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This article deals with the construction of particular solutions for a second-order multidimensional sin-
gular partial differential equation, which generalizes the famous telegraph and Helmholtz equations. The
constructed particular solutions are expressed in terms of the multiple confluent hypergeometric function,
which is analogous to the multiple Lauricella function and the famous Bessel function. A limit correlation
theorem for the multiple confluent hypergeometric function is proved, and a system of partial differential
equations associated with the confluent function is derived. Thanks to the proven properties of the multi-
ple confluent hypergeometric function. The particular solutions of the multidimensional partial differential
equation with the singular coefficients are written in explicit forms and it is determined that these solutions
have a singularity at the vertex of a multidimensional cone.
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Introduction

It is well known that particular solutions play an essential role in the study of partial differential
equations. The set of particular solutions includes fundamental solutions that satisfy certain additional
conditions. In case of the singular elliptic equations, the role of particular solutions is played by
fundamental solutions. Formulation and solving of many local and non-local boundary value problems
are based on these solutions. The explicit form of particular solutions gives a possibility to study the
considered equation in detail.

In the case of PDE with singular coefficients, particular solutions, including fundamental ones, are
expressed through hypergeometric functions, the number of variables of which is directly related to the
number of singular coefficients. For instance, in the paper [1], particular solutions of the generalized
Euler-Poisson-Darboux equation with three singular coefficients

uxx + uyy +
2α

x
ux +

2β

y
uy = utt +

2γ

t
ut, x > 0, y > 0, t > 0, 0 < 2α, 2β, 2γ < 1 (1)

are written by a hypergeometric function F (3)
A in three variables introduced by Lauricella [2]. In addi-

tion, self-similar solutions of some model degenerate partial differential equations of the higher order
are expressed by the higher order hypergeometric functions [3–6].

It is well known [7] that all linearly independent fundamental solutions at the origin of singular
elliptic equation

m∑
j=1

∂2u

∂x2j
+

n∑
j=1

2αj
xj

∂u

∂xj
= 0, m ≥ 2, n ≤ m (2)
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in the first hyperoctant x1 > 0, . . . , xn > 0 are expressed explicitly by the Lauricella function F
(n)
A

in n variables. Various applications of the fundamental solutions of equation (2) to the solution of
boundary value problems for this equation can be found in the works [8–11].

In a recent work [12], particular solutions of the equation

p∑
j=1

∂2u

∂x2j
+

p∑
j=1

2αj
xj

∂u

∂xj
=

n∑
j=p+1

∂2u

∂x2j
+

n∑
j=p+1

2αj
xj

∂u

∂xj
, p = 1, n (3)

are also expressed through the Lauricella function F (n)
A , the variables of which differ from the variables

of the Lauricella function included in the fundamental solutions of the equation (2) only by signs
depending on the equation under consideration.

All fundamental solutions of the multidimensional Helmholtz equation with n singular coefficients

m∑
j=1

∂2u

∂x2j
+

n∑
j=1

2αj
xj

∂u

∂xj
+ λu = 0, m ≥ 2, n ≤ m, −∞ < λ < +∞ (4)

are presented by the confluent hypergeometric function in n+1 variables, the first n variables of which
coincide with the variables of the fundamental solutions of equation (2). In this case, the last variable
in the confluent hypergeometric function appears due to the presence of the parameter λ (for details,
see [13]).

The following so-called multidimensional singular ultrahyperbolic equation

p∑
j=1

∂2u

∂x2j
+

p∑
j=1

2αj
xj

∂u

∂xj
=

m∑
j=p+1

∂2u

∂x2j
+

n∑
j=p+1

2αj
xj

∂u

∂xj
+ λu, p ≤ n ≤ m (5)

contains all four equations (1)–(4) considered above. Note that equation (5) generalizes also the well-
known Helmholtz uxx + uyy + cu = 0 and telegraph uxx − uyy + cu = 0 equations.

In this paper we construct particular solutions of equation (5) in some multidimensional cone
when 0 < p < n = m and prove that these solutions are simultaneously fundamental solutions of
the considered equation near the origin. Note, if p = 0 or p = n, then the equation (5) becomes an
equation of the singular elliptic type (4), particular (fundamental) solutions of which are found in [13].

