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Introduction

Integro-differential equations (IDEs) are used to model many problems in science, engineering,
economics, medicine, control theory, micro-inhomogeneous media and viscoelasticity [1-9]. Very impor-
tant tools in solving of Boundary Value Problems (BVPs) with IDEs are the Parametrization Method
[10] and the Factorization (Decomposition) method, but the applicability of the last method is confined
to certain kinds of integro-differential operators, corresponding to BVPs and cannot be universal for
all problems. There are several types of decomposition methods for solving BVPs with IDEs. The most
popular is Adomyan decomposition method and its modifications, where the Adomyan polynomials
are used, and approximate solutions of given BVPs are obtained [11-19]. Other types of decomposition
method were considered in [4], [5], [20]. Factorization of tensor integro-differential wave equations of
the acoustics of dispersive viscoelastic anisotropic media is performed for the one-dimensional case in
[4]. The integro-differential one-dimensional tensor wave equations of the electrodynamics of dispersive
anisotropic media are factorized in |5]. The initial first order integro-differential operator with arbitrary
nonpositive parameters was decomposed on three factors in [20] and further the sufficient conditions
for the existence of a solution are obtained on half line.

We propose in this article another factorization method on two factors which successfully was
applied in the articles by the authors [6], [7], [21]-[26] and by another author in [27]. Here we generalize
the results of these papers and study a more complicated boundary value problem with an abstract
operator equation

Biu = A%u — VO(Agu) — YO(A2u) — SU(AAgu)—

—GU(A%u) = f, D(B1) = D(A?)

on a Banach space X, where A, Ay are abstract linear differential operators, the functional vectors
®, U are defined on X,, and vectors VY, S,G € X,,. We obtained the conditions on the vectors
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V,Y, S, G under which the operator B can be factorized in a product of two second degree operators,

i.e. By = BB( with
Bou = A2u — So®(Agu) — Go®(A3u) = f, D(Bg) = D(A3),

Bu = A%u — SU(Au) — GU(A%u) = f,  D(B) = D(A?)

and then found the exact solution in closed form of the given problem, using the exact solutions of
the above two simple problems. Using of the obtained formula for the exact solution of the equation
Biu = f makes it possible to easily obtain exact solutions of a class of Fredholm IDEs with ordinary
or partial differential operators. The decomposition method, applied to abstract operator equation

Tu=Au— Ku—GY(Au) = f, D(T)=D(A)={ue X, : ®(u) =0}

on a Banach space X for solving boundary value problems for n-th order linear Volterra-Fredholm
integro-differential equations of convolution type, was used in [6], [7], where were constructed the
closed-form solutions to the two-phase integral model of Euler-Bernoulli nanobeams in bending under
transverse distributed load and various types of boundary conditions. In [21]| the operator B; corres-
ponding to the abstract operator equation

Blu = AAou - S(Aou, (I)t>Hm - G<AAOU, Ft>Hm = f
on a Hilbert space H was factorized in two operators, i.e. By = BgBg,, where
Bgou = Agu — Go(Agu, @Y gm = f,  D(Bg,) = D(Ap),

Bou = Au — G{Au, F"Y ym = f, D(Bg) = D(A).

Further, using the exact solutions of these two simple equations, the exact solution of Byu = f was
obtained. An exact solution to the abstract operator equation

Biu= Au — S®(Agu) — GV (Au) = f, D(B;1) = D(A)

on a Banach space was found in [22| by factorization of Bj in two simple operators, and then the
corresponding theory was applied for solving of Hyperbolic integro-differential equations with integral
boundary conditions. The exact solution to the abstract operator equation

Biu = A*u — S®(Au) — GU(A*u) = f, D(B;) = D(A?)

on a Banach space was obtained in [23]. The operator Bj corresponding to the abstract operator
equations

Biu = A%u — SF(Au) — SF(A%u) = f,
D(B;) = {u € D(A?) : ®(u) = NU(Au), ®(Au) = DF(Au) + NU(A%u)}, and
Biu = A%y — SF(Au) — SF(A%u) = f,
D(By) = {u € D(A?): ®(u) = NV (u), ®(Au) = DF(Au) + NV (Au)},

where D, N are matrices, .S, G are vectors, by decomposition method for squared operators is factorized
in By = B? and then the exact solution of Bju = f in closed form is easily obtained in [24], [25],
respectively. The exact solution to the abstract operator equation

