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In this study, motivated by recent results on Ostrowski-type inequalities, we introduce a new identity that
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highlighting the versatility of our method.

Keywords: gnrr- convexity, gg-convexity, power mean inequality, generalized Riemann-Liouville fractional
integrals.

2020 Mathematics Subject Classification: 26A33, 26A51, 26D10, 26D15.

Introduction

The Ostrowski inequality (see [1]), can be stated as follows:
Theorem 1. Let € : 3 — R, be a differentiable mapping with bounded first derivatives, then

k
(o)~ i [ et < Mk —1) [3} N <(;_)>} "

holds, where r, k € J with r < k.

In recent years, such inequalities were studied extensively by many researchers. Regarding some
papers with closed relationship with inequality (1) we refer readers to [2-16], and references cited
therein.

In [17], Liu used the so-called MT-convex function defined by Tung [18,19] and derived the following
fractional Ostrowski type inequalities:

Definition 1. [18,19] Let the function ¢ : 3 C Ry — R, if for all n, u € J and ¢ € [0, 1]

etn + (1= )) < A=e(n) + Yrte(n) (2)

holds, then ¢ is said an MT-convex. If (2) holds in the opposite sense, then ¢ is said MT-concave.

Theorem 2. [17] Let the differentiable function ¢ : [r, k] — R with ¢’ € L' [r, k]. If || is MT-convex
on [r, k], where a > 0, 0 < r < k and for = € [r, k] : |¢/(x)| < M, then we have
e (a) - HEP 1Re(r) + Jges(h)

P(a+3(3) (a—r)H it (k)ot!
<M=ty v :
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Theorem 3. [17] Let the differentiable function € : [r,k] — R with &’ € L' [r,k]. If |¢/|? is MT-
convex on [r, k], where o« > 0, ¢ > 1 with %—1—% =1,0<r < kand for z € [r,k] : |¢/(x)| <M, then
we have

fen) b hm)® () — Tkl [y o) 4 72, e (k)

< (pyhemrtaa
(1+pa)?

2 k—r

Theorem 4. [17] Let the differentiable function ¢ : [r, k] — R with ¢’ € L' [r, k]. If |¢|? is MT-convex
on [r, k], where « >0, ¢ > 1,0 <r < k and for = € [r, k] : |¢'(z)| <M, then we have

fen) thn)® () — Tt [y o(r) 4 72, e (k)

A

m (F(a%)F(é))}f (@=r) 4 (h—z) o+
(Lte)— % \ 2(@+T) f—r :

The concept of convex functions and sets are extended to the new class of g-convex function and
g-convex sets (see [20]). This class is more general and plays an important role in nonlinear programming
problems and optimization theory in which the constraint set the objective function are g-convex.

The objective of this research is to use extended Riemann-Liouville fractional integrals to construct
new Ostrowski inequalities for functions whose absolute value of first derivatives is gas7- and gg-convex.
These results generalize those of [8] and give fresh estimates of this kind of disparity.

1 Preliminaries

The following section is devoted to some definitions and remarks.
Definition 2. [21] Let € : 3 — R, if for all n, p € J and @ € [0, 1]
e(wn + (1 —@)p) <we(n) + (1 —w)e(p)
holds, then ¢ is called a convex function.
Definition 3. [22] Let € : 3 — R, if for all n, p € J and @ € [0, 1]
e(wn+ (1 —@)p) <e(n) +e(p)

holds, then ¢ is an P-convex function.

Definition 4. 23] Let € : 3 — R be a nonnegative function, if for all n, u € J, some fixed s € (0, 1]
and w € [0, 1]
e(@wn+ (1 - w)u) < w’e(n) + (1 - =)%(n)

holds, then € is an s-convex function.

Definition 5. [24] Let € : 3 — R be a nonnegative function, if for all n, p € J and w € (0,1)

e(wn+ (1 —w)p) < w(l —w)e(n) +e(w)]

holds, then ¢ is a tgs-convex function.

