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Inverse boundary value problem for a linearized equations of
longitudinal waves in rods
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In this article, a question regarding the solvability of an inverse boundary value problem for the linearized
equation of longitudinal waves in rods with an integral condition of the first kind was considered. For the
considered inverse boundary value problem, the definition of a classical solution was introduced. Using
the Fourier method, the problem was reduced to solving a system of integral equations. The method of
contraction mappings is applied to prove the existence and uniqueness of a solution to the system of integral
equations. The problem is to deduce the existence and uniqueness of the classical solution for the original
problem.
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Introduction

At present, the theory of nonlocal problems is being intensively developed and represents an impor-
tant branch of the theory of partial differential equations. Problems with nonlocal integral conditions
are of great interest in this area. Conditions of this kind may appear in the mathematical modeling of
phenomena related to plasma physics [1], heat propagation [2], moisture transfer in capillary-porous
media [3], demography, and mathematical biology.

Inverse problems with an integral overdetermination condition for partial differential equations have
been studied in many papers. Let us note the articles [4–6] and the references therein.

The study of various aspects of inverse problems of recovering the coefficients of partial differential
equations, as well as the study of inverse problems by reducing them to variational formulations, is
considered in the works of Kozhanov A.I. [6], Denisov A.M. [7], Ivanchov M.I. [8], and others.

Works are devoted to the study of nonlinear inverse problems for the linearized equation of longi-
tudinal waves in rods. The questions of solvability of problems with nonlocal integral conditions for
partial differential equations were studied in [5, 9–18].

1 Statement of the problem and its reduction to an equivalent problem

Let DT be a Domain, DT = {(x, t) : 0 < x < 1, 0 < t ≤ T}. Consider for linearized equation an
inverse boundary value problem [6]

utt(x, t) + uttxx(x, t)− uxx(x, t) = a(t)u(x, t) + f(x, t), (x, t) ∈ DT (1)
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with the initial condition (IC)

u(x, 0) = ϕ(x), ut(x, T ) = ψ(x) (0 ≤ x ≤ 1). (2)

Neumann boundary condition (BC)

ux(0, t) = 0 (0 ≤ t ≤ T ), (3)

integral condition (IgC)
1
∫
0
u(x, t)dx = 0 (0 ≤ t ≤ T ) (4)

and additional conditions (AD)
u(0, t) = h(t) (0 ≤ t ≤ T ), (5)

f(x, t), ϕ(x), ψ(x), and h(t) are given functions, u(x, t) and a(t) are the required functions.
Definition. By the classical solution of the inverse boundary value problem (1)–(5) we mean the

pair {u(x, t), a(t)} of the functions u(x, t), a(t), where u(x, t) ∈ C̃2,2(D̄T ), a(t) ∈ C[0, T ], and they
satisfy the equations (1)–(5) in the ordinary sense, where

C̃2,2(DT ) =
{
u(x, t) : u(x, t) ∈ C2(DT ), uttxx(x, t) ∈ C(DT )

}
.

To study problem (1)–(5), we first consider the following:

y′′(t) = a(t)y(t) (0 ≤ t ≤ T ), (6)

y(0) = 0 , y′(T ) = 0, (7)

where a(t) ∈ C[0, T ] are given functions, and y = y(t) is the required function. Furthermore, by solving
the problem (6), (7) we mean a function y(t), that, together with all its derivatives in equation (6), is
continuous on [0, T ] and satisfies conditions (6), (7) in the usual sense. The following lemma holds:

Lemma 1. [7] Let a(t) ∈ C[0, T ] be such that

‖a(t)‖C[0,T ] ≤ R = const.

Supplementarily, 1
2RT

2 < 1. Then problem (6), (7) has only a trivial solution.
With the addition of the inverse boundary value problem (1)–(5), consider the following auxiliary

inverse boundary value problem. We must define a pair {u(x, t), a(t)} of functions u(x, t) ∈ C̃2,2(D̄T )
and a(t) ∈ C[0, T ], from (2)-(3),

ux(1, t) = 0 (0 ≤ t ≤ T ), (8)

h′′(t) + uttxx(0, t)− uxx(0, t) = a(t)h(t) + f(0, t) (0 ≤ t ≤ T ). (9)

Theorem 1. Let ϕ(x), ψ(x) ∈ C1[0, 1], ϕ′(1) = 0, ψ′(1) = 0, h(t) ∈ C2[0, T ], f(x, t) ∈ C(D̄T ),
1∫
0

f(x, t)dx = 0 (0 ≤ t ≤ T ), h(t) 6= 0 (0 ≤ t ≤ T ) and

∫ 1

0
ϕ(x)dx = 0,

∫ 1

0
ψ(x)dx = 0, (10)