Blu = Au — S<I>(u) - G\II(A()U) = f, D(Bl) = D(AA())
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on a Banach space by factorization of B; in two simple operators B, By, was investigated in [26]. The
exact solution in closed analytical form to the abstract operator equation

Bru = Au — SoF(Au) — Go®(Au) = f, D(B1) = D(A)

was obtained by decomposition method in [27], and then was applied for solving some ordinary integro-
differential and partial integro-differential equations. Our decomposition method is simple to use and
can be easily incorporated into any Computer Algebra (CAS). The paper is organized as follows.
In Section 1 we give an introduction, terminology and notation. In Section 2 we develop the theory
for the solution of the problem Bix = f when B; = BBy with B and By being two linear second
degree abstract operators and give an example of boundary problem with integro-differential equation
demonstrating the power and usefulness of the methods presented.

Preliminaries

Throughout this paper by X we denote the complex Banach space and by X* the adjoint space of
X, i.e. the set of all complex-valued linear and bounded functionals f on X. We denote by f(z) the
value of f on x. We write D(A) and R(A) for the domain and the range of the operator A: X — Y,
respectively. An operator A : X — Y is said to be injective or uniquelly solvable if for all uj,us € D(A)
such that Au; = Aus, follows that u; = us. Remind that a linear operator A is injective if and only
if ker A = {0}. An operator A : X — Y is called surjective or everywhere solvable if R(A) =Y. The
operator A : X — Y is said to be bijective if A is both injective and surjective. An operator A and the
corresponding problem Au = f are called correct if A is bijective and its inverse A~! is bounded on
Y. Lastly, if for operator By : X — X there exist two operators B and By such that By = BBy then
we say that BBy is a decomposition (factorization) of By. If g; € X and ¢, € X*i=1,...,m,x € X,
then we denote by G = (g1,...,9m), ¥ =col(¢1,...,¢n) and ¥(z) =col(¢1(x), ..., ¥m(x)) and write
GeXy, YeXh . ItG=1(91,-,9m), 91, -, gm € D(A), then we write G € [D(A)],,. We will denote
by U(G) the m x m matrix whose i, j-th entry 1;(g;) is the value of functional ¢; on element g;. Note
that ¥(GC) = ¥(G)C, where C is a m x k constant matrix. We will also denote by I,,, the identity
m X m matrix.

We will use the following Theorem, that have been shown in [20] and is recalled here but with a
different notation tailored to the needs of the present article.

Theorem 1. Let X be a complex Banach space, the vectors Gy = (910, --+s gm0), G = (91, -+, gm), S =
(S1y..ry Sm) € X, the components of the vectors ¥ = col(1, ..., ¥p,) and ® = col(¢1, ..., pm) belong
to X* and the operators By, B, B : X — X defined by

Bou = Aou - Goq)(Aou) = f, D(Bo) = D(Ao),

Bu = Au — GU(Au) = f, D(B) = D(4),
Blu = AAou — S(I)(Aou) — G\I/(AA()U) = f, D(Bl) = D(AA()), (1)

where Ag, A : X — X are linear correct operators and Gy € [D(A)],. Then the following statements
are fulfilled:
(i) If
S € [R(B),, and S = BGo= AGy— GU(AGy), (2)

then the operator B; can be factorized in By = BBy.
(ii) If the components of the vector ® are linearly independent elements of X™* and the operator
Bj can be factorized in By = BBy, then (2) is fulfilled.
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(iii) If there exists a vector Gy € [D(A)]m, satisfying the equation AGy — G¥(AGy) = S, then B
is bijective if and only if the operators By and B are bijective, which means that

det V =det[l,, — ®(Go)] #0 and det L = det[],, — ¥(G)] # 0.
In this case, the unique solution to the boundary value problem (1) for any f € X, is given by
u=DB'f=A v+ Ay 'GoV @ (v), where v=A"'f+ATIGLTIU(f). (3)

Lemma 2. Let X be a complex Banach space. Then a linear operator A : X — X is bijective if and
only if A? is bijective.

Proof. Let A be bijective and u € ker A2. Then A%u = 0. Applying twise the operator A~! to this
equation we obtain u = 0 which proves that ker A2 = {0}. Consider the equation A%u = f, f € X.
Applying twise the operator A~ to this equation, we obtain u = A~! (Aflf) = A=2f for every f € X,
which proves that R(A%) = X. Thus A? is a bijective operator.