Definition 6. [25] Let e : 3 — R, if for all p, p € 3, p, ¢ > —1 and w € (0, 1)
e(wn+ (1 -w)p) < @”(1—w)%(n) + @I(1 — w)’e(u)

holds, then ¢ is an S-convex function.
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Remark 1. For (p,q) € {(0,0),(s,0),(1,1),(1,0)}, Definition 6, recapture the P-convexity,
s-convexity, tgs-convexity and classical convexity, respectively.

Definition 7. [20] We say that a set K, C R" is g-convex, if there exists a function g : R" — R"
and

wy(n) + (1 —@)g(p) € K,
holds V 7, p € R™ : g(n), g(n) € K4 and w € [0, 1].

Definition 8. [20] Let € : R™ — R, if there exists a function g : R” — R™ and for all n, u € R™ : g(n),
g(p) € Ky and w € [0, 1]

e(wg(n) + (1 —@)g(y)) < we(g(n) + (1 — @)e(g(w))

holds, then € is an g-convex on K.

Remark 2. Every convex function € on a convex set K, is a g-convex function, where g is the
identity map. However, the converse is not true.

Ezample 1. Let K, C R? be given as

Ky ={(n,p) € R?: (n,pn) = a1(0, 0) + a2(0, 3) + a3(2, 1)}

3
with a; > 0, 3" a; = 1, and define a mapping g : R? — R? as g(n, u) = (0, u).
i=1
The function € : R? — R defined by
n, i op <1,
nu?, i p>1

e(n, u) = {

is g-convex on K but is not convex.

In [26], Sarikaya defined the so-called gj-convex functions which are a generalization of the afore-
mentioned convex functions.

Definition 9. [26] Let the functions h : (0;1) — (0;1), g : R® - R" and € : 3 C R — [0, 400). If
for all n,u € R : g(n),g9(n) € Ky and w € [0,1]

e(wg(n) + (1 —w)g(p)) < h(w)e(gn) + h(l —w)e(g(p))

holds, then ¢ is a gp-convex function.

Among the subclasses of Definition 9 we mention the classes of gysr- and gg-convex functions as
follows:

Definition 10. Let ¢ : K, € Ry — R be a nonnegative and g : R — R, if for all n,u € R :
9(n),9(n) € Ky, and @ < (0,1)

e(@g(n) + (1 = @)g(n)) < 55Z=<(9(n) + Y2 (g(w))

[\

holds, then ¢ is a gp;r-convex function.

Definition 11. Let ¢ : K, € Ry — R be a nonnegative and g : R — R, if for all n,u € R :
9(n),9(n) € Ky, p, ¢ > —1 and @ € (0,1)

e(wg(n) + (1 —w)g(p) < @(1 —w)?e(g(n)) + @(1 — @)’e(g(n))

holds, then ¢ is a gg-convex function.
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Definition 12. [27-29] The Riemann-Liouville integrals Ie and If ¢ of order o > 0 with p > 0
where ¢ € L' [n, u] are defined by

. / (¢ — @) e(w)dw, x>, (3)
"
and
I
1% e(0) = b / (@ — o) le(w)dw, = < p, (4)
respectively, where I'(« f e~ Pw* ldw, a > 0is the gamma function. Here Ig+5(x) = 12,5(1') = e(x).

For a =1, (3) and (4 ) recapture the classical integral.

Definition 13. [30] The left- and right-sided generalized Riemann-Liouville fractional integrals of
order a > 0, where ¢ € L' [g(n), g(u)], with g(n) < g(u), are given by

T

sn+<(@) = @) / (- @) e(@)dw, 0<g(n) <z<g(p), (5)
g(n)
and
g(p)
I50-5(®) = 1 / (@ —2)* e(w)dw, 0<gln) <z < gy (6)

x

It is clear from (5) and (6) that I;‘(n)+5(g(n)) =0 and I;’(u)_e(g(,u)) =0.