ϕ(0) = h(0), ψ(0) = h′(T ). (11)

Then the following statements are true:
1. Each classical solution {u(x, t), a(t)} of problem (1)–(5) is also a solution of problem (1)–(3),

(8), (9).
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2. Each solution {u(x, t), a(t)} of problem (1)–(3), (8), (9) is a classical solution of the problem
(1)–(5) if

1

2
‖a(t)‖C[0,T ] T

2 < 1 , (12)

it is a classical solution (1)–(5).
Proof. Let {u(x, t), a(t)} be a classical solution to problem (2)–(5). Integrating equation (2), we

get:
d2

dt2

∫ 1

0
u(x, t)dx+ uttx(1, t)− uttx(0, t)− (ux(1, t)− ux(0, t)) =

= a(t)

∫ 1

0
u(x, t)dx+

∫ 1

0
f(x, t)dx (0 ≤ t ≤ T ). (13)

Suppose it is the case that
1
∫
0
f(x, t)dx = 0 (0 ≤ t ≤ T ), taking into account (3), (4), we identify

uttx(1, t)− ux(1, t) = 0 (0 ≤ t ≤ T ). (14)

Due to (2), ϕ′(1) = 0, ψ′(1) = 0, therefore

ux(1, 0) = ϕ′(1) = 0, utx(1, T ) = ψ′(1) = 0. (15)

Obviously, problem (14), (15) has only a trivial solution, ux(1, t) = 0 (0 ≤ t ≤ T ), i.e. conditions (8)
are satisfied.

Considering h(t) ∈ C2[0, T ] and differentiating (5) twice, we obtain:

utt(0, t) = h(t) (0 ≤ t ≤ T ). (16)

Further, from (2) we get:

d2

dt2
u(0, t) + uttxx(0, t)− uxx(0, t) = a(t)h(t) + f(0, t) (0 ≤ t ≤ T ). (17)

From (17), regarding to (5) and (16), we obtained (9).
Now, assume that {u(x, t), a(t)} is a solution to problem (1)–(3), (8), (9), and (12) is satisfied.

Then from (13), taking into account (3) and (8), we deduce:

d2

dt2

∫ 1

0
u(x, t)dx− a(t)

∫ 1

0
u(x, t)dx = 0 (0 ≤ t ≤ T ). (18)

As a corollary to (2) and (10), it is evident that∫ 1

0
u(x, 0)dx =

∫ 1

0
ϕ(x)dx = 0,

∫ 1

0
ut(x, T )dx =

∫ 1

0
ψ(x)dx = 0. (19)

Since, by virtue of Lemma 1, problem (18), (19) has only a trivial solution, then
1∫
0

u(x, t)dx = 0

(0 ≤ t ≤ T ), i.e. condition (4) is satisfied.
Further, from (9) and (17):

d2

dt2
(u(0, t)− h(t)) = a(t)(u(0, t)− h(t)) (0 ≤ t ≤ T ). (20)

From (2) and (11), we get:
u(0, 0)− h(0) = ϕ(0) − h(0) = 0. (21)

From (20) and (21), based on Lemma 1, we conclude that condition (5) is fulfilled. The theorem is
proven.
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2 The Existence and uniqueness of the classical solution of the inverse boundary value problem

Component u(x, t) of solution {u(x, t), a(t)} of problem (1)–(3), (8), (9) is studied in the form:

u(x, t) =
∞∑
k=0

uk(t) cosλkx (λk = πk), (22)

uk(t) = mk

∫ 1
0 u(x, t) cosλkxdx (k = 0, 1, 2, ...), and

mk =

{
1, k = 0,
2, k = 1, 2, . . .

By applying the scheme of the Fourier method from (2), we get:

(1− λ2k)u′′k(t) + λ2kuk(t) = Fk(t;u, a) (k = 0, 1, 2, . . . ; 0 ≤ t ≤ T ), (23)

uk(0) = ϕk, u
′
k(T ) = ψk (k = 0, 1, 2, . . . ), (24)

Fk(t;u, a) = fk(t) + a(t)uk(t), fk(t) = mk

∫ 1
0 f(x, t) cosλkxdx,

ϕk = mk

∫ 1

0
ϕ(x) cosλkxdx, ψk = mk

∫ 1

0
ψ (x) cosλkxdx (k = 0, 1, 2, . . . ).

