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On the solvability of the Goursat problem for one class of loaded
second-order hyperbolic equations
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In this paper the solvability of the Goursat problems for two locally loaded second-order hyperbolic equa-
tions with a wave operator in the main part was explored. The loaded terms for both equations have the
same trace, namely a part of one of the characteristics for the given hyperbolic operator, but the trace-
forming maps are different. Moreover, in the first case, any point of the domain under consideration and
the corresponding point of the load trace always lie on a straight line, which is a characteristic. In the
second case, this does not work. It turns out that in the first case the Goursat problem is Voltairean, and
in the second case it is Fredholmian.
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Introduction

Mathematical modeling of many very important processes in various fields of natural science leads
to boundary value problems for loaded partial differential equations. The main questions arising in
the theory of boundary value problems for ordinary partial differential equations remain the same for
boundary value problems for loaded partial differential equations. However, loads in equations makes
their own adjustments to the formulation of the study and the correctness of a particular boundary
value problem. For the first time, mentioning of a load eliminating the inequality of characteris-
tics in the second Darboux problem for one second order degenerate hyperbolic equation belongs to
A.M. Nakhushev in [1; 87]. Fundamental results on the effects of load, including spectral ones, for
significantly loaded parabolic equations of arbitrary order were obtained by M.T. Dzhenaliev and
M.I. Ramazanov. The main results in this direction are presented in their joint monograph [2]. Ex-
amples of the application of loaded differential equations, the main results of research in this field, as
well as a numerous references on this subject are given in monographs [1–3].

We note works [4–9] devoted to the Goursat problem for loaded hyperbolic equations. The works
[10–20] are devoted to boundary value problems for equations of the mixed type, boundary value
problems with periodic boundary conditions, initial value problems and boundary control problems for
loaded partial differential equations with both characteristic and non-characteristic load.

In this paper, research objects are two loaded second-order hyperbolic equations with a wave
operator in the main part

Lu = λu

(
α(x+ ky) + l

2
,
α(x+ ky)− l

2

)
, (1)

where
Lu = uxx − uyy + a(x, y)ux + b(x, y)uy + c(x, y)u, k = 1,−1, λ = const.

It should be noted that the traces of the equations for y = 0 coincide.
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1 Main part

Assume Ω = {(x, y) : 0 < x− y < l, 0 < x+ y < l}.
Goursat problem. In the domain Ω, find a solution to the equation (1) by class C(Ω̄) ∩ C2(Ω),

satisfying the boundary conditions

u
(x

2
,−x

2

)
= ϕ(x), 0 ≤ x ≤ l, (2)

u
(x

2
,
x

2

)
= ψ(x), 0 ≤ x ≤ l, (3)

where Ω̄ is the boundary for Ω.
It is assumed that

α(x) ≤ x, α(0) = 0, α(l) = l, 0 ≤ x ≤ l, (4)

a, b ∈ C1(Ω), c ∈ C(Ω̄), ϕ, ψ, α ∈ C(J̄) ∩ C2(J), (5)

where J̄ is the boundary for the interval J = (0, l).
Goursat problem (2), (3) for the equation (1) is studied separately for k = 1 and k = −1.

2 Case k = 1

Theorem 1. Goursat problem (2), (3) for equation (1) at k = 1 is solvable in a unique way.

First, we present the proof of the theorem for a ≡ b ≡ c ≡ 0, α(x + y) = x + y, that is, for the
model equation

uxx − uyy = λu

(
x+ y + l

2
,
x+ y − l

2

)
(6)

with the characteristic variables ξ = x − y, η = x + y, equation (6) and boundary conditions (2), (3)
take the form

vξη =
λ

4
v(l, η), (7)

v(ξ, 0) = ϕ(ξ), 0 ≤ ξ ≤ l, (8)

v(0, η) = ψ(η), 0 ≤ η ≤ l, (9)

where v(ξ, η) = u
(
η+ξ

2 , η−ξ2

)
.