2 Main results

Throughout this paper K, = [g(r), g(k)], g(r) < g(k).

2.1 Ostrowski type fractional integral inequalities for gyrr-convex functions

Lemma 1. Let € : [g(r),g(k)] — R be a differentiable function on (g(r),g(k)) with g(r) < g(k),
where g : R — R is a mapping satisfying for all = € (r, k) : g(r) < g(z) < g(k). If & € L [g(r), g(k)],
then for all z € [r, k] such that g(z) € [g(r), g(k)], and o > 0, then

(o) a0 0le)” (o)) — D) (12 c(g(r) + 15 0=(a (k)]

)=g(r) >““/w & (mg(x) + (1 — @)g(r)) de

(alk)g(z))* ! / =0 (wg(a) + (1 — @)g(k))de. (7)
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Proof. Integrating by parts, it yields

1

L :/wo‘sl (wg(z) + (1 —w)g(r))dw
0

1
=5t a7 @) + (1= gl
0

with the change of variable u = wg(z) + (1 — @)g(r), it follows that

g(z)
x I'a+1 oa—
I :g(iglﬁg)&”) N (g(a&)ig(r)))thl F(la) / (u - g(r)) 15(u)du
g(r)

__elgl®) (a+41) o
=@-907 ~ gy Lo@-<9(r)-

Similarly, we obtain

L= / we (wy(e) + (1 —w)g(k)dw = G + o Iy g (k).

Multiplying I by W, and Iy by W, we have

1
(afz)—g(r)* / @ (wy(z) + (1 - w)g(r)) dew

= e (g ) — HER - <(9(r) ®
and
(ak)—g(a) ! / @ (wg(z) + (1 - @)g(k)) dt

0
C () T (o(h), ®

Subtracting (9) from (8), we get (7).

Remark 3. Lemma 1 gives Lemma 1 from [4], for g(z) = =.

Theorem 5. Let ¢ : K, C Ry — R be a differentiable mapping on K such that & € L' [¢(r), g(k)].
If |&'| is gmr-convex function with respect to g where ¢ : R — R is a mapping satisfying
g(r) < g(x) < g(k) for all z € (r, k) and |¢'(z)| < M, z € Ky, then

k—r k

<F(a+§) ((g(x)—=g(r)* T +(g(k)—g(x))* ") V/x
—2T'(a+1) k—r

s A (g () — FE L) + iy cla(k))|

M

holds for all x € [r, k] with g(x) € Ky and a > 0 and I" is the gamma function.
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Proof. By Lemma 1 and modulus, we have

] el a0 (g ) — PR 15 e(gl0) + Ijays(a(h)|

k—r k—r g
r a+l o
g( ) /w ‘5 (wg(z )g(r))‘dw
\ s /wa\e i) + 1 — )] d

Since |&’| is gpr-convex with respect to the function g, and taking into account that |¢/(x)| < M,
I'(3) = /7, we obtain

aleh= s (g ) — FEE (L) + iy 2(a(k))|

<l [ (A gt + S o)) i
0
1
—g(z))*T! o ©
OO [ (gt + 45 ) d

1
+W/(wa+5(1—w)2 + oo (1 - @)} ) dw

2(k—r)
0
(9(2)—g(r)* 1+ (g(k)—g(a))*

U s OO (3ot §,4) + Bla+ 5. ) M

_ (g@)—=g(m)* ' +(g9(k)—g(2)**!) V7 T(a+3) M

= 20k—1) Tar)
1

where J is the beta function, defined by: S(z,y) = [@*~ o) ldw = Flfzcgz_l;(y%), x>0, y>0.

0

Remark 4. For g(x) = x, Theorem 5 becomes Theorem 2.