Conversely, let A2 be bijective. Then ker A2 = {0} and R(A?) = X, and from well-known relations

ker A C ker A%, R(A?%) C R(A),

for a linear operator A : X — X, follows that ker A = {0} and R(A) = X. Hence A is a bijective
operator.

Bellow we prove the main theorem.

Theorem 3. Let X be a complex Banach space, Ag, A3, A, A% : X 2 X linear operators and the
vectors V)Y, G,S € X, @, 0 € [X*],n, So,Go € [D(A?)]n. Then for the operators Bg, B, By : X —
X, defined by

Bou = AZu — So®(Agu) — Go®(A3u) = f, D(By) = D(A2), (4)
Bu = A%u — SU(Au) — GU(A%u) = f,  D(B) = D(A?), (5)

Biu = A?A2u — V®(Agu) — YP(A3u) — SU(AAZu) — GU(A2A%u) = f,
D(B1) = D(A’A}) = {u € D(A) : Aju € D(A*)}, (6)

hold true the next statements:
(i) If the vectors Go = (910, s gmo) and Sy = (810, ..., Smo) belong to [D(A?)],, and satisfy the
system of equations

V = BSy = A2S) — SU(AS,) — GU(A2S), (7)
Y = BGy = A2Gy — SU(AGy) — G¥(A%Gy), (8)

then the operator By can be factorized in By = BBy.
(ii) If Go = (910, -, 9m0), So = (510, --+sSmo) € [D(A?)],, and the operator By is factorized in
B, = BBy, where A, Ay are bijective, and if the functional vectors

(f) = (P+ A1 AT2) (f) = ®(ATAT2S), B(f) = (@ A7) (f) = B(A7))

are linearly independent on X, then (7), (8) hold true.
(iii) The operators By, B are bijective if and only if, respectively,

. -1 . -1

det Ly = det <Im _((II))((?O) So) Ij(_Aq)(gg))) # 0, 9)
_ -1 _ -1

det L = det <Im _‘\II’,((‘;) 5) Jf(_Am(g))) # 0, (10)
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and in this case the unique solutions of (4), (5) for any f € X are given by

-1
u=By'f =A% f + (45250, Ag>Go)Ly ! (q’%‘(‘})f )> 7 (11)
u=B7lf=A"2f + (A28, A72G)L! (‘P(\I]“l(}l)f)> , (12)

respectively.
(iv) If VY are defined by (7), (8) and A, Ay are bijective operators, then B; is bijective if and only
if (9) and (10) are fulfilled, and the unique solution of (6) in this case for every f € X is given by

u= Ay + (Ay 23S0, Ay 2Go)Ly* (@((gl(i;v)) , where (13)
v=A"2f 4+ (A28, A72Q)L (‘I’(\P"l(}l)f )) . (14)

Proof (i). Taking into account that Gy, So € [D(A?)],, we obtain
D(BBy) = {u € D(By) : Bou € D(B)} =
={u e D(A2) : A2u — Sy®(Agu) — Go®(A%u) € D(A?)} =
= {u € D(A3) : A2u € D(A?)} = D(A%A%) = D(B,).
We put y = Bou. Then for each u € D(A?A3) since (5) and (4) we have
BBu = By = A%y — SU(Ay) — G\Il(Azy) =
= A’Bou — SU(ABgu) — GU(A’Bgu) =
= A?[A%u — So®(Agu) — Go®(AZu)]—
—SU (A[Afu — So@(Agu) — Go®(Afu)]) —
—GU (A*[Afu — So®(Agu) — Go®@(Afu)]) =
= A2A%u — A%Sy®(Agu) — A2Go®(Au)—
—SU (AA§u — ASy®(Agu) — AGy®(Aju)) —
—GU (A*Aju — A?Sy@(Agu) — A’ Go®(Afu)) =
== AQA%U - A2SO(I)(A()U) - A2G0<I>(A3u)f
—SU(AAZu) + SW(ASy)®(Agu)+
+SU(AG))P(AZu) — GU(A?Alu)+
+GU(A%S)®(Agu) + GU(A2Go)P(Adu).