The plan of this paper is as follows. In Section 1, we briefly give some preliminary information,
which will be used later, and investigate new properties of the multiple confluent hypergeometric
function H

(n,1)
A . In Section 2 we compose a system corresponding to the function H

(n,1)
A and find all

particular solutions of this system. In Section 3 we study an ultrahyperbolic equation with singular
coefficients, all particular solutions of which are written out explicitly through a multiple confluent
hypergeometric function H

(n,1)
A . In Section 4, the properties of the constructed particular solutions are

studied and the order of singularity of these solutions in the neighborhood of the origin is determined.

1 Hypergeometric functions of several variables

The great success of the theory of hypergeometric functions in one variable has stimulated the
development of a corresponding theory in two and more variables. Horn [14] gave the general definition
of the hypergeometric functions of two variables. He has investigated the convergence of hypergeometric
functions in two variables and established the systems of partial differential equations which they satisfy
(for details, see [15; Section 5.7]).

Following Horn we define a hypergeometric function of several variables.
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Let a multiple power series be given
∞∑
|k|=0

A (k)
n∏
j=1

x
kj
j , (6)

where the summation is carried out over a multi-index k := (k1, . . . , kn) with non-negative integer
components kj ≥ 0, j = 1, . . . , n, for which, as usual, |k| := k1 + . . .+ kn.

A multiple power series (6) is a hypergeometric series if the following n relations

A (kj + ej)

A (k)
= fj (k) (7)

are rational functions of k, where ej := (0, . . . , 0, 1, 0, . . . , 0) denotes a vector whose j−th component
is equal to one, and the rest are equal to zero (j = 1, . . . , n).

Let’s suppose

fj (k) =
Pj (k)

Qj (k)
, (8)

where Pj and Qj are polynomials of k having degrees pj and qj respectively. It is assumed that Qj has
a multiplier of kj + 1; Pj and Qj have no common multipliers, with the possible exception of kj + 1
(j = 1, . . . , n).

The largest of the numbers p1, . . . , pn, q1, . . . , qn is called order of the hypergeometric series (6).
The hypergeometric series (6) is called complete, if all the numbers p1, . . . , pn, q1, . . . , qn are the

same, i.e. p1 = . . . = pn = q1 = . . . = qn, otherwise confluent.
A symbol (κ)ν denotes the general Pochhammer symbol or the shifted factorial, since (1)l = l!

(l ∈ N
⋃
{0} ;N := {1, 2, . . .}) , which is defined (for κ, ν ∈ C), in terms of the familiar Gamma function,

by

(κ)ν :=
Γ (κ+ ν)

Γ (κ)
=

{
1 (ν = 0; κ ∈ C\ {0}) ,

κ (κ+ 1) . . . (κ+ l − 1) (ν = l ∈ N; κ ∈ C) ,

it is being understood conventionally that (0)0 := 1 assumed tacitly that the Γ−quotient exists.
A Lauricella function F (n)

A in n ∈ N real variables x := (x1, . . . , xn) [2] (see, also [16])

F
(n)
A

[
a,b;
c;

x

]
=

∞∑
|k|=0

(a)|k|

n∏
j=1

(bj)kj
(cj)kj

x
kj
j

kj !
,

n∑
j=1

|xj | < 1 (9)

is also a complete hypergeometric function of the order 2. Hereinafter b := (b1, . . . , bn) , c := (c1, . . . , cn) .
In definition (9), as usual, the denominator parameters c1,. . . ,cn are neither zero nor a negative integer.

Let a, bk, ck be real numbers, where ck 6= 0,−1,−2, . . . and a > |b| > 0 and ck > bk. Then for
n = 1, 2, . . ., the following limit correlation is true [17]

lim
ε→0

{
ε−|b|F

(n)
A

[
a,b;
c;

1− z1(ε)

ε
, . . . , 1− zn(ε)

ε

]}
=

Γ (a− |b|)
Γ(a)

n∏
k=1

|zk(0)|−bk Γ (ck)

Γ (ck − bk)
, (10)

where |b| := b1 + . . .+ bn; zk(ε) are arbitrary functions, and zk(0) 6= 0.
Note that the limit correlation formula (10) is applied in the theory of boundary value problems

for the multidimensional singular elliptic equation (2), for instance, see [18].
Consider the following confluent hypergeometric function in n+ 1 variables

H
(n,1)
A

[
a,b;

c;
x, y

]
=

∞∑
|k|+l=0

(a)|k|−l

n∏
j=1

(bj)kj
(cj)kj

x
kj
j

kj !
· y

l

l!
,

n∑
j=1

|xj | < 1, (11)
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where x and y are real variables, and l = 0, 1, 2, . . .