Theorem 6. Let the differentiable mapping ¢ : K, C Ry — R with &' € L' [g(r), g(k)]. If |€'|? is
gur-convex function with respect to g, where g : R — R is a mapping satisfying g(r) < g(z) < g(k)
and |¢'(z)| < M, z € K, then

‘(g(x)*g(r))‘ztsqg(k)*g(m))ag(g(x)) _ Datl) [ o o-eg(r) + I;(m)+g<g<k))] )

1
< ()7 (3)7 ltelmalrd™ Hotb)at@)™™

k—r

holdsforallace[r,k],p,q>1with%+%:1anda>0.
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Proof. By Lemma 1 and Holder’s inequality, we obtain

] ()= gN ORI o (g (0)) — P 1) e(9(r)) + [y (o (R) |

r a+1 @
g( ) /w ‘5 (wg(x )g(r))‘dw

g /wa\g 0(a) + (1 - @)g(k) | d

v /1
< lol@)—g())*" ( wapdw> &' (wg(x) + (1 - W)g(r))qdw)
/ !
) T
+ B —g@)*™ 9(96 )t (/ wapdw) (/ ‘6, (wg(x) + (1 — w)g(k))qdw)
1 1
(oo™ (1Y ( / 1w)g(r))qdw)

0

—alx a+1 1
4 (g(k) kg_(r)) 1+ap " (/5 wy(z )Q(k))qdw>

1
q

Since |¢'|? is gpr-convex with respect to g and |¢'(x)| < M, we have

1 1

/‘6/ (wg(a:)—i—(l—w)g(r))‘qdwg/(2\/‘/1%‘6/ ‘q+ Y ‘5 ))‘q> dw
0 0
1
<Mq/ (2 SE ;Jg) dor = T MY

From (10) and (11), we get the result.

Remark 5. For g(z) = x, Theorem 6 will be reduced to Theorem 3.

Theorem 7. Let the differentiable mapping ¢ : K, C Ry — R with & € L' [g(r), g(k)]. If |¢'|? is

gur-convex function with respect to g, where g : R — R is a mapping satisfying g(r) < g(x) <
for all z € (r,k), ¢ > 1, and |¢'(z)| < M, z € K, then

aleh s e (g ) — FEE L) + Ly 2(a(k))|

1
(1+a)F(a+l) q ) — atly (g(k )+l
< (Wﬁ) (o)) HaR)=g@)™ py

holds for all = € [r, k] with g(x) € K4 and o > 0, where I' is the gamma function.
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Proof. By the identity of Lemma 1, modulus and the so-called power mean inequality, it yields

‘ (9(x)—g(r))™

a+1
(g(@)—g(r))™" g /wa}e wg(x

a+1
—I—M/wa‘e wg(x) + (

175 1
<(9($ )a+1 (/ wadw) (/ =@ ‘EI (Wg(l‘) + (1
0
1-1 1
4 lat)—g@)™"! ( / wo‘dw) ( / @ e/ (wy(@) + (1 -

_(s@)gr)! ( / = |e! (wg(x
(1+oz)

ok =9@)” ¢ (4(z)) — Dlet) [ R (7’))+I;(x)+5(9(k))”

r))} dw

k))| dw

— @)g(r))|" dt)

k))th) |

1
q

—w)g(r))|* dW)

T
a+1
1 Lotk (/ @ | (wy(x )g(k:))qdw) : (12)
(1+a)
Since |€'|? is gprr-convex with respect to a function g, and |&'(z)| < M, we get
1
[ =1 @gta) + (1~ @)g(0)
0
1
< [ (Z2 1] + =32 )] dw
0
1
w/w wy/1—
< q/ i + NG )dw
0
1
[ (@ em o) de
(@+3)T(5) | Tla+3)r(3)
=M1 ( 2F(§+2)2 + 2F(2+2)2 )
Lla+3)T(5) _ T(a+3)0(5)
=M?((a+3)+3) e = ey M (13)
and
1
1
/wo‘ ‘5' (wg(z) + ( ‘qdw < Mqi( e )+F1()2) (14)
0
From (12)—(14), we get the result.
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Remark 6. For g(z) = x, Theorem 7 will be reduced to Theorem 4.