So we obtain
BBou = A2A%u — [A%Sy — SU(ASy) — GV (A%S,)]®(Agu)—

—[A%Gy — SU(AGy) — GU(A%Gy)]|®(Adu)—
—SU(AA3u) — GU(A%A3u), or
BBou = A2A%u — BSy®(Agu) — BGo®(A2u) — SU(AAZu) — GU(A2AZu), (15)
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where the relations
BSy = A%2Sy — SU(ASy) — GU(A2Sy),

BGy = A%Gy — SU(AGy) — GU(A%GY)

follow by substituting u = Sy and v = Gy in (5). By comparing (6) with (15), it is easy to verify that
BBou = Byu for each u € D(A2A2) if (7), (8) hold true.

(ii) Let now BBou = Bju for each u € D(A?A3). Then by subtraction for each u € D(A%A32), we
get BBou — Biu = 0, which implies

(BSy — V)®(Agu) + (BGy — Y)®(A3u) =0,

or, since the operators A, Ay are bijective and, by Lemma 2, the operators A2, A3 are bijective too, we
have
(BSy — V)®(A, A2 A% A%u) + (BGo — Y)P(A 2 A% A3u) = 0,

or denoting f = A?A2u, for each f € X we get
(BSo = V)@(A5 ' A7) + (BGo — Y) (AT f) =0,

which is
(BSy — V)®(f) + (BGo — Y)®(f) =0, VYfeX.

The last equation, because of the vectors <_T:>, & are linear independent on X, gives V = BSy, Y = BGy.
(iii)-(iv) Let the operator B; and the vectors V,Y be defined by (6), (7) and (8), respectively.
Equation (6) can also be written in matrix notation as

Byu = A2A%u — (BSy, BGy) (‘D<A0“)> —(5,G) (‘I’(AA%“))) =/,

P(A3u) W(A2A%u
or ( 142 ) (A 1A2A2 )
A2 A2, (0] AO_ AOU . L\ - OU o
or . .
Biu = AAgu — S®(Agu) — GY(AAgu) = f, D(B1) = D(AA), (16)
where _ _ _ _
A:A27 AO :A27 SZBGO? G: (S7G)7 GO - (SO7GU)7 (17)
B =col(PxAy', @), T=col(WsA' V) (18)

and (@ x Ag')(v) = ®(A;'), (¥ A~Y)(v) = ¥(A™'v). Remind that by Lemma 2, the operators
A= A? and Ay = A3 are bijective, because of A and Ay are bijective. Notice that the components of

the vectors ® and W are bounded on X, since the operators Aal, A~1 are bounded, the components of
the vectors ® and ¥ belong to X* and for any f € X the elements AglA*Qf, A72f € X. It is easy
to verify that Equations (4) and (5) can be equivalently represented in matrix form:

Bou = Agu — Go®(Aopu) = f,  D(Bo) = D(Ap),

Bu=Au—GU(Au) = f,  D(B)= D(A).

Now by Theorem 1, where instead of B, By, By, S,G,®,¥, A, Ay, L,V and m we have B, By, By, §, é,
ZI;, ‘I/,A, Ao, L,V and 2m, respectively, we conclude that the operator By can be factorized in By =
BBy if N o N

AGy — GU(AG)) = G. (19)
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It is easy to verify that Equation (19) is equivalent to System (7), (8). Also by Theorem 1, the operator
B; is bijective if and only if

det V = det[Ioy, — ®(Go)] #0 and  det L = det[lo, — W(G)] # 0,

respectively. The last inequalities, since

~ =~ (%A (S0) (DxA;N)(Go)\ [ ®(A;1S0) P(A;'Go)
@(GO)_< ‘I’(OSO) 0 ‘@(OGO) 0>_< ‘I’((igo)o CD(OGO)O)’
=~ ((TxATH(S) (TxATHG)\  [(¥(ATLS) v(AaTlG)
q’“”‘( u(s) (@) >‘< us) W) )

give (9) and (10). Let Bju = BBou = f, f € X. By Theorem 1 using (3), since B, By are bijective
operators, we obtain the unique solution of (16) or (6)

u=Bylv=A1v+ AaléoLalé(’U), where
v=B7lf = A1 f + ATIGLTIU(f),
which since (17), (18) gives

u=Bylv= Ay + (4,250, A;%Go)Ly* <<I>(£lg);v)) , where (20)
_R-lr_ 42 20 4-2m7.-1 ‘I’(Alf)>
v=B  f=A"f4+(A7°S,A"°G)L < w(f) ) (21)

