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On the solvability of a boundary value problem for a two-dimensional
system of Navier-Stokes equations in a cone
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Due to the fact that the Navier-Stokes equations are involved in the formulation of a large number of
interesting problems that are important from an applied point of view, these equations have been the
object of attention of mechanics, mathematicians and other scientists for several decades in a row. But
despite this, many problems for the Navier-Stokes equation remain unexplored to this day. In this work,
we are exploring the solvability of a boundary value problem for a two-dimensional Navier-Stokes system
in a non-cylindrical degenerating domain, namely, in a cone with its vertex at the origin. Previously, we
studied cases of the linearized Navier-Stokes system or non-degenerating cylindrical domains, so this work
is a logical continuation of our previous research in this direction. To the above-mentioned degenerate
domain we associate a family of non-degenerate truncated cones, which, in turn, are formed by a one-
to-one transformation into cylindrical domains, where for the problem under consideration we established
uniform a priori estimates with respect to changes in the index of the domains. Further, using a priori
estimates and the Faedo-Galerkin method, we established the existence, uniqueness of solution in Sobolev
classes, and its regularity as the smoothness of the given functions increases.
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Introduction

As mentioned above, the Navier-Stokes equations have been the object of research by many
scientists due to their applied importance ([1-5|, and others). A significant number of practical problems
have not been solved to this day.

Boundary value problems for parabolic equations in domains with moving boundaries are often
models for ecological and medical processes [6], thermal processes in electrical contacts [7], thermo-
mechanics processes [8,9], and so on.

Among the works in this direction, we would like to mention the works [10] and [11]|, where the
solvability of boundary value problems for the Burgers equation (the so-called one-dimensional version
of the Navier-Stokes system) in domains with moving boundaries was researched. The results of these
works were continued in [12], where by using the Faedo-Galerkin method and a priori estimates, the
existence, uniqueness of the regular solution of the researched boundary value problems in Sobolev
spaces is established.

Previously, in [13-15], it was shown by the authors that homogeneous boundary value problems for
the Burgers equation and the nonlinear heat equation in an angular domain that degenerates at the
initial time, along with the trivial solution, have nontrivial solutions. For boundary value problems with
different inhomogeneities along the boundary, both unique and non-unique solvability were established
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in the work [16]. Also, the following works [15,17, 18] devoted to problems in degenerating domains
may be of interest to the readers.

In this work, we research the solvability of a boundary value problem with Dirichlet conditions for
a two-dimensional Navier-Stokes system in a cone with its vertex at the origin. In Section 1, we present
the formulation of the main boundary value problem and a sequence of auxiliary boundary value
problems in the truncated cones. Then, in Section 2, these problems are transformed into boundary
value problems in cylindrical domains by a change of independent variables. In Section 3, using the
previously obtained results from the work [19], we obtain unique solvability of each of the above
sequence of problems. In Section 4, auxiliary lemmas and the theorem on uniform a priori estimates
are given. Section 5 is devoted to the main result.

1 Preliminary statement of the problem

Let us consider the next cone Qg = {z,t1 : || <t1, 0 <t; < T < oo}, which has its vertex at
the origin. Let Q4, be the section of the cone @4, for a given ¢; € (0,77).

In the cone @, , which degenerates into a point at t; € (0,71), we will consider the following
boundary value problem (BVP) for a system of Navier-Stokes equations with respect to a two-dimensional
vector-function of the fluid velocity wu(z,t1) = {ui(x,t1), ua(x,t1)} and the fluid pressure function

p(x,t1):

ou &
ar A i - - ’ 1
o, vAu + Zz;u oz, f—Vp (1)
. 8U1 aUQ
divey = 24 9¥2 _ 2
ivu 0z, oy 0, (2)
u=0, {z, t1} € Xy, is the lateral surface of the cone. (3)

Remark 1. Since at the initial moment of time the considering domain degenerates into a point, in
the formulation of problem (1)—(3) we do not set the initial condition.