Solving problem (1)–(6), we obtain:

u0(t) = ϕ0 +

∫ T

0
m(t)u0(t)dt+ ψ0t+

∫ T

0
G0(t, τ)F0(τ ;u, a)dτ, (25)

uk(t) =
ch(βk(T − t))
ch(βkT )

ϕk+

+
sh(βkt)

βkch(βkT )
ψk −

1

(λ2k − 1)βk

∫ T

0
Gk(t, τ)Fk(τ ;u, a)dτ (k = 1, 2, . . .), (26)

where

G0(t, τ) =

{
−t, t ∈ [0, τ ],
−τ, t ∈ [τ, T ],

β2k =
λ2k

λ2k − 1
> 0,

Gk(t, τ) =


− [sh(βk(T+t−τ))−sh(βk(T−(t+τ)))]

2ch(βkT )
, t ∈ [0, τ ],

− sh(βk(T−(t+τ)))−sh(βk(T−(t−τ)))
2ch(βkT )

, t ∈ [τ, T ].

After substituting the expression from (25), (26) into (22), to define a component u(x, t) of the
solution of problem (1)–(4), (8), (9), we obtain:

u(x, t) = ϕ0 + ψ0t+

∫ T

0
G0(t, τ)F0(τ ;u, a)dτ +

∞∑
k=1

{
ch(βk(T − t))
ch(βkT )

ϕk+

+
sh(βkt)

βkch(βkT )
ψk −

1

(λ2k − 1)βk

∫ T

0
Gk(t, τ)Fk(τ ;u, a)dτ

}
cosλkx. (27)
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Now, from (8) including (22) and from (23) including (26), we get:

a(t) = [h(t)]−1
{
h′′(t)−f(0, t)−

∞∑
k=1

λ2k(u
′′
k(t)− uk(t))

}
. (28)

−λ2ku′′k(t) + λ2kuk(t) = Fk(t;u, a)− u′′k(t) =
λ2k

λ2k − 1
Fk(t;u, a)−

λ2k
λ2k − 1

uk(t) =

=
λ2k

λ2k − 1
Fk(t;u, a)−

λ2k
λ2k − 1

[
ch(βk(T − t))
ch(βkT )

ϕk+

+
sh(βkt)

βkch(βkT )
ψk −

1

(λ2k − 1)βk

∫ T

0
Gk(t, τ)Fk(τ ;u, a)dτ

]
(k = 1, 2, . . . ). (29)

Aimed at defining an equation for the second component a(t) of the solution {u(x, t), a(t)} of
problem (1)–(3), (8), (9), we substitute expression (29) into (28):

a(t) = [h(t)]−1
{
h′′(t)−f(0, t) +

∞∑
k=1

[
λ2k

λ2k − 1
Fk(t;u, a )+

−
λ2k

λ2k − 1

[
ch(βk(T − t))
ch(βkT )

ϕk +
sh(βkt)

βkch(βkT )
ψk−

− 1

(λ2k − 1)βk

∫ T

0
Gk(t, τ)Fk(τ ;u, a )dτ

] ]}
(0 ≤ t ≤ T ) . (30)

Thus, the solution of problem (1)–(3), (8), (9) is reduced to the solution of system (27), (30) with
respect to unknown functions u(x, t) and a(t).

The subsequent lemma plays an essential role in the disquisition of the uniqueness question of the
solution to problem (2)-(3), (8), (9).

Lemma 2. If {u(x, t), a(t)} is any solution of problem (1)–(3), (8), (9), then the functions

uk(t) = mk

∫ 1

0
u(x, t) cosλkxdx (k = 0, 1, 2, . . . )

satisfy the system consisting of equations (25), (26) on [0, T ].
Proof. Let {u(x, t), a(t)} be any solution of problem (1)–(3), (8), (9). Then multiplying both sides

of equation (2) by the function mk cosλkx (k = 0, 1, 2, . . . ), integrating the resulting equality over x
from 0 to 1 and usingmk