The domain Ω goes into the rectangular domain Ω0 = {(ξ, η) : 0 < ξ < l, 0 < η < l}.
Suppose there is a solution to Goursat problem (8), (9) for equation (7), then it is easy to see that

v(ξ, η) is a solution to the following loaded integral equation

v(ξ, η)− λ

4
ξ

η∫
0

v(l, t)dt = ϕ(ξ) + ψ(η)− ϕ(0). (10)

Assuming ξ = l by (10) we get

η∫
0

v(l, t)dt =

η∫
0

e
λ
4

(η−t)[ϕ(l)− ϕ(0) + ψ(t)]dt.
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Substituting the resulting value for the integral into (10) and returning to the original variables,
we have

u(x, y) = ϕ(x− y) + ψ(x+ y)− ϕ(0) +
λ

4
(x− y)

x+y∫
0

e
λ
4

(x+y−t)[ϕ(l)− ϕ(0) + ψ(t)]dt.

Let’s go back to equation (1) with k = 1. In the characteristic variables ξ = x − y, η = x + y
equation (1) is written as follows

L1v ≡
λ

4
v(l, α(η)), (11)

where

L1v ≡ vξη +A(ξ, η)vξ +B(ξ, η)vη + C(ξ, η)v, a+ b = 4A, a− b = 4B, c = 4C.

Condition (5) guarantees the Riemann function R(ξ0, η0; ξ, η) for equation (11). Assume that the
right side of the equation is known. Applying the well-known formula [21] for solving the Goursat
problem, to find v(ξ, η) we obtain the following integral equation

v(ξ, η) = R(ξ, 0; ξ, η)ϕ(ξ) +R(0, η; ξ, η)ψ(η)−R(0, 0; ξ, η)ϕ(0)+

+

ξ∫
0

[
B(t, 0)R(t, 0; ξ, η)− ∂

∂t
R(t, 0; ξ, η)

]
ϕ(t)dt+

+

η∫
0

[
A(0, τ)R(0, τ ; ξ, η)− ∂

∂τ
R(0, τ ; ξ, η)

]
ψ(τ)dτ+

+
λ

4

ξ∫
0

dt

η∫
0

R(t, τ ; ξ, η)v(l, α(τ))dτ. (12)

Changing the order of integration in the double integral and passing to the limit at ξ → l in (12),
to find v(l, t), we obtain the following integral equation

v(l, η) =
λ

4

η∫
0

K(η, τ)v(l, α(τ))dτ = F (η), (13)

K(η, τ) =

l∫
0

R(t, τ ; l, η)dt,

F (η) =

l∫
0

[
B(t, 0)R(t, 0; l, η)− ∂

∂τ
R(t, 0; l, η)

]
ϕ(t)dt+

+

l∫
0

[
A(0, τ)R(t, τ ; l, η)− ∂

∂τ
R(0, τ ; l, η)

]
ψ(τ)dτ+

+R(l, 0; l, η)ϕ(l) +R(0, η; l, η)ψ(η)−R(0, 0; l, η)ϕ(0).
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Substituting α(η) into (13) instead of η, we obtain

v(l, α(η))− λ

4

α(η)∫
0

K(α(η), τ)v(l, α(τ))dτ = F (α(η)).

Condition (4) guarantees the existence of a unique solution v(l, α(η)) ∈ C(J̄). After finding
v(l, α(η)), a unique solution to Goursat problem (2), (3) for equation (1) at k = 1 in the domain
Ω due to (12) is given by the formula

u(x, y) = u0(x, y) +
λ

4

ξ∫
0

η∫
0

R(t, τ ; ξ, η)v(l, α(τ))dτdt,

where u0(x, y) is a solution to the same problem for equation (1) at λ = 0.