So we proved (13), (14). From (20), (21) we immediately obtain (11), (12). The theorem is proved.
The next theorem follows from Theorem 3 and is useful in applications and gives the decomposition
B, = BBy, where B, By beforechand we do not know. Also this theorem gives a criterion for the
bijectivity of By and the solution of Bju = f in an elegant way.
Theorem 4. Let the space X and the vectors VY, S, G, P, ¥ be defined as in Theorem 3 and the
operator By : X — X by

Biu = A%u — V®(Agu) — Y®(A3u) — SU(AAgu) — GU(A%u) = f, D(B1) = D(A?),  (22)

where Ay : X — X is a bijective ni-order differential operator and A : X — X is a n-order differential
operator, n1 < n. Suppose that there exists a bijective linear differential n — nq order operator
A: X — X such that

A= AAy, D(B;)= D(A%A3) (23)

and

(24)

det L = det (Im — (A7) _‘I/(AlG)) £0.

—U(S) I, — Y (G)
Then the operator B is factorized into By = BBy, where By, B are defined by (4), (5), respectively,
and

So = A2V 4 (A28, A2G)L"! <‘I’(\I/A(;)V )> , (25)
Go= A" 4 (A28, A2G)L™! (‘I’(\IIA(;;/ )> : (26)

Furtermore the operator B is bijective if (9) is fulfilled, and in this case a unique solution to the
boundary value problem (22), (23) for any f € X is given by (13), (14).
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Proof. Substituting A = AAy into (22) we obtain the operator By in the form (6). Construct the
operators By and B by using (4) and (5), respectively, where for B we take the elements G, S, ¥ and
A from (22) and (23), and for By the elements Ay, ® and Sy, Go from (22) and (25), (26).

Note that the operator B, by Theorem 3 (iii), since (24) and bijectivity of A, is bijective, and that
taking into account (12) the system of equations (25), (26) can be represented as So = B~V and
Go = B7'Y. The last system, because of bijectivity of B, is equivalent to the system V = BSj and
Y = BG), which is the system (7), (8). Then by Theorem 3 (i), the operator By can be factorized
in B; = BBy. Furthermore by Theorem 3 (iv), since (24) and bijectivity of Ay, the operator B; is
bijective if (9) holds. The unique solution to (22), (23), by Theorem 3 (iv), is given by (13), (14). The
theorem is proved.

A reader can prove easily by Lemma 2 the next proposition.

Proposition 5. Let the operators Ay, A : C[0,1] — C|0, 1] be defined by

Aou(t) =u'(t) = f, D(Ag) = {u(t) € C1[0,1] : u(0) =0}, (27)

Au(t) =4'(t) = f, D(A) = {u(t) € C'[0,1] : u(1) = 0}. (28)

Then:
(i) The operators Ag, A are bijective and the unique solution of the problem (27) and (28) is given
by

u(t) = A7 (1) = /0 f(z)dz, (29)

t 1
u(t) = AV f(t) = /0 f()de /O f(z)dz, (30)

respectively.
(ii) The operators A2, A% : C[0,1] — C][0, 1] are defined by

Adu(t) =u"(t) = f, D(A3) = {u(t) € C?[0,1] : u(0) =0, «'(0) = 0}, (31)
A?u(t) =u"(t) = f, D(A?) = {u(t) € C?[0,1] : u(1) =0, /(1) = 0}, (32)

and bijective. The unique solution of the problem (31), (32) is given by

u(t) = A2 (t) = /0 (t — ) f(x)de, (33)

t 1
u(t) = A2 f(t) = /0 (t — ) f(2)de — /O (t — 2)f(x)dz, (34)
respectively.

Ezxample 6. Let the operator B : C[0, 1] — C|0, 1] be defined by
1 1
Biu=u"(t) — (5 —2t) / 2/ (x)dx — (6t — 3)/ a2 (x)dx—
0 0

1 1
—12/ zu" (x)dx — (2t + 1)/ zu® (2)dzx = 2 — 3t, (35)
0 0

D(B;) = {u(z) € C*0,1] : u(0) = v/(0) = «”(1) = «”'(1) = 0}. (36)

Then:
(i) By can be factorized as a product of two operators and is bijective.
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(ii) The unique solution of Problem (35)-(36) is given by

t2(12271#% — 46530t* + 63410t — 33760)
t)=— .
u(t) 531448 (37)

Proof (i). If we compare equation (35) with equation (22), it is natural to take Agu = u/(x), A3u =
u'(z), Adogu = v (x), Au =u® ny =1, V=5-2Y =6t—-3,85=12 G =2t+1, f=2-
3t, ®(Apu) = fol 22/ (z)dz, @ A%u fo 22u"(z)dz, V(AAgu) = folxu'"(x)da:, U(A%u) =

fol zu®(z)de.
Then

1 1
CD(U):/O 2% v(z)de, \I/(v):/o zv(z)dz. (38)