2.2 Fractional Ostrowski’s inequalities for gg-conveity

Theorem 8. Let the differentiable mapping ¢ : K, C Ry — R with ¢ € L' [g(r), g(k)]. If |¢'] is
gg-convex function with respect to g where g : R — R is a mapping satisfying for all z € (r, k) :
g(r) < g(x) < g(k) and |¢'(2)| < M, z € K, then

z)—g(r))™ k)—g(x))™ 1 a a
(9(=)=g(r))*+(g(k)—g(=)) e(g(z)) — (k+ ) [ o e(g(r)) +Ig(x)+5(g(k))”

k—r

(a+p+1)T(g+1)+T(a+g+1)T(p+1 2)=g(r))* M +(g(k)—g ()"
<Dlatp )(Fq(a+>p+q<+2)q )I(p )(<g(> o)™ HgK) ~g(@) )M (15)

holds for all z € [r, k] with g(z) € K, and o > 0, p, ¢ > —1 and I' is the gamma function.

Proof. Using Lemma 1 and modulus, we get

] ekl O (g ) — PR 15 - e(gl0) + Ijays(a(h) |
g(r Dt /wa ‘5 (wg(x )g(r))‘ dw
g(k g(x )t /wa ‘5 wg )g(kz))} deo.

The fact that |¢'| is gg-convex with respect to g and |&'(x)] < M, gives

\<9<w>-g<”>°,;t59<k>—W”“e(g(x)) — T Iy e(0() + Iy ss(a(b)|

et / = [2(1 - @)1 [ (g(@)] + (1 - @ | (g(r)]] dem

a+1

+ R / @ [@(1 - @) [¢'(g(2))| + =*(1 - @) [¢'(g(k))|] dw
1

M(g z) g )t / a+p (1- _|_woc+q(1 _ )p] doo

0
1

+ —M(g(k);;_g,gm))aﬂ / [wa+p(1 —w)? + w1 - w)p] dw

0
=(Bla+p+1g+ 1)+ Blatg+1,p+1)) (LD HOG @) gy
_ D(atpt+ DI (g+ D)+ (atq+ DI (p+1) ((g(:c)—g(r))““+(g(k)—9(x))°‘“) M
T'(a+p+q+2) k—r

The proof is completed.
Corollary 1. In (15), if we choose g(z) = z, i.e., |¢/| is f-convex, we get

Lot ba)® o () — Tt (10 () 4 12, e (k)]

I (a+p+ DI (g+D)+T(atq+ D0 (p-+1) ((w—r)““+(k—f)““) M

< T'(a+p+q+2) k—r
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We now give some special cases which can be derived from the preceding corollary.
Corollary 2. In Corollary 1, taking p = g = 0, we get

(o) ba)® oy — Tkl (10 o(p) 4 19 (k)]

<A@ 4 (k—2)* )
= (a+1)(k—r)

Corollary 3. In Corollary 1, taking p = s, ¢ = 0, we get

i) g) _ e 0 () 4 12, o(8)|

(a4s+1)+T(a+1)T(s+1) [ (z—r)* T 4 (k—z)*T?
< F(a+s+2) ( k—r ) M.

Corollary 4. In Corollary 1, taking p = g =1, we get

wg(@ _ % Io_e(r) + Igve(k)]

2((2—r)™* (b))
(a+3)(a+2)(k—r)

<

k
Corollary 5. For x = =%

Corollary 1 gives the following midpoint inequality:

r 20-1p(a41 oY o
"g(%k) - W { (#)75(74) + I(#ﬁg(k)} ’

< (F(a+p+1)F(q+1)+F(a+q+1)F(p+1)) (k—r)M
- I'(a+p+g+2) 2 .