To the problem (1)—(3) we will set a sequence of BVPs, each of which will be considered in the
corresponding truncated cone.

Let n € N*={n e N:n>ny,1/ny <Ti}, v = {x1,22}, and consider the domain Q7;, = {z,t1 :
|z] < t1, 1/n < t; < T < oo} which is an inverted truncated cone and let 2, be the section of the
cone Q7 for a given ¢; € (1/n,T1). As we can see, now the domain Q7 does not degenerate into a
point at the initial moment of time ¢; = 1/n. For domains Q¢ and Q7, , the following inclusions are
also true: Qf C Q’;tlfl C ... C Qqt,, moreover, n11_>n010 Qpt, = Quty -

Now in the non-degenerating domain @7, (for each finite n € N*) we consider the following BVP:

2
Ooun, Oup,
o vAu, + ; Uin e = fn— Vpp, (4)
. Ouiy, Ousznp,
d = =0 5
V= o * 0z ’ (5)
up =0 {x, t1} € X7, is the lateral surface of the cone Q7. (6)
un(x,1/n) =0, = € Qyy/yis the section of the cone at t; = 1/n. (7)

A BVP of form (4)—(7) (for each fixed finite n € N*) was studied by us in [19], in which we
established theorems on unique solvability in Sobolev spaces.
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2 Transformation of the problem (4)-(7) and its meaningful statement

Now we transform BVP (4)—(7) so that it would be posed in a cylindrical domain. For this purpose
we use the transformation of independent variables and pass from the variables {z, 1} to variables
{y,t}. Then we obtain

- =t S
l”z—n_t?/u l_n_ta yz_t17 =n tlvl_ ) &

v =1y, t: |yl <1, 0 <t <T}is a cylindrical domain, and  is a section of the cylinder @y, for
any fixed t € [0, 7],

1
tlzl/n@t:O, ti1=Tr<t=T=n——.
Ty
Since . .
- Yy - A Yy
; t) £ u; —_— t) = _— 8
Um(y, ) Uin, <n—t’n—t)’ pn(y, ) Dn <n—t’n—t>’ ( )

we obtain the next derivatives with respect to t; of function w;y,(z,t1) (8)

O, _ 6ﬂin(y7t) (n N t)2 _ i aain(y7 t)

oty ot Oyg

(n —t)y.
k=1

As for the derivatives with respect to xj of function u;,(x,t1) (8), we have:

8Um (%m aQUm 82711’71
= n— t) ) =

= = — ).
oxy Oy 81‘% ayz (n—1)
Using the above we write down the BVP (4)—(7) in the cylindrical domain @y,

2

Oy, 1 Dy, 1 - 1
A1 n N ~in — Y — n — n
o VR —t;(u Ol il s e )
divi, =0, {y,t} €Qp, (10)
Un(y,t) =0, {y,ty €y ={y, t: lyl=1, 0<t <T}, (11)
Un(y,0) =0, y€ Q={y: |y| <1}. (12)

Now instead of BVP (9)-(12) we will consider a more general BVP:

2 2
oy, oy, aun ~ -
— — VAU n ? 'La n n» 1
RSSO ST W SR GV O (13)
divi, =0, {y,t} € Qy ={y,t: [yl <1, 0<t < T}, (14)
ﬁn(y, )_0 {yat} ezyt_{yat: ‘y| :17 0<t<T}7 (15)
ﬂn(yao) =0, ye Q= {y : |y’ < 1}7 (16)

where the given functions «(t), B(t),vi(vi,t), i = 1,2, and 6(t), satisfy the following conditions

ar < a(t), o' (t) < az, [BE)] < B, [B()] < Br, [0()] <01, VEE[0,T],

. (17)
‘%(yz,tﬂ S’yla ‘m‘ S’Yl) 221727 v{y7t}€QZt7
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where a1, as, v1, B1, 61, are given positive constants.