Note, this confluent hypergeometric function H
(n,1)
A was first introduced and studied in a more

general form in [13] and its particular cases (n = 1, 2, 3) were known in [15,19,20].
The confluent hypergeometric function H

(n,1)
A has the following formula of derivation:

∂|k|+l

∂xk11 . . . ∂xknn ∂yl
H

(n,1)
A

[
a,b;

c;
x, y

]
= (a)|k|−l

n∏
j=1

(bj)kj
(cj)kj

·H(n,1)
A

[
a+ |k| − l,b + k;

c + k;
x, y

]
, (12)

hereinafter, k := (k1, . . . , kn) is an n-vector.
Using simple properties of the Pochhammer symbol

(a)m(a+m)k = (a)m+k, (a)k =
(−1)k

(1− a)k
,

we can represent the confluent hypergeometric function H
(n,1)
A as

H
(n,1)
A

[
a,b;
c;

x, y

]
=
∞∑
k=1

(−1)k

(1− a)k

yk

k!
F

(n)
A

[
a− k,b;
c;

x

]
, (13)

where F (n)
A is the Lauricella function defined in (9).

It is obvious that

H
(n,1)
A

[
a,b;

c;
x, 0

]
= F

(n)
A

[
a,b;
c;

x

]
. (14)

Theorem 1. Let a, bk, ck be real numbers, where ck 6= 0,−1,−2, . . . and a > |b| > 0 and ck > bk.
Then for n = 1, 2, . . ., the following limit correlation is true

lim
ε→0

{
ε−|b|H

(n,1)
A

[
a,b;

c;
1− z1(ε)

ε
, . . . , 1− zn(ε)

ε
, εy

]}
=

Γ (a− |b|)
Γ(a)

n∏
k=1

|zk(0)|−bk Γ (ck)

Γ (ck − bk)
, (15)

where |b| := b1 + . . .+ bn; zk(ε) are arbitrary functions, and zk(0) 6= 0; y is a real variable.

Proof. The proof of Theorem 1 follows from expansion (13), obvious equality (14) and limit corre-
lation formula (10).

2 System of differential equations satisfied by the confluent function H
(n,1)
A

We represent the confluent hypergeometric function H
(n,1)
A , defined by the equality (11), in the form

H
(n,1)
A

[
a,b;

c;
x; y

]
=

∞∑
|k|+l=0

A (k; l)
n∏
j=1

x
kj
j · y

l, (16)

where

A (k; l) =
(a)|k|−l(b1)k1 . . . (bn)kn

k1! . . . kn!l!(c1)k1 . . . (cn)kn
.

By virtue of (7) and (8), we have

fj (k; l) =
Pj (k; l)

Qj (k; l)
, j = 1, n; g (k; l) =

1

G (k; l)
,
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here
Pj (k; l) = (a+ |k| − l) (bj + kj), j = 1, n;

Qj (k; l) = (1 + kj) (cj + kj), j = 1, n;

G = (1 + l) (a− 1 + |k| − l).
Series (16) satisfies a system of linear partial differential equations. Using differential operators

δj ≡ xj
∂

∂xj
, j = 1, n; δ′ ≡ y ∂

∂y
(17)

this system can be written in the form
[
Qj
(
δ1, . . . , δn; δ′

)
x−1j − Pj

(
δ1, . . . , δn; δ′

)]
ω = 0, j = 1, n,[

G
(
δ1, . . . , δn; δ′

)
y−1 − 1

]
ω = 0.

(18)

Now, substituting differential operators (17) into (18), we get

xi (1− xi)ωxixi − xi
n∑

j=1, j 6=i
xjωxixj + xiyωxiy + [ci − (a+ 1)xi]ωxi

− bi
n∑

j=1, j 6=i
xjωxj + biyωy − abiω = 0, i = 1, n,

yωyy −
n∑
j=1

xjωxjy + (1− a)ωy + ω = 0,

(19)

where ω (x; y) = H
(n,1)
A

[
a,b;

c;
x, y

]
.

