mathfrak{G} -graded ring, \mathfrak{D} and \mathfrak{D}' be two graded \mathfrak{A} -modules and $\mathcal{V}, \mathcal{V}'$ be two proper graded submodules of $\mathfrak{D}, \mathfrak{D}'$, respectively. If $\mathcal{V} \times \mathcal{V}'$ is a graded \mathfrak{J}_{gr} -prime submodule of $\mathfrak{D} \times \mathfrak{D}'$, then \mathcal{V} and \mathcal{V}' are graded \mathfrak{J}_{gr} -prime submodules of \mathfrak{D} and \mathfrak{D}' , respectively.

Proof. To prove \mathcal{V} is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} , let $rm \in \mathcal{V}$, where $r \in h(\mathfrak{A})$ and $m \in h(\mathfrak{D})$, then $r(m,0) \in \mathcal{V} \times \mathcal{V}'$ as $r(m,0) = (rm,0) \in \mathcal{V} \times \mathcal{V}'$. Since $\mathcal{V} \times \mathcal{V}'$ is a graded \mathfrak{J}_{gr} -prime submodule of $\mathfrak{D} \times \mathfrak{D}'$, so either $r \in ((\mathcal{V} \times \mathcal{V}') + \mathfrak{J}_{gr}(\mathfrak{D} \times \mathfrak{D}') :_{\mathfrak{A}} \mathfrak{D} \times \mathfrak{D}')$ or $(m,0) \in (\mathcal{V} \times \mathcal{V}') + \mathfrak{J}_{gr}(\mathfrak{D} \times \mathfrak{D}')$. If $r \in ((\mathcal{V} \times \mathcal{V}') + \mathfrak{J}_{gr}(\mathfrak{D} \times \mathfrak{D}') :_{\mathfrak{A}} \mathfrak{D} \times \mathfrak{D}')$, then $r(\mathfrak{D} \times \mathfrak{D}') \subseteq (\mathcal{V} \times \mathcal{V}') + \mathfrak{J}_{gr}(\mathfrak{D} \times \mathfrak{D}') = (\mathcal{V} \times \mathcal{V}') +$ $+ (\mathfrak{J}_{gr}(\mathfrak{D}) \times \mathfrak{J}_{gr}(\mathfrak{D}'))$, it follows that $(rM \times rM') \subseteq (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})) \times (\mathcal{V}' + \mathfrak{J}_{gr}(\mathfrak{D}'))$, so $rM \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$ and $rM' \subseteq \mathcal{V}' + \mathfrak{J}_{gr}(\mathfrak{D}')$. This implies that $r \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$ and $r \in (\mathcal{V}' + \mathfrak{J}_{gr}(\mathfrak{D}') :_{\mathfrak{A}} \mathfrak{D}')$. If $(m,0) \in (\mathcal{V} \times \mathcal{V}') + \mathfrak{J}_{gr}(\mathfrak{D} \times \mathfrak{D}')$, then $(m,0) \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})) \times (\mathcal{V}' + \mathfrak{J}_{gr}(\mathfrak{D}'))$. Thus $m \in \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$ and $0 \in \mathcal{V}' + \mathfrak{J}_{gr}(\mathfrak{D}')$. Hence \mathcal{V} is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} . In a similar manner, we can prove that \mathcal{V}' is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D}' .

Theorem 10. Let \mathfrak{A} be a \mathfrak{G} -graded ring, \mathfrak{D} and \mathfrak{D}' be two graded \mathfrak{A} -modules and $f: \mathfrak{D} \longrightarrow \mathfrak{D}'$ be a graded epimorphism. If \mathcal{V} is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} containing kerf, then $f(\mathcal{V})$ is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D}' .