∫ 1
0 utt(x, t) cosλkxdx = d2

dt2

(
mk

∫ 1
0 u(x, t) cosλkxdx

)
= u′′k(t) (k = 0, 1, 2, ...),

mk

∫ 1

0
uxx(x, t) cosλkxdx = −λ2k

(
mk

∫ 1

0
u(x, t) cosλkxdx

)
= −λ2kuk(t) (k = 0, 1, 2, . . . ),

mk

∫ 1

0
uttxx(x, t) cosλkxdx = −λ2kmk

∫ 1

0
utt(x, t) cosλkxdx =

= −λ2k
d2

dt2

(
mk

∫ 1

0
u(x, t) cosλkxdx

)
= −λ2ku′′k(t) (k = 0, 1, 2, . . . ),

we obtain that Eq. (23) is satisfied.
Similarly, from (2) we obtain that condition (24) is fulfilled.
Thus, uk(t) (k = 0, 1, 2, . . . ) is a solution to problem (23), (24). Moreover, it directly follows that

the functions uk(t) (k = 0, 1, 2, . . . ) satisfy the system (25), (26) on [0, T ]. The lemma is proven.
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Therefore, if uk(t) = 2
1∫
0

u(x, t) cosλkxdx (k = 0, 1, 2, . . . ) is a solution to system (25), (26), then

the pair {u(x, t), a(t)} of functions u(x, t) =
∞
Σ
k=0

uk(t) cosλkx,a(t) and a(t) is a solution to system

(27), (30).
Corollary 1. Let system (27), (30) have a unique solution. Then problem (1)–(3), (8), (9) can not

have more than one solution, i.e. if problem (1)–(3), (8), (9) has a solution, then it is unique.
To study the problem (1)–(3), (8), (9), we introduce two spaces.
By Bα

2,T [8], we denote the set of all functions of the form

u(x, t) =

∞∑
k=0

uk(t) cosλkx (λk = kπ),

considered in DT , where each function uk(t) (k = 0, 1, . . . ) is continuous on [0, T ] and

J(u) = ‖u0(t)‖C[0,T ] +

{ ∞∑
k=1

(
λαk ‖uk(t)‖C[0,T ]

)2} 1
2

< +∞,

where α ≥ 0. We define the norm in this set as follows:

‖u(x, t)‖Bα2,T = J(u).

EαT denotes the space Bα
2,T × C[0, T ] with vector functions z(x, t) = {u(x, t), a(t)} and norm

‖z(x, t)‖EαT = ‖u(x, t)‖Bα2,T + ‖a(t)‖C[0,T ] .

Bα
2,T and EαT are Banach spaces.

In the space E3
T , we define an operator:

Φ(u, a, b) = {Φ1(u, a),Φ2(u, a)},

with

Φ1(u, a) = ũ(x, t) ≡
∞∑
k=0

ũk(t) cosλkx, Φ2(u, a, b) = ã(t),

ũ0(t), ũk(t) (k = 1, 2, . . . ) and ã(t) are equal to the right-hand sides of (25), (26) and (30).
It is easy to see that

ch(βk(T − t))
ch(βkT )

< 1,
sh(βkt)

ch(βkT )
< 1,

sh(βk(T + t− τ))

ch(βkT )
< 1 (t ∈ [0, τ ]),

sh(βk(T − (t+ τ)))

ch(βkT )
< 1,

sh(βk(T − (t− τ)))

ch(βkT )
< 1 (t ∈ [τ, T ]),

λ2k − 1 >
1

2
λ2k, 1 < βk =

λk√
λ2k − 1

<
√

2,
1√
2
<

1

βk
< 1.
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Then, we have:

‖ũ0(t)‖C[0,T ] ≤ |ϕ0|+ T |ψ0|+ 2T
√
T

(∫ t

0
|f0(τ)|2 dτ

) 1
2

+ 2T 2 ‖a(t)‖ C[0,T ] ‖u0(t)‖C[0,T ] , (31)

( ∞∑
k=1

(λ3k ‖ũk(t)‖C[0,T ])
2

) 1
2

≤ 2

( ∞∑
k=1

(λ3k |ϕk|)2
) 1

2

+ 2

( ∞∑
k=1

(λ3k |ψk|)2
) 1

2

+

+ 4
√
T

(∫ T

0

∞∑
k=1

(λk |fk(τ)|)2
) 1

2

+ 4T ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ3k ‖uk(t)‖C[0,T ])
2

) 1
2

, (32)

‖ã(t)‖C[0,T ] ≤
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{∥∥h′′(t)− f(0, t)
∥∥
C[0,T ]

+

+

( ∞∑
k=1

λ−2k

) 1
2

( ∞∑
k=1

(λk ‖fk(t)‖C[0,T ])
2

) 1
2

+ ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ3k ‖uk(t)‖C[0,T ])
2

) 1
2

+

+

( ∞∑
k=1

(λ3k |ϕk|)2
) 1

2

+

( ∞∑
k=1

(λ3k |ψk|)2
) 1

2

+ 2
√
T

(∫ T

0

∞∑
k=1

(λk |fk(τ)|)2
) 1

2

+

+ 2T ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ3k ‖uk(t)‖C[0,T ])
2

) 1
2

 . (33)