It is evident that ®, ¥ € X*. We chooce the operator A to satisfy (23), namely Au = AAou, D(B;1) =
D(A2A3). From Au(z) = AAgu(z), AAou = v (x) and Agu(z) = v/(z) we get AAgu(z) = AA%u(z)
Au"(z) = u"(x). Denote v(x) = u”(x), then Av(z) = v'(x). Let D(Ap) = {u(x) € C[0,1] : u(0) =
0}, D(A) = {v(x) € C1[0,1] : v(1) = 0}. So we proved that the operators Ay, A are defined as in (27),
(28). Then the operators A2, A% are defined as in (31), (32), respectively. Further we find

D(A%A2) = {u(t) € D(A2) : A2u(t) € D(A%)} =

= {u(t) € C?[0,1] : w(0) = «/(0) = 0, u"(t) € C?[0,1], u”’(1) =" (1) =0} =
= {u(t) € C*0,1] : u(0) = ' (0) = 0, u”(1) = u"' (1) = 0} = D(By).
This proves that the conditions (23) are satisfied and so we can apply Theorem 4. Using (30) and (38)
by simple calculations we find
ATIS = [V Sda — [} Sdx =12t — 12,
A—1G fg Gdr — [} Gdz = [j(2z + l)d:c - f01(2x +1)de =t +t -2,

= [ a(122 — 12)d:n = Q) = [} x(a? + @ — 2)dzr = —5/12,
\I/ fo 12zdx = 6, fo 21‘ +1) d:z: =7/6.
. (3 512 L (-1/12 —5/24
By (10), we obtain L = (—6 —1/6) . ThendetL #0 and L™ = < 3 3/2 ) By Theorem 4,

the operator B; is factorized in By = BBy, where By, B and Sy, Gy are defined by (4), (5) and (25),
(26), respectively. Using (34) for S =12, G =2z + 1, we obtain

A28 = [¥(t —x)Sdx — [ (t — x)Sdx = 6(t — 1)?,

ATAG =133 +12/2 — 2t + 7/6.
By (30), (3 )forV—5 2z, Y—6x—3 we get

A7V = fo dx—fo r)dr = 5t — 2 — 4,
ATlY = fo dx—fo da:—3t2 3t
ATV = [H(t —2)V fot—x z)dr = —t3/3 + 5t2/2 — 4t + 11/6,
A*ZY = t3 —3t?/2 —|— 1/2 and further by (38) we have
fol 5t — 12 —4)dt = —7/12,  W(A"Y)=—1/4,
fo 5—2t)dt =11/6,  U(Y)=1/2.

Applymg (25), (26) and the above calculations we get
So=So(t) = (t—1)2, Go=Go(t) =t(t—1)2
By (29) we find Aj'Sy = fot So(x)dz = t(t? — 3t + 3)/3,
Ay Gy = [f Go(x)dx = t*(3t> — 8t +6)/12.  Then
B(Ay1So) = [ t2(t> — 3t + 3)/3dt = 19/180,
B(Ay'Go) = [ t23(3t% — 8t + 6)/12dt = 31/1260,
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®(Sp) = [ 12(t — 1)%dt = 1/30,
B(Go) = [ t3(t — 1)2dt = 1/60.

Using (9) we obtain Ly = (161/180 —31/1260

~1/30  59/60 >'It is easy to verify that

det Lo # 0, Lt

1 74340 1860
0 7 66431 :

2520 67620

Then, by the Theorem 4, the operator B; is bijective.
(ii) Now we find the solution of (35)-(36). Using (29), (33), (30), (34), (38) we find

2 t3

t
Ag?Sy = —=(t* —4t+6), A;°Gy= 0

3t2 — 10t + 10

and for f=2—3t

1 1
ATl = 5 (4t = 3t2 1), A?f= 5(—#” + 2t — 1),

U(f) = /01(2 —3t)tdt =0, W(Alf)=1/24.