Proof. Since \mathcal{V} is a proper graded submodule of \mathfrak{D} , by [15; Lemma 4.8], we have $f(\mathcal{V})$ is a proper graded submodule of \mathfrak{D}' . Let $rm' \in f(\mathcal{V})$, where $r \in h(\mathfrak{A})$ and $m' \in h(\mathfrak{D}')$, since f is onto and $m' \in h(\mathfrak{D}')$, then there exists $m \in h(\mathfrak{D})$ such that f(m) = m'. Thus $rm' = rf(m) = f(rm) \in f(\mathcal{V})$, so there exists $n \in \mathcal{V} \cap h(\mathfrak{D})$ such that f(rm) = f(n), thus f(rm-n) = 0, it follows that $rm-n \in kerf \subseteq \mathcal{V}$ so $rm + \mathcal{V} = n + \mathcal{V} = \mathcal{V}$. That is $rm \in \mathcal{V}$, but \mathcal{V} is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} , then either $r \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$ or $m \in \mathcal{V} + \mathfrak{J}_{gr}(\mathcal{V})$. If $r \in (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$, then $rM \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$, thus $f(rM) \subseteq f(\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})) = f(\mathcal{V}) + f(\mathfrak{J}_{gr}(\mathfrak{D}))$, implies that $rf(\mathfrak{D}) = rM' \subseteq f(\mathcal{V}) + f(\mathfrak{J}_{gr}(\mathfrak{D}))$, by [14; Theorem 2.12], we get $f(\mathfrak{J}_{gr}(\mathfrak{D})) \subseteq \mathfrak{J}_{gr}(\mathfrak{D}')$. So $rM' \subseteq f(\mathcal{V}) + \mathfrak{J}_{gr}(\mathfrak{D}')$, then $r \in (f(\mathcal{V}) + \mathfrak{J}_{gr}(\mathfrak{D}))$, then $m' \in f(\mathcal{V}) + \mathfrak{J}_{gr}(\mathfrak{D})$, then $f(m) \in f(\mathcal{V}) + f(\mathfrak{J}_{gr}(\mathfrak{D}))$, but f(m) = m', by [14; Theorem 2.12], we have $m' \in f(\mathcal{V}) + f(\mathfrak{J}_{gr}(\mathfrak{D})) \subseteq f(\mathcal{V}) + \mathfrak{J}_{gr}(\mathfrak{D}')$. Hence $f(\mathcal{V})$ is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D}' .

Theorem 11. Let \mathfrak{A} be a \mathfrak{G} -graded ring, \mathfrak{D} and \mathfrak{D}' be a graded \mathfrak{A} -modules. Let $f: \mathfrak{D} \longrightarrow \mathfrak{D}'$ be a graded epimorphism with kerf is a Gr-small submodule of \mathfrak{D} . If \mathcal{V}' is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D}' , then $f^{-1}(\mathcal{V}')$ is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} .

Proof. Since \mathcal{V}' is a proper graded submodule of \mathfrak{D}' , by [15; Lemma 5.2], we have $f^{-1}(\mathcal{V}')$ is a proper graded submodule of \mathfrak{D} . Let $rm \in f^{-1}(\mathcal{V}')$, where $r \in h(\mathfrak{A})$ and $m \in h(\mathfrak{D})$, then $f(rm) \in \mathcal{V}'$, thus $rf(m) \in \mathcal{V}'$ since \mathcal{V}' is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D}' , then either $r \in (\mathcal{V}' + \mathfrak{J}_{gr}(\mathfrak{D}') :_{\mathfrak{A}} \mathfrak{D}')$ or $f(m) \in \mathcal{V}' + \mathfrak{J}_{gr}(\mathfrak{D}')$. If $r \in (\mathcal{V}' + \mathfrak{J}_{gr}(\mathfrak{D}') :_{\mathfrak{A}} \mathfrak{D}')$, then $rM' \subseteq \mathcal{V}' + \mathfrak{J}_{gr}(\mathfrak{D}')$ since f is a graded epimorphism, then f is onto, so $\mathfrak{D}' = f(\mathfrak{D})$ implies that $rf(\mathfrak{D}) \subseteq \mathcal{V}' + \mathfrak{J}_{gr}(\mathfrak{D}')$ then $f(rM) \subseteq \mathcal{V}' + \mathfrak{J}_{gr}(\mathfrak{D}')$, it follows that $rM \subseteq f^{-1}(\mathcal{V}' + \mathfrak{J}_{gr}(\mathfrak{D}')) = f^{-1}(\mathcal{V}') + f^{-1}(\mathfrak{J}_{gr}(\mathfrak{D}'))$, since f is a graded epimorphism and ker f is a Gr-small of \mathfrak{D} [14; Theorem 2.12], we get $f(\mathfrak{J}_{gr}(\mathfrak{D})) = \mathfrak{J}_{gr}(\mathfrak{D}')$. Thus $\mathfrak{J}_{gr}(\mathfrak{D}) = f^{-1}(\mathfrak{J}_{gr}(\mathfrak{D}'))$, so $rM \subseteq f^{-1}(\mathcal{V}') + \mathfrak{J}_{gr}(\mathfrak{D})$, it follows that $r \in (f^{-1}(\mathcal{V}') + \mathfrak{J}_{gr}(\mathfrak{D}) :_{\mathfrak{A}} \mathfrak{D})$. If