Let us assume that the data of problem (1)–(3), (8), (9), satisfy the following conditions:
1) ϕ(x) ∈ C2[0, 1], ϕ′′′(x) ∈ L2(0, 1), ϕ′(0) = ϕ′(1) = 0;

2) ψ(x) ∈ C2[0, 1], ψ′′′(x) ∈ L2(0, 1), ψ′(0) = ψ′(1) = 0;

3) f(x, t) ∈ C(DT ), fx(x, t) ∈ L2(DT ), fx(0, t) = fx(1, t) = 0 (0 ≤ t ≤ T );

4) h(t) ∈ C2[0, T ], h(t) 6= 0 (0 ≤ t ≤ T ).

Then from (31)–(33), we have:

‖ũ(x, t)‖B3
2,T
≤ A1(T ) +B1(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B3

2,T
, (34)

‖ã(t)‖C[0,T ] ≤ A2(T ) + B2(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B3
2,T

+

+B2(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B3
2,T

+ C2(T ) ‖u(x, t)‖B3
2,T+D2(T )‖a(t)‖C[0,T ]

, (35)

where
A1(T ) = ‖ϕ(x)‖L2(0,1)

+ T ‖ψ(x)‖L2(0,1)
+ 2T

√
T ‖f(x, t)‖L2(DT )

+

+2
∥∥∥ϕ′′′(x)

∥∥∥
L2(0,1)

+ 2
∥∥∥ψ′′′(x)

∥∥∥
L2(0,1)

+ 4
√
T ‖fx(x, t)‖L2(DT )

,

B1(T ) = 6T, A2(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{∥∥h′′(t)− f(0, t)
∥∥
C[0,T ]

+

+

( ∞∑
k=1

λ−2k

) 1
2 [∥∥∥‖fx(x, t)‖C[0,T ]

∥∥∥
L2(0.1)

+
∥∥ϕ′′′(x)

∥∥
L2(0,1)

+
∥∥ψ′′′(x)

∥∥
L2(0,1)

+

+ 2
√
T ‖fx(x, t)‖L2(DT )

]}
,
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B2(T ) = 2
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

( ∞∑
k=1

λ−2k

) 1
2

(2T + 1).

From inequalities (34), (35) we conclude:

‖ũ(x, t)‖B3
2,T

+ ‖ã(t)‖C[0,T ] ≤ A(T ) + B(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B3
2,T
, (36)

where
A(T ) = A1(T ) +A2(T ), B(T ) = B1(T ) +B2(T ).

Theorem 2. Let conditions 1–3 be satisfied and

B(T )(A(T ) + 2)2 < 1. (37)

Then, in K = KR (|| z ||E3
T
≤ R = A(T ) + 2), in the space E3

T , problem (1)–(3), (8), (9) has only one
solution.

Proof. In the space E3
T consider the equation

z = Φz, (38)

where z = {u, a} and components Φi(u, a) (i = 1, 2) of operators Φ(u, a) are defined by the right-hand
sides of equations (27) and (30).

Now, consider the operator Φ(u, a) in the ball K = KR of the space E3
T . Analogously to (36), we

obtain that for any z, z1, z2 ∈ KR, the following estimates hold:

‖Φz‖E3
T
≤ A (T ) + B(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B3

2,T
, (39)

‖Φz1 − Φzs‖E3
T
≤ 2B(T )R (‖a1(t)− a2(t)‖C[0,T ] + ‖u1(x, t)− u2(x, t)‖B3

2,T
). (40)

As a result, the operator (38) has a unique solution for K = KR.
Then, from estimates (39) and (40), allowing for (37), it follows that the operator Φ acts in the

ball K = KR and is contractive.
Functions u(x, t), as an element of space B3

2,T , are continuous and have continuous derivatives
ux(x, t) and uxx(x, t) in D̄T .

From (23), it is evident that( ∞∑
k=1

(λ3k
∥∥u′′k(t)∥∥C[0,T ]

)2

) 1
2

≤
√

2


( ∞∑
k=1

(λ3k ‖uk(t)‖C[0,T ])
2

) 1
2

+

+
∥∥∥ ‖a(t)ux(x, t) + fx(x, t)‖C[0,T ]

∥∥∥
L2(0,1)

}
.