Theorem 9. Let the differentiable mapping ¢ : K, € Ry — R with & € L [g(r), g(k)]. If |¢/|*
is gg-convex function with respect to g, where g : R — R is a mapping satisfying for all € (r, k) :
g(r) < g(z) < g(k) and |¢'(z)| < M, z € K, then

’(g(fr)*g(r))%r(g(k)*9(1))“6@@)) _ D(et1) [

= Bl [161,)-2(g(r) + Iy 2(9(h))|

1 1
X (20 (p+1)T(g+1) \ » 2)—g(r)) 4+ (g(k)—g(z))>+!
< (a;ﬂ) ( (Fp(er)qJEg) ))u ((g( )=9(r)) kigng( )—9()) )M (16)

holds for all z € [r, k] with g(x) € K, and o > 0, p, ¢ > —1, A, pp > 1 with % + i =1, where I' is the
gamma function.
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Proof. By Lemma 1, modulus and Holder’s inequality, we have

!(g(“’g""))ltig“”*g@””“s<g<x>> s =l VR CQIESHERION |
1
9(7“ a+l/wo‘ e’ (wy(x —w)g(r))| dw

T a+1 o
(g(k)—g(=))"" 9( ) /w ‘a wy(z )g(kz))‘dw

I/\
QQ
f;
s
s
—/
ot —
g
Q
>
o8
g
N~
>
Slm ~
—
o
q
Q
g
=
=
jo 8
g
N~
=

= el (aiﬂ)i (/ € (@g(x) + (1~ @)g(r) " dw)

1 m
+ (ﬂ@;{(f))aﬂ (Ou\l“)X (/ e’ (wg(z) + (1 — w)g(k))|“dw) . (17)

Since |¢'|" is gg-convex with respect to a function g, and |¢'(z)| < M, we get

1
/\5' (1 - @)g(r) | de
0
1
<[ =0 - =) ga)]" + =11 - =P [ o)) dm
" 1
<M*" | [@(1 —w)?+ w(l — w)’|]dw
{

=2M"B(p+ 1,q + 1) = 2MHHEELLEED, (18)

From (17) and (18), we get the result.
/‘u

Corollary 6. In (16), if we choose g(z) = x, i.e. |¢'|" is B-convex, we have

(el o) _ Kl (70 () 4 12,1

k—r
< (Tl (st (S5 v

Some particular situations that may be derived from the earlier corollary are given below.

Mathematics Series. No.2(118)/2025 157



F. Lakhal, B. Meftah

Corollary 7. In Corollary 6, taking p = ¢ = 0, we get

fen) b n)® o () — el (70 o) 4 12, 2 (k)]

1
L1\ (@)t eyt
SQ” (a/\—l—l) ( — k—r - )M

Corollary 8. In Corollary 6, taking p = s, ¢ = 0, we get

Me(aj) — Datl) [Io-e(r) + I;ﬂ.e(ki)]‘

k—r k—r T

1 1
2 m 1 by (1’—7’ a+1+(k—l’ a+1
< (m) ' (o¢>\+1) ( ) k—r ) ) M.

Corollary 9. In Corollary 6, taking p = g = 1, we get

(ert ) () Tl (70 o(r) 4 12, 2(8)]|

< () (o) () g

T’Jgk, Corollary 6 gives the following midpoint inequality:

Corollary 10. For x =

(e o e
e(g) — EGESH (10, e(r) + [y c(H)]|

< () (atm)”

Theorem 10. Let the differentiable mapping € : K, C Ry — R with & € Lt [g(r), g(k)]. If |¢'|"
is gg-convex function with respect to g, where g : R — R is a mapping satisfying for all € (r, k) :
g(r) < g(z) < g(k) and |¢'(z)| < M, z € K, then

‘(g(x)w(r))@+(g(k>fg<x>>a5(9@)) _ Dot [ o -elg(r) + I;(I)+6(g(k))H

k—r

< ( T(atptat2)