Mathematics Series. No. 1(117)/2025

 $f(m) \in \mathcal{V}' + \mathfrak{J}_{gr}(\mathfrak{D}')$, then $m \in f^{-1}(\mathcal{V}') + f^{-1}(\mathfrak{J}_{gr}(\mathfrak{D}')) = f^{-1}(\mathcal{V}') + \mathfrak{J}_{gr}(\mathfrak{D})$. Hence $f^{-1}(\mathcal{V}')$ is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} .

Corollary 1. Let \mathfrak{A} be a \mathfrak{G} -graded ring, \mathfrak{D} a graded \mathfrak{A} -module and \mathcal{V} , \mathcal{K} proper graded submodules of \mathfrak{D} such that $\mathcal{K} \subseteq \mathcal{V}$ and kerf is Gr-small of \mathfrak{D} . If \mathcal{V}/\mathcal{K} is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D}/\mathcal{K} , then \mathcal{V} is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} .

Proof. Define $f : \mathfrak{D} \longrightarrow \mathfrak{D}/\mathcal{K}$ by $f(x) = x + \mathcal{K}$. Then f is a graded epimorphism, so by Theorem 11, we get $f^{-1}(\mathcal{V}/\mathcal{K}) = \mathcal{V}$ is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} .

Recall that a proper graded submodule \mathcal{V} of \mathfrak{D} is called a graded \mathfrak{J}_{gr} -pure submodule of \mathfrak{D} , if $\mathcal{V} \cap \mathcal{U}\mathfrak{D} = \mathcal{U}\mathcal{V} + (\mathfrak{J}_{qr}(\mathfrak{D}) \cap \mathcal{V} \cap \mathcal{U}\mathfrak{D})$ for each proper graded ideal \mathcal{U} of \mathfrak{A} , see [14; Definition 2.19].

The following example shows that a graded \mathfrak{J}_{gr} -pure submodule of \mathfrak{D} not necessarily a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} .

Example 6. Let $\mathfrak{A} = \mathbb{Z}$ be a \mathfrak{G} -graded ring with $\mathfrak{A}_0 = \{0\}$ and $\mathfrak{A}_1 = \mathbb{Z}$, where $\mathfrak{G} = \mathbb{Z}_2$. Let $\mathfrak{D} = \mathbb{Z}_6$ be a graded \mathfrak{A} -module with $\mathfrak{D}_0 = \{\overline{0}\}$ and $\mathfrak{D}_1 = \mathbb{Z}_6$. $\mathcal{V} = \{\overline{0}\}$ is a graded \mathfrak{J}_{gr} -pure submodule of \mathfrak{D} . However \mathcal{V} is not graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} since there exist $3 \in h(\mathfrak{A})$ and $\overline{2} \in h(\mathfrak{D})$ such that $3 \cdot \overline{2} = \overline{0} \in \mathcal{V}$ but $3 \notin (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) : \mathfrak{A} \mathfrak{D})$ and $\overline{2} \notin \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) = \{\overline{0}\}$.

The next theorem shows that a graded \mathfrak{J}_{gr} -pure submodule of \mathfrak{D} is a graded \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} with under some conditions.

Theorem 12. Let \mathfrak{A} be a \mathfrak{G} -graded ring, \mathfrak{D} a *Gr*-torsion free \mathfrak{A} -module and \mathcal{V} a proper graded submodule of \mathfrak{D} with $\mathfrak{J}_{gr}(\mathfrak{D}) = \{0\}$. If \mathcal{V} is a graded \mathfrak{J}_{gr} -pure submodule of \mathfrak{D} , then \mathcal{V} is a \mathfrak{J}_{gr} -prime submodule of \mathfrak{D} .