Theorem 2. [13] System of differential equations (19) near the origin has 2n linearly independent
solutions:

1 : {H
(n,1)
A

[
a, b1, . . . , bn;
c1, . . . , cn;

x; y

]
,

C1
n :


x1−c11 H

(n,1)
A

[
a+ 1− c1, b1 + 1− c1, b2, . . . , bn;
2− c1, c2, . . . , cn;

x; y

]
,

.............................................................................

x1−cnn H
(n,1)
A

[
a+ 1− cn, b1, . . . , bn−1, bn + 1− cn;
c1, . . . , cn−1, 2− cn;

x; y

]
,

C2
n :



x1−c11 x1−c22 H
(n,1)
A

[
a+ 2− c1 − c2, b1 + 1− c1, b2 + 1− c2, b3, . . . , bn;
2− c1, 2− c2, c3, . . . , cn;

x; y

]
,

..............................................................................

x1−c11 x1−cnn H
(n,1)
A

[
a+ 2− c1 − cn, b1 + 1− c1, b2, ..., bn−1, bn + 1− cn;
2− c1, c2, . . . , cn−1, 2− cn;

x; y

]
,

x1−c22 x1−c33 H
(n,1)
A

[
a+ 2− c2 − c3, b1, b2 + 1− c2, b3 + 1− c3, b4, . . . , bn;
c1, 2− c2, 2− c3, c4, . . . , cn;

x; y

]
,

..............................................................................

x
1−cn−1

n−1 x1−cnn H
(n,1)
A

[
a+ 2− cn−1 − cn, b1, . . . , bn−2, bn−1 + 1− cn−1, bn + 1− cn;
c1, . . . , cn−2, 2− cn−1, 2− cn;

x; y

]
,

.................................................................
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1 :

{
x1−c11 . . . x1−cnn H

(n,1)
A

[
a+ n− c1 − . . .− cn, b1 + 1− c1, . . . , bn + 1− cn;
2− c1, . . . , 2− cn;

x; y

]
,

where Ckn =
n!

k!(n− k)!
are binomial coefficients.

When none of the numbers c1, c2, . . . , cn is equal to a negative integer, we obtain the general
solution of system (19) by multiplying these 2n partial solutions by arbitrary constants and then
taking their sum.

It is easy to see that in the first group there is one solution
(
C0
n = 1

)
, in the second group there

are C1
n = n solutions, the third group consists of C2

n = n(n − 1)/2 solutions, etc. So the system of
hypergeometric equations (19) really has 2n solutions.

However, within each group, the functions included in this group are symmetrical with respect to
the numerical parameters. Therefore, for further purposes, it is enough to select one solution from each
group, or more precisely, the solution that comes first in each group. So n + 1 linearly independent
solutions to the system of equations (19) will be identified by the formulas

ω0(x; y) = C0 H
(n,1)
A

[
a, b1, . . . , bn;
c1, . . . , cn;

x; y

]
, (20)

ωi(x; y) = Ci

i∏
j=1

x
1−cj
j ·H(n,1)

A

[
a+ i− |ci|, b1 + 1− c1, . . . , bi + 1− ci, bi+1, . . . , bn;

2− c1, . . . , 2− ci, ci+1, . . . , cn;
x; y

]
, (21)

where C0, . . . ,Cn are arbitrary constants; |ci| := c1 + . . .+ ci, i = 1, n.
Using the derivation formula (12), it is easy to verify that the functions defined in (20) and (21)

really satisfy to the system of partial differential equations (19).

3 Particular solutions

Consider the multidimensional ultrahyperbolic equation

L(u) ≡
n∑
j=1

sgn(p− j)

(
∂2u

∂x2j
+

2αj
xj

∂u

∂xj

)
+ λu = 0, p = 1, n− 1, n ≥ 2 (22)

in the n-dimensional cone

Ω =
{

(x1, . . . , xn) : x21 + . . .+ x2p > x2p+1 + . . .+ x2n, p = 1, n− 1; xj > 0, j = 1, n
}
,

where αj are constants (0 < 2αj < 1 , j = 1, n); λ is a real number;

sgn(z) :=

{
1, if z ≥ 0,
−1, if z < 0.

Let x := (x1, . . . , xn) be any point and ξ := (ξ1, . . . , ξn) be any fixed point of Ω. We search for a
solution of equation (22) as follows:

u (x; ξ) = P (r)ω (σp, ηp) , p = 1, n− 1, (23)

where

P (r) = r−2βp , β =
n− 2

2
+

n∑
j=1

αj ; (24)
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ω is an unknown function, depending on n+ 1 variables

σp := (σp1, σp2, . . . , σpn) , σpj = −sgn(p− j)4xjξj
r2p

, j = 1, n, (25)

ηp =
1

4
λr2p, r2p =

n∑
k=1

sgn(p− k)(xk − ξk)2, p = 1, n− 1.