Using (14) from the above we get

B 1183 — 2562 + 17t — 3

v=0o(t) = Y

Then by (29), (33) and (38) we have

t 3 2
t(33t° — 100t 4 102¢ — 36
Agto(t) = / v(z)dr = — ( i ),
. 288

t2(33t3 — 1252 + 170t — 90)

A%0(t) = /O (t - 2)o(@)ds = — sl ,

t2(t? — 4t +6)

450 = [ =a)sa(wyte = [ (¢ =)= 1P = LD,

t3(3t2 — 10t + 10)
60 ’

1
1
O(v) = /0 22 (x)dr = ~ 988’

1 1 3 2
_ _ 33x° — 100z* + 102z — 36) 29
F(A-1y) — — 2 4-1 _ _/ A 2
(Ay v) /0 z Ay v(x)d ; T 588 dx 15120

Substituting these values into (13) we obtain (37).
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AOcTpakTijii omepaTopJiapAbl €KiHIII JapeXKeJli eKi onmepaTopra

dakTopu3aluaiay »KoHe OHbl MHTErpaablK auddepeHnnaaabIkK,
TenaeyJsiepre KoJaddany
N.H. ITapacuauc, E. [IpoBumac
Deccanrusn ynusepcumemi, Jlapuca, I'peyus

MakaJjtazia nepbec TybIHIBLIBL Tud depeHuaIabK oreparopmMer Hemece OpeirosibM HHTErpasiIbiK-1udde-
PeHIMAJIIBIK TeHJIeyiHe ColiKec KeJIeTiH KapamnaibiM JuddepeHnnaniblK orepaTopsl 6ap B abCTpaKTHIIbI
CBI3BIKTBIK oneparopbiMeH Bix = f mekapasbik ecebi 3eprresnren. Buektusri oneparop Bi Typinzgeri
dakTopusarusiHbl ©TKi3reH )karmaiina B = BBg, Bix = f ecebiniH mo/1 aHAIUTHKAJIBIK, TIEMMI aJIBIHIIBL,
myHaarsl B, Bg B1 kaparanga KapamnaiibiM, eKiHII J19pekeii €Ki ChI3BIKTHIK, aOCTPaKThLIbI oreparop. Bi

OIepaTOPBIHBIH, (DaKTOPU3AIUAIAY IIAPTTAPhI XKoHE OMEKTUBTIIIKTIH, KPUTEPHUiil TaObLIIbI.

Kiam cesdep: KOppeKTini oneparop, GUEKTUBTI OIEPATOP, CHI3BIKTHIK, OIEPATOPIAPAbl (paKTOPU3AIAAIAY

(>xikTey), @peArosbM HHTErPATIBIK- A OEPEHINATIBIK, TEHAEYIIeP], MIeKAPAJIbIK €CeNTep, JoJI IIENIiMAED.

dakTopm3anusa aOCTPAKTHBIX OIIEPATOPOB Ha JABa OllepaTopa BTOPOit
CTeNeHN 1 ee IIPUJIOKEHNHA K MHTerpo-anddepeHnnabHbIM

YPaBHEHUSM

WN.H. Ilapacumuc, E. IIpoBuaac
Vwnusepcumem @eccanruu, Japuca, I'peyus

Wccnenosana kpaeBast 3amada Bix = f ¢ abcrpakTHBIM JIMHEHHBIM OmepaTopoM Bi, COOTBETCTBYIOIIAsT
uHTEerpo-auddepennuaabHOMy ypaBHeHnio PpearosibMa ¢ OOBIKHOBEHHBIM AuddepeHInaIbHBIM OIIePaTo-
poM min auddepeHnraIbHbBIM OIepaToOpOM B YaCTHBIX MPOU3BOJHBIX. [losydeHo TouHOE aHAIMTHYECKOE
pemenne 3amaun Bixz = f B ciaydae, Korga OGmeKTUBHBIN omepaTrop Bi momyckaer dpakTopusaiuo BHUIA
B, = BBy, e B, By — gBa juHeitHbIX aOCTPaKTHBIX OIl€paTOpa BTOPO cTemeHu, 60jiee TPOCThIX, YeM

B, . Haitnens! ycmoBust pakTopu3anuu u Kpurepuit OneKTUBHOCTH onepatopa Bi.

Kmouesvie ca06a: KOPPEKTHBI ONEpaTop, OUEKTUBHBLA onepaTop, dakTopusanus (pas/oXkKeHue) JTHHEHHBIX

OIEPaTOpPOB, UHTErpO-AuddepeHImanbuble ypapaenus Openaroabpma, KpaeBble 3aJa4Un, TOYHbIE PEIIEHN.
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