Hence, it follows that utt(x, t),uttx(x, t),uttxx(x, t) are continuous in D̄T .
It is easy to check that equation (1) and conditions (3), (4), (7), (9) are satisfied in the usual sense.

Consequently, {u(x, t), a(t)} is a solution to problem (1)–(3), (7)–(9). By the corollary of Lemma 1, it
is unique in the ball K = KR. The theorem has been proven.

In the proof of Theorem 1 and Theorem 2, the next Theorem plays, an essential role of unique and
solvability of the problem (1)–(5).

Theorem 3. Let all the conditions of Theorem 2 and (10), (11) be satisfied,
∫ 1
0 f(x, t)dx = 0

(0 ≤ t ≤ T ), and
1

2
(A(T ) + 2)T 2 < 1 .

Then, problem (1)–(5) has the only classical solution in the ball K = KR (||z||E3
T
≤ A(T )+2) from E3

T .
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Conclusion

An inverse boundary value problem for a linearized equations of longitudinal waves in rods with
integral condition of the first kind are studied.
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1–18. https://doi.org/10.5269/bspm.63779

12 Mehraliyev, Y.T., Allahverdiyeva, S., & Ramazanova, A.T. (2023). On one coefficient inverse
boundary value problem for a linear pseudoparabolic equation of the fourth order. AIMS Math-
ematics, 8 (2), 2622–2633. https://doi.org/10.3934/math.2023136

13 Mehraliyev, Y.T., Huntul, M.J., Ramazanova, A.T., Tamsir, M., & Emadifar, H. (2022). An
inverse boundary value problem for transverse vibrations of a bar. Boundary Value Problems,
2022, 96. https://doi.org/10.1186/s13661-022-01679-x

14 Mehraliyev, Y.T., Ramazanova, A.T., & Huntul, M.J. (2022). An inverse boundary value problem
for a two-dimensional pseudo-parabolic equation of third order. Results in Applied Mathematics,
14, 100274. https://doi.org/10.1016/j.rinam.2022.100274

15 Mehraliyev, Y.T., Sadikhzade, R., & Ramazanova, A.T. (2023). Two-dimensional inverse bound-
ary value problem for a third-order pseudo-hyperbolic equation with an additional integral con-
dition. European Journal of Pure and Applied Mathematics, 16 (2), 670–686. https://doi.org/
10.29020/nybg.ejpam.v16i2.4743

16 Juraev, D.A., Shokri, A., & Marian, D. (2022). Solution of the Ill-Posed Cauchy Problem for
Systems of Elliptic Type of the First Order. Fractal and Fractional, 6 (7), 358. https://doi.org/
10.3390/fractalfract6070358

17 Mehraliyev, Y.T., Ramazanova, A.T., & Sevdimaliyev, Y.M. (2020). An inverse boundary value
problem for the equation of flexural vibrations of a bar with an integral conditions of the first
kind. Journal of Mathematical Analysis, 11 (5), 1–12.

18 Farajov, A.S. (2022). On a Solvability of the Nonlinear Inverse Boundary Value Problem for the
Boussinesq equation. Advanced Mathematical Models & Applications, 7 (2), 241–248.

Author Information∗

Yashar Topush oglu Mehraliyev — Doctor of mathematical sciences, Professor, Head of Differ-
ential and Integral Equation Department, Faculty Mathematics, Baku State University, 33 Akademik
Zahid Khalilov street, Baku, AZ1148, Azerbaijan; e-mail: yashar_aze@mail.ru

Ramiz Iskanderov — Doctor of physical and mathematical sciences, Professor, Azerbaijan Uni-
versity of Architecture and Construction, 11 Ayna Sultanova street, Baku, AZ1073, Azerbaijan; e-mail:
r.iskanderov@gmail.com; https://orcid.org/0000-0003-1730-9461

Aysel Telman kizi Ramazanova (corresponding author) — Doctor of mathematical sciences,
Assistent of Professor, Departament of Mathematics, Nonlinear optimization, University of Duis-
burg Essen, 9 Thea-Leyman street, Essen, 45127, Germany; e-mail: aysel.ramazanova@uni-due.de;
https://orcid.org/0000-0003-0166-6018

∗The author’s name is presented in the order: First, Middle and Last Names.

142 Bulletin of the Karaganda University

https://doi.org/10.29020/nybg.ejpam.v16i2.4743
https://doi.org/10.29020/nybg.ejpam.v16i2.4743
https://doi.org/10.3390/fractalfract6070358
https://doi.org/10.3390/fractalfract6070358