3 The case with k = −1

Theorem 2. Assume |λ| < 4
Ml , where M = maxΩ̄0

∣∣∣ α(s)∫
0

R(t, τ ; l, α(s))dτ
∣∣∣, R(ξ0, η0; ξ, η) is the

Riemann operator for L1, then Goursat problem (2), (3) for equation (1) at k = −1 is solvable in a
unique way.

Proof of Theorem 2. In the characteristic variables ξ = x− y, η = x+ y equation (1) for k = −1
takes the form

L1v ≡
λ

4
v(l, α(ξ)).

Applying the same reasoning as for k = 1, to find v(l, α(ξ)), we obtain the following Fredholm
integral equation with the spectral parameter

v(l, α(ξ))− λ
l∫

0

K(α(ξ), t)v(l, α(t))dt = F (α(ξ)), (14)

where

K(α(ξ), t) =
1

4

α(ξ)∫
0

R(t, τ ; l, α(ξ))dτ.

By virtue of continuity K(α(ξ), t) and F (α(ξ)) respectively in Ω̄0 and J̄ , in Ω̄0 for |K(α(ξ), t)|, we get
some maximum value M , |F (α(ξ))| has some maximum value M1.

Under these conditions, solution (14) can be obtained, for example, by the method of successive
substitutions in the form of an absolutely and uniformly convergent series.

Let us now consider the case when a ≡ b ≡ c ≡ 0, α(x− y) = x− y, that is, the Goursat problem
(2), (3) for the equation

uxx − uyy = λu

(
x− y + l

2
,
x− y − l

2

)
. (15)

Theorem 3. Goursat problem (2), (3) for equation (15) is solvable in a unique way for all λ 6= 8
l2
.

In the case when λ = 8
l2
:

1) The homogeneous problem corresponding to problem (2), (3) for equation (13) has an infinite
number of solutions

u(x, y) = C(x+ y)(x− y)2,
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where C is the arbitrary constant.

2) An inhomogeneous problem is solvable if and only if
l∫

0

[ϕ(l)−ϕ(0)+ψ(t)]dt = 0. If this condition

is satisfied, it also has infinitely many solutions.
Proof of Theorem 3. With the characteristic variables ξ = x − y, η = x + y equation (15) takes

the form
vξη =

λ

4
v(l, ξ). (16)

Integrating (16) over ξ ranging from 0 to ξ, and then over η ranging from 0 to η, we verify that v(ξ, η)
is the solution to the following loaded integral equation

v(ξ, η)− λ

4
η

ξ∫
0

v(l, t)dt = ϕ(ξ) + ψ(η)− ϕ(0).

Replacing ξ by l and η by ξ in the last relation, we obtain

v(l, ξ)− λ

4
ξ

l∫
0

v(l, t)dt = ϕ(l) + ψ(ξ)− ϕ(0). (17)

Equation (17) is the simplest integral equation with a spectral parameter and a degenerate kernel.
Since the degenerate kernel consists of one term, the corresponding system becomes a single equa-

tion

q1 =
λ

4

( l∫
0

tdt

)
q1 +

l∫
0

[ϕ(l) + ψ(t)− ϕ(0)] dt,

where q1 =
l∫

0

v(l, t)dt, then the result of the Theorem 3 follows directly.

Conclusion

If we consider the Goursat problem

u
(x

2
,
x

2

)
= ϕ(x), u

(
l + x

2
,
l − x

2

)
= ψ(x), 0 ≤ x ≤ l (18)

for equation (15), then it is obvious that equation (17) takes the form

v(l, ξ)− λ

4

l∫
0

(ξ − l)v(l, t)dt = ϕ(l) + ψ(ξ)− ϕ(0),

whence it follows that it is uniquely solvable for all λ 6= − l2

8 . We find that for λ = l2

8 Goursat problem
(2), (3) for equation (15) is not correct, and Goursat problem (18) for of the same equation is correct,
but for λ = − l2

8 , vice versa.
As a consequence, equation (15) can be called an example of an equation for which the effect of

inequality of characteristics as carriers of Goursat data takes place.
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