Proof. Let $rm \in \mathcal{V}$, where $r \in h(\mathfrak{A})$ and $m \in h(\mathfrak{D})$, assume that $r \notin (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) : \mathfrak{A} \mathfrak{D})$. Thus $rm \in \mathcal{V} \cap \langle r \rangle \mathfrak{D} = \langle r \rangle \mathcal{V} + (\mathfrak{J}_{gr}(\mathfrak{D}) \cap \mathcal{V} \cap \langle r \rangle \mathfrak{D})$ as \mathcal{V} is a graded \mathfrak{J}_{gr} -pure submodule of \mathfrak{D} . But $\mathfrak{J}_{gr}(\mathfrak{D}) = \{0\}$. Thus $rm \in \langle r \rangle \mathcal{V}$, it follows that there exists $n \in \mathcal{V} \cap h(\mathfrak{D})$ and $r' \in h(\mathfrak{A})$ such that rm = rr'n. Thus rm - rr'n = 0 implies r(m - r'n) = 0. Since \mathfrak{D} is a *Gr*-torsion free and $r \notin (\mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D}) : \mathfrak{A} \mathfrak{D})$, then $m = r'n \in \mathcal{V} \subseteq \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$. Hence $m \in \mathcal{V} + \mathfrak{J}_{gr}(\mathfrak{D})$. Therefore, \mathcal{V} is a \mathfrak{J}_{qr} -prime submodule of \mathfrak{D}

Author Contributions

All authors contributed equally to this work.

Conflict of Interest

The authors declare no conflict of interest.

References

- 1 Kolář, I., Slovák, J., & Michor, P.W. (2013). Natural Operations in Differential Geometry. Springer Science and Business Media. https://doi.org/10.1007/978-3-662-02950-3
- 2 Deligne, P. (1999). Quantum Fields and Strings: A course for Mathematicians. AMS IAS.
- 3 Rogers, A. (2007). Supermanifolds: Theory and Applications. World Sci. Publ.
- 4 Atani, S.E., & Farzalipour, F. (2007). On graded secondary modules. *Turk. J. Math.*, 4(31), 371–378.
- 5 Atani, S.E. (2006). On graded prime submodules. Chiang Mai J. Sci., 1(33), 3-7.

- 6 Al-Zoubi, K., & Qarqaz, F. (2018). An Intersection condition for graded prime submodules in Gr-multiplication modules. *Math. Reports*, 20(70), 329–336.
- 7 Al-Zoubi, K. (2015). Some properties of graded 2-prime submodules. Asian-Eur. J. Math., 8(2), 1550016-1–1550016-5. https://doi.org/10.1142/S1793557115500163
- 8 Oral, K.H., Tekir, U., & Agargun, A.G. (2011). On Graded prime and primary submodules. *Turk. J. Math.*, 35(2), 159-167. https://doi.org/10.3906/mat-0904-11
- 9 Atani, S.E. (2006). On graded weakly prime submodules. International Mathematical Forum, 1(2), 61–66.
- 10 Al-Zoubi, K., & Alghueiri, S. (2011). On graded J_gr -2-absorbing and graded weakly J_{gr} -2-absorbing submodules of graded modules over graded commutative rings. Int. J. Math. Comput. Sci., 16(4), 1169–1178.
- 11 Nastasescu, C., & Van Oystaeyen, F. (1982). Graded and filtered rings and modules. Lecture notes in mathematics 758, Berlin-New York: Springer-Verlag.
- 12 Nastasescu, C., & Van Oystaeyen, F. (2004). *Methods of Graded Rings*. LNM 1836. Berlin-Heidelberg: Springer-Verlag.
- 13 Al-Zoubi, K., & Al-Qderat, A. (2017). Some properties of graded comultiplication modules. Open Math., 15, 187–192. https://doi.org/10.1515/math-2017-0016
- 14 Al-Zoubi, K., & Alghueiri, S. (2021). On graded J_{gr}-semiprime submodules. Ital. J. Pure Appl. Math., 46, 361–369.
- 15 Atani, S.E., & Saraei, F.E.K. (2010). Graded modules which satisfy the Gr-radical formula. Thai J. Math., 1(8), 161–170.

Author Information*

Malak Alnimer — Master's Degree, Lecturer, Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan; e-mail: *mfalnimer21@sci.just.edu.jo*; https://orcid.org/0009-0005-5600-8647

Khaldoun Al-Zoubi (corresponding author) — Doctor of mathematical sciences, Professor, Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan; e-mail: kfzoubi@just.edu.jo; https://orcid.org/0000-0001-6082-4480

Mohammed Al-Dolat — Doctor of mathematical sciences, Professor, Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan; e-mail: mmaldolat@just.edu.jo; https://orcid.org/0000-0003-2738-2072

^{*}The author's name is presented in the order: First, Middle and Last Names.