(a+1>r(a+p+1>r<q+1>+<a+1)r(a+q+1>r<p+1))i (g(x)fg<r>(>ﬂ+1l)+(<kg<k))fg<x»&“ M (19)
a+ —-r

holds for all € [r, k] with g(z) € K4 and o > 0 and p, ¢ > —1, p > 1, where I is the gamma function.
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Proof. By Lemma 1, modulus and power mean inequality, we get

Ll g <g<x>>—%[I;@_s(g(r))+I;<x)+s<g<k>>ﬂ

< o)™ / = |¢! (wg(z) + (1 - @)g(r)| do

g(k)— 9 aH/wo‘}e wg(x (k:))’dw

W z
S (o(@)=g(r)"" g N (/wo‘dw) (/Wa}gl (wg(x) + (1 w)g(r))}“d?ﬂ)
0

1— 1 "
4 (gk)—g(@)°™" 9 ) * (/ wadw) (/ @ ¢ (wg(z) + (1 - w)g(k))“dw)

. a-+1
_ (g( )kg(r)) = (/wo‘ }5 wyg(z )g(r))}“dw)

—g(z a+1 a
4 (g(k) kg_(r)) T (/w ‘5 (wyg(z )g(k))‘”dW) . (20)

|

(a+1 Z

Since || is gg-convex with respect to g, and |&/(z)| < M, we get

1
/ & |¢ (wg(z) + (1 - @)g(r)|* dw
0

< [ [0 - =) [ + =0 - 2 o)

§M’“‘/ [@* (1 — @)? + @*"(1 — w)P] dw
0
=Bla+p+1lqg+1)+B(a+qg+1,p+1))M"

_ T(otp+1)I(g+1)+T(a+g+ 1T (p+1)
o g q(a+p+q+2)q =M. (21)

From (20) and (21), we get the result.

Corollary 11. In (19), if we choose g(x) = x, i.e. || is B-convex, we have

(et e () - D) (10 () 4 72, o(3)

1
(a+ DI (at+p+ DI (g+1)+(a+ DT (at+g+ DI (p+1) \ # [ (z—r)¥ T4 (k—z)t!
< < I'(a+p+q+2) ) ( (a+1)(k—T) ) M.

We will now show some special cases that can be extracted from the previous result.
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Corollary 12. In Corollary 11, taking p = g = 0, we get

z—r)*+(k—x)* @ o o L )yt (fe—g)otl
( )k—i—_S" ) 5(33) B F(k—tl) [Ix—g(’r) + Ix""s(k)]‘ = 2¥ <( ()Ol—i-l—)‘r((k—r)) ) M.

Corollary 13. In Corollary 11, taking p = s, ¢ = 0, we get

(eor)® b)) KD (12 o(r) 1 12, o()

1
(a+ DT (at+s+1)+T(a+2)T(s+1) \ v ( (z—r)o T (k—z)>T1
< ( T(atst2) )” ( (@ D) (h=r) )

Corollary 14. In Corollary 11, taking p = g = 1, we get

(et () Do) (12 (1) 1 12, 2(8)|

1

< (wtetn) " (i) M

r+k
2

Corollary 15. For © = Corollary 11 gives the following midpoint inequality:

a—1 a
) 28 0+ ]

< ((a+1)F(a+p+1)I‘(q+1)+(a+1)F(a+q+1)F(p+1))LIL (k—r)M
L(otp+q+2) 2(a+1)

Conclusion

In this study, we have explored fractional Ostrowski inequalities for functions whose modulus of the
first derivatives exhibit gp;r-convexity and gg-convexity. Several new results have been established,
contributing to the advancement of fractional integral inequalities. Additionally, by considering specific
cases, we have successfully recovered some well-known results, demonstrating the broad applicability
and generality of our approach. This work extends classical Ostrowski inequalities and provides deeper
insights into their behavior under generalized convexity assumptions. Future research could further
investigate the potential applications of these inequalities in fields such as numerical analysis, opti-
mization, and approximation theory.
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