It is easy to see that for the coefficients of equations (9) conditions (17) are aslo met.

Let us give a definition of a weak solution to problem (13)-(16). For this purpose we use the
following notation [3,4,20-22] (here and further the designation U? = U x U is accepted):

V ={¢lp € (D(Q))*, divp =0},
H = the closure of V in (Ly(Q))?,

V = the closure of V in (H(Q))%
For f,g € H we set

(f.9)= [ fwawdy, 1fl=(f. )2

Q
and for w,v € V we set
2 -
o 0 (y) Ov o
(@oy=Y [FLDED gy ) = (a2
oy v o

Then, identifying H with its conjugate: H = H’, we obtain the following inclusions
VCcCH=H cV,

and each of these spaces is dense in the subsequent with completely continuous embedding operators.
We can understand conditions (15) as conditions of belonging the function 4(y, t) to space V for almost
all ¢.

Now we assume that

2 ou; 0U;
e R u, veV, Vte (0,T
Z: ayz 8yz y7 u7 v E ) 6 ( ) )7

2
b(@, 9, D) Z/ (%szdy,Vte(OT)
Lk=10

for a triple of such two-dimensional vectors 4, ¥, w, for which the corresponding integrals converge.
Problem 1. Let
fn € L2<O7 T (H_1<Q))2)7

be given and functions «(t), 8(t),vi(yi,t), i = 1,2, and §(¢) satisfy conditions (17).
It is required to find such @, and pn, p, € D'(Qy,), that

Gin € L(0,T;V) N Loo(0, T; H),

Oty
ot

aun

2
6 n = _
~ vt a(t) ) Z% (41,0) 5, + B0 = () Vi, (18)

tn(y,0) = 0. (19)

Mathematics series. No.1(113)/2024 87



M.T. Jenaliyev, A.M. Serik, M.G. Yergaliyev

Despite the apparent accuracy, in the formulation of Problem 1 we have one ambiguity: there is no
information regarding the derivative ‘9”” (y,t) and py,(y,t), there is only the following relation

2 ~

0
2l 05" + B0 on Q.

=1

ot

+0(t)Vpy = vAu, — aft 8un

HMM

therefore the meaning of condition (19) is not obvious.
If we take p(y) € V, then (Vpy,, ) = 0 in (D’(0,T))?, and (18) leads to equality

2 ~
() = vt )~ 2O, 1) + 3 (60050515 0) + 5O ) for any 9 € V- (20)
i=1 v

Using the following equality
b(ﬂnv ﬂnv QD) = 7b(ﬂn’ 12 ﬂn)v
we get that (20) is equivalent to

2 ~
(8;;",so) V(i ) + (D, 9 Tn) + 3 (m,wgy, 90> T B (o) for any p € V. (21)
i=1 ¢

Let
X = the closure of V in (W (Q2))?,

we have
0, -
- < O[]l x,

2
’b(ﬂm%ﬁn)‘ < CIHQRH%LOO(Q)P Z
L1(Q)

2,j=1

since V C (Loo(f2))?, and therefore

whence it follows that g € L1(0,T; X').

From (21) we obtain that

Oty
% € Ly(0,T; V') + L1(0,T; X"),

so that (19) makes sense (for example, in X”).
Thus, we obtain a different formulation of Problem 1.
Problem 2. Let
fn € La(0,T; V") (22)

be given and functions a(t), 5(t), vi(vi, t), i = 1,2, and 6(t), satisfy conditions (17).
It is required to find such ,, that

Un € Lo(0,T;V)N Loo(0,T; H), (23)
~ 2 ~
(Fee0) + vl )+ a@ine s 8) = 3 (4000 52.0) = 5Ot VoV, (20
i=1 v
iin(y,0) =0, y € Q. (25)
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Next we want to formulate Problem2 in relation to the BVP (4)-(7). To do this, first, we need
the following correspondence of function spaces in terms of independent variables {y,t} € Qy: and

{‘T7 tl} € Qgtlz

fa(y,t) € Lz(0,T; V') & fu(z,t1) € La(1/n,Ty; V),
Un(y,t) € Lo(0,T; V)N Loo(0,T; H) < up(x,t1) € La(1/n,T1; Vi) N Loo(1/n, Ty; Hy,),
etc., where for almost all t; € [1/n,Th],
Ve, = {¢l ¢ € (D(Qr,))?, dive =0},
H;, = the closure of V}, in (Ly(Qu,))?,

Vi, = the closure of Vi, in (W3 (Qgut,))%.