First, we calculate the derivatives of u (x; ξ) with respect to the variables x1, . . . , xn:

∂u

∂xj
=
∂P

∂xj
ω + P

(
n∑
k=1

∂ω

∂σk

∂σk
∂xi

+
∂ω

∂η

∂η

∂xj

)
,

∂2u

∂x2j
= P

n∑
k=1

∂2ω

∂x2k

(
∂σk
∂xj

)2

+ 2P
n∑
k=1

(
n∑

l=k+1

∂2ω

∂σk∂σl

∂σl
∂xj

+
∂2ω

∂σk∂η

∂η

∂xj

)
∂σk
∂xj

+

n∑
k=1

[(
2
∂P

∂xj

∂σk
∂xj

+ P
∂2σk
∂x2j

)
∂ω

∂σk
+

(
2
∂P

∂xj

∂η

∂xj
+ P

∂2η

∂x2j

)
∂ω

∂η

]
+
∂2P

∂x2j
ω.

Now substituting product (23) into equation (22), we obtain

n∑
k=1

Ak
∂2ω

∂σ2k
+An+1

∂2ω

∂η2
+
n−1∑
k=1

n∑
l=k+1

Bk,l
∂2ω

∂σk∂σl
+

+
n∑
k=1

Bk,n+1
∂2ω

∂σk∂η
+

n∑
k=1

Dk
∂ω

∂σk
+Dn+1

∂ω

∂η
+ Eω = 0,

(26)

where

Ak = P

n∑
j=1

sgn(p− j)
(
∂σk
∂xj

)2

, An+1 = P

n∑
j=1

sgn(p− j)
(
∂η

∂xj

)2

,

Bk,l = 2P

n∑
j=1

sgn(p− j)∂σk
∂xj

∂σl
∂xj

, Bk,n+1 = 2P

n∑
j=1

sgn(p− j)∂σk
∂xj

∂η

∂xj
,

Dk =

n∑
j=1

sgn(p− j)

(
P
∂2σk
∂x2j

+ 2
∂P

∂xj

∂σk
∂xi

+ 2P
αj
xj

∂σk
∂xj

)
,

Dn+1 =

n∑
j=1

sgn(p− j)

(
P
∂2η

∂x2j
+ 2

∂P

∂xj

∂η

∂xj
+ 2P

αj
xj

∂η

∂xj

)
,

E =

n∑
j=1

sgn(p− j)

(
∂2P

∂x2j
+

2αj
xj

∂P

∂xj

)
+ λP.

Let us calculate the derivatives appearing in these coefficients:

∂σk
∂xk

= −sgn(p− k)

(
4ξk
r2

+
2 (xk − ξk)

r2
σk

)
, k = 1, n; (27)

∂σk
∂xj

= −sgn(p− j)2 (xj − ξj)
r2

σk, j 6= k, j, k = 1, n; (28)
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∂2σk
∂x2k

= sgn(p− k)

(
4ξk
xkr2

σk −
6

r2
σk

)
+

8 (xk − ξk)2

r4
σk, k = 1, n; (29)

∂2σk
∂x2j

= −sgn(p− j) 2

r2
σk +

8 (xj − ξj)2

r4
σk, j 6= k, j, k = 1, n; (30)

∂η

∂xj
=
λ

2
sgn(p− j) (xj − ξj) ,

∂2η

∂x2j
=
λ

2
sgn(p− j), j = 1, n; (31)

∂P

∂xj
= −2βr−2β−2sgn(p− j) (xj − ξj) , j = 1, n; (32)

∂2P

∂x2j
= 4βr−2β−2

[
(1 + β)

(xj − ξj)2

r2
− 1

2
sgn(p− j)

]
, j = 1, n. (33)

Taking into account (27)–(33), the coefficients of equation (26) take the form

Ak = −4P (r)

r2
ξk
xk
σk (1− σk) , Bk,n+1 =

4P (r)

r2
ξk
xk
σkη +

λ2

2
P (r)σk, k = 1, n; (34)

Bkl =
4P (r)

r2

(
ξk
xk

+
ξl
xl

)
σkσl, k < l, k, l = 1, n; An+1 = −λP (r)η, (35)

Dk = −4P (r)

r2

{
(2αk − βσk)