Problem 3. Let
fn(l‘,tl) S LQ(l/?”L,Tl;V;/I) (26)

be given. It is required to find such u(x,t;), that

Un<$,t1> ELg(l/n,Tl;V;gl)ﬁLoo(l/n,Tl;Htl), (27)
ouy,

<at7v) + Va(unav) + b(urwu’mv) = (f,’l)) VU € ‘/1517 (28)
1

U (, 1/”) =0, ze Qavl/n (29)

Finally, we formulate Problem 4 in relation to the original BVP (1)-(3), which is given in a
degenerating cone.

Problem /. Let

be given. It is required to find such u(x,t;), that

u(xatl) € LZ(OaTl; th) N LOO(OvTU Ht1)a (31)
ou
(at,v> + va(u,v) + b(u, u,v) = (f,v) Vv € V4. (32)
1

Further, we will use the following Lemma ([3], Lemma 1.6.1); [4], Lemma II.1.1):

Lemma 1. The trilinear form {@,0,w} — b(4,v,w) is continuous on V- x V x V, ¥Vt € (0,T'), and
the following estimate is valid

0yi

_ OUy, -
i Gy Ok dy| < il Ly

Q

|0kl Ly (02> 35k =1,2.
Lo(Q2)
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3 Solvability theorems for problems (22)-(25), (26)-(29) and (30)-(52)

According to the results of [19] we have:

(a) in the case of each of the domains represented by the cylinders Qyt» n € N¥, Theorems 1-3 and
Corollary 1 are valid;

(b) and in the case of each of the domains represented by truncated cones Q7 , n € N*, Theorems
4-6 and Corollary 2 are valid.

Theorem 1. Let for the functions a(t), B(t), vi(ys,t) and §(t) conditions (17) met. Then Problem 2
(22)-(25) has a unique (weak) solution

iy, 1) € WO0,T) = {v]v € L0 T3V), 52 € (0,7 V')

Theorem 2. Let the following be true along with the conditions of Theorem 1:

% € Ly(0,T: V"), fuly,0) € H.

Then for the solution @y, (y,t) to Problem 2 (22)—(25) we have the following inclusion

Ot
% € Lo(0,T;V) N Loo (0, T; H).

Theorem 3. Let the following be true along with the conditions of Theorem 2:
fn € Loo(0, T3 H).
Then for the solution @y, (y,t) to Problem 2 (22)—(25) we have the following inclusion
ln € Loo(0, T3 (W5 (92))?).
Corollary 1. Let the following be true along with the conditions of Theorem 3:
fu € Lo(0,T; H).
Then for the solution @y, (y,t) to Problem 2 (22)—(25) we have the following inclusion
in € La(0,T; (W5(2))%).
Theorem 4. Let fy(x,t1) € La(1/n,T1; V{,). Then Problem 3 (26)(29) has a unique (weak) solution

ov
up(z,t1) € W(1/n,Th) = {v|v € La(1/n, T1; V4, ), ot S Lg(l/n,Tl;Vt’l)}.

Theorem 5. Let the following be true along with the conditions of Theorem 4:

0 fn
€ L0 T VL), fula /) € Hyp

Then for the solution wuy(z, 1) to Problem 3 (26)—(29) we have the following inclusion

ouy,
aitl € L2(1/7’L,T1;V;51) ﬂLOO(l/na Tl;Htl)‘

90 Bulletin of the Karaganda University



On the solvability of a boundary ...