ξk
xk
− σk

n∑
i=1

ξi
xi
αi

}
, k = 1, n; (36)

Dn+1 =
4P (r)

r2
η

n∑
i=1

ξi
xi
αi − λP (r)β, E =

4βP (r)

r2

n∑
i=1

ξi
xi
αi + λP (r). (37)

Substituting coefficients (34)–(37) into equation (26) and grouping similar terms, we obtain

σi (1− σi)
∂2ω

∂σ2i
− σi

n∑
j=1,j 6=i

σj
∂2ω

∂σi∂σj
+ σiη

∂2ω

∂σi∂η
+ [2αi − (β + αi + 1)σi]

∂ω

∂σi

−αi
n∑

j=1,j 6=i
σj
∂ω

∂σj
+ αiη

∂ω

∂η
− βαiω = 0, i = 1, n,

η
∂2ω

∂η2
−

n∑
j=1

σj
∂2ω

∂σj∂η
+ (1− β)

∂ω

∂η
+ ω = 0.

(38)

Thus, the multidimensional ultrahyperbolic equation (22) equivalently reduced to system (38).
Comparing system (38) with system (19) and, by virtue of (23), (20) and (21), we obtain particular

solutions of equation (22):

qp0 (x; ξ) = Cp0 r
−2β
p H

(n,1)
A

[
β, α1, . . . , αn;
2α1, . . . , 2αn;

σp, ηp

]
, (39)

qpj (x; ξ) = Cpj r
−2β−2j+4α1+...+4αj
p

j∏
k=1

(xkξk)
1−2αk ×

×H
(n,1)
A

[
β + j − 2α1 − . . .− 2αj , 1− α1, . . . , 1− αj , αj+1, . . . , αn;

2− 2α1, . . . , 2− 2αj , 2αj+1, . . . , 2αn;
σp, ηp

]
, (40)

where Cp0, . . . ,Cpn are arbitrary constants; β, σp and ηp are defined in (25); j = 1, n, p = 1, n− 1.
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4 Some properties of particular solutions

It can be shown directly that the particular solutions qpi (x; ξ) defined in (39) and (40) satisfy
equation (22) with respect to the variables x, but these functions with respect to the same variables
do not satisfy the adjoint equation

L∗(u) ≡
n∑
j=1

sgn(p− j)

(
∂2u

∂x2j
− ∂

∂xj

(
2αju

xj

))
+ λu = 0, x ∈ Ω. (41)

Let’s introduce some notations for brevity

x(2α) :=

n∏
i=1

x2αi
i , x̃

(2α)
j :=

n∏
i=1, i 6=j

x2αi
i , j = 1, n.

Lemma 1. If qpk (x; ξ) are particular solutions to equation (22) with respect to the variables x, then
the following functions

q̃pk (x; ξ) = x(2α)qpk (x; ξ) (42)

are satisfied equation (22) with respect to the variables ξ and adjoint equation (41) with respect to
the variables x, where k = 0, n, p = 1, n− 1.

Proof. From the definition of variables ξp and ηp (see eq. (25)) it follows that each particular solution
qpk (x; ξ) defined in (39) and (40) is symmetric with respect to the variables x and ξ. Therefore, the
arbitrary solution of equation (22) with respect to the variables x is simultaneously the solution of the
same equation with respect to the variables ξ and vice versa.

Now, assuming that the function qpk (x; ξ) satisfies equation L (qpk) = 0, we substitute the function
q̃pk (x; ξ) defined in (42) into the adjoint equation L∗ (q̃pk) = 0. First, we calculate the necessary partial
derivatives

∂q̃pk
∂xj

=
∂

∂xj

(
x(2α)qpk

)
= 2αj x̃

(2α)
j x

2αj−1
j qpk + x(2α)

∂qpk
∂xj

,

∂2q̃pk
∂x2j

= 2αj (2αj − 1) x̃
(2α)
j x

2αj−2
j qpk + 4αj x̃

(2α)
j x

2αj−1
j

∂qpk
∂xj

+ x(2α)
∂2qpk
∂x2j

,

∂

∂xj

(
2αj q̃pk
xj

)
= 2αj (2αj − 1) x̃

(2α)
j x

2αj−2
j qpk + 2αj x̃

(2α)
j x

2αj−1
j

∂qpk
∂xj

and substitute them into adjoint equation (41):

L∗ (q̃pk) = x(2α)L (qpk) = 0.

The last double relation completes the proof of Lemma 1.

Therefore, the following functions

qp0 (x; ξ) = Cp0 r
−2β
p

n∏
j=1

x
2αj

j ·H(n,1)
A

[
β, α1, . . . , αn;
2α1, . . . , 2αn;

ξp; ηp

]
, (43)

qpk (x; ξ) = Cpk r
−2β−2k+4α1+...+4αk
p

n∏
j=1

x
2αj

j ·
k∏
j=1

(xjξj)
1−2αj ×

×H
(n,1)
A

[
β + k − 2α1 − . . .− 2αk, 1− α1, . . . , 1− αk, αk+1, . . . , αn;

2− 2α1, . . . , 2− 2αk, 2αk+1, . . . , 2αn;
ξp; ηp

]
, (44)

are also partial solutions to equation (22).
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Theorem 3. If 0 < 2αj < 1, then the particular solutions qpk (x; ξ) defined in (43) and (44) have a

singularity of the order
1

rn−2p
at rp → 0, where k = 0, n, j = 1, n, p = 1, n− 1.

Proof. We consider the first particular solution qp0 (x; ξ), defined in (43), the singularity of the
remaining solutions is proved in a similar way.

By virtue of an equality 2β = n− 2 + 2α, where α := α1 + . . .+ αn (see eq. (24)), we can rewrite
the particular solution qp0 (x; ξ) in the form

q0 (x; ξ) =
1

rn−2p
q̃0 (x, ξ) ,

where

q̃p0 = Cp0
x(2α)

r2αp
H

(n,1)
A

[
β, α1, . . . , αn;
2α1, . . . , 2αn;

− 4x1ξ1
r2p

, . . . ,−4xpξp
r2p

,
4xp+1ξp+1

r2p
, . . . ,

4xnξn
r2p

,
1

4
λr2p

]
. (45)

Now we show that q̃p0 (x, ξ) is bounded at rp → 0. On the right side (45) we make a replacement
xj − ξj = εtj (j = 1, n), where t := (t1, . . . , tn) are new variables and ε ≥ 0, then

q̃p0 (x; ξ − εt) = Cp0
x(2α)ε−2α

T 2α
p

H
(n,1)
A

[
β, α1, . . . , αn;
2α1, . . . , 2αn;

1− z1(ε)

ε2
, . . . , 1− zn(ε)

ε2
,
1

4
λε2T 2

p

]
,

where

zj(ε) =
T 2
p ε

2 + sgn(p− j) · 4xj (xj − εtj)
T 2
p

, T 2
p =

p∑
j=1

sgn(p− j)t2j , j = 1, n.

Using limit correlation (15), we have

lim
ε→0

q̃p0 (x, ξ − εt) = Cp0
Γ(β − α)

42αΓ(β)

n∏
j=1

Γ (2αj)

Γ (αj)
<∞.

Thus the function q̃p0 (x; ξ) is bounded, hence the function qp0 (x; ξ) has the singularity of the order
1

rn−2p
at rp → 0.

Conclusion

In conclusion, we note that particular solutions satisfying the singular elliptic and ultrahyperbolic
equations (2) and (3) (respectively, equations (4) and (22)) are always expressed in terms of the
Lauricella function F (n)

A (respectively, the confluent hypergeometric function H
(n,1)
A ), the variables of

which differ from each other only in signs, depending on the equation under consideration.
During the study, it became clear that solutions to second-order equations are expressed in terms of

second-order hypergeometric functions, i.e. the order of the equation under consideration is equal to the
order of the hypergeometric function through which particular (fundamental) solutions are expressed.
This circumstance must be taken into account when constructing partial solutions of singular equations
when their order exceeds two. For example, knowing that in [3] all 8 self-similar solutions to the
equation

Lu = xnymut − tkymuxxx − tkxnuyyy = 0, m, n, k = const > 0
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in the domainD1 = {(x, y, t) : x > 0, y > 0, t > 0} are written by third-order hypergeometric Kampé
de Fériet function in two variables, we can guess that particular solutions of the equation

n∏
j=1

x
mj

j ·
∂u

∂t
− tl

n∑
k=1

 n∏
j=1,j 6=k

x
mj

j

 ∂pu

∂xpk
= 0, l > 0, mj > 0, j = 1, n

in the domain D2 = {(x, t) : x1 > 0, . . . , xn > 0, t > 0} are expressed through some confluent
hypergeometric function of n variables with the order p.
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