Theorem 6. Let the following be true along with the conditions of Theorem 5
fn € Loo(1/n,T1; Hy,).
Then for the solution uy,(x,t;) to Problem 3 (26)—(29) we have the following inclusion
Un € Loo(1/n, Th; (W3 (Q0))%).
Corollary 2. Let the following be true along with the conditions of Theorem 6
fn € La(1/n,T1; Hy,).
Then for the solution uy(z,?1) to Problem 3 (26)-(29) we have the following inclusion
un € La(1/n, T1; (W3 (25,))?).

Remark 2. Note that Problem 3 (26)—(29) corresponds to BVP (4)—(7).

Further, by using the results of Theorems 4-6 and Corollaries 2, for BVP 3 (26)-(29) we will show
the validity of the following theorem.

Theorem 7. Let the conditions of Theorem 6 and Corollary 2 be satisfied. Then there exists a
positive constant K independent of n, such that for the solution u,(x,t1) to BVP 3 (26)-(29) we have
the following estimate

”un(x7tl)H?W;’l(Q:tl))Q + ”Vpn(xytl)H?[Q( n ))2 S K- Fn S K- F,

xtq

where
Fn = [fn(z, 1/”)|2 + an(xvt1)|’%/[/21(1/n,T1;I/'t’1) + ||fn($at1)||?L2(Q;tl))2a

F = |f(z,0)]* + ”f(%tl)HI%vZ}(o;rl;\ql) + Hf(xatl)H%Lg(tal))Q'

1 . .
Qut, € Q' C . € Qur, and obviously  lim Q3 = Qur,.-

The proof of this theorem will be given in the next section.
Now we can formulate the main result of the paper, which will be proved in Section 5 on the basis
of the assertion of Theorem 7.

Theorem 8. Let the conditions of Theorem 7 be met. Then in the degenerating domain ;¢, the
two-dimensional BVP 4 for the system of Navier-Stokes equations (30)—(32) has a unique solution

{u(x,t1),p(x,t1)} in space
(W3 (Qut))? % La(0, T W3 () X,

where Wi (Qu¢,)/ Xz, and ||1/1(93)||W21(ta1)/xzt1 = kei?(ft ||1/J(33)+k:\|w21(91t1) are, respectively, a quotient
zrty

space and a quotient norm in the subspace X, consisting of all possible constants k = const defined
on the set Q.

Remark 3. Problem 4 (30)—(32) corresponds to BVP (1)—(3).
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4 Auziliary lemmas. Proof of Theorem 7

To prove Theorem 7, we need to establish the following lemmas.

Lemma 2. Let the conditions of Theorem 4 be met. Then there exists a positive constant K3
independent of n, such that for the solution u,(z,t1) to BVP (4)—(7) we have the following estimate

||un(x7t1)||%L2(Q;tl))2 + Hvun(xatl)H?Lg(Qgtl))Z < K ||fn(x7t1)‘|%L2(Q;t1))2 ) (33)

where
T

||Un($,t1)||2LQ(Qgtl):/|Un($,t1)|2dt1,
1/n

|un (x,t1)] / {ulnxtl + [ugn(x,t1)] }dm
thl

Proof. By multiplying equation (4) scalarly by the function w,(x, 1) in space Lo(€4¢,), we obtain

1d

3¢ lun(z, 1) + a(un (@, t1), un (@, 01)) = (ful@, 01), un(2, 1)),

since b(un(x,t1), un(z,t1), un(x,t1)) = 0. From here, according to the Cauchy e-inequality, using the
Poincare inequality ([21], 6.30) and integrating the result from 1/n to T3, we obtain the required
inequality (33).

Lemma 3. Let the conditions of Theorem 5 be met. Then there exists a positive constant Ko
independent of n, such that at all ¢; € [1/n,T}] for the solution u,(x,t1) to BVP (4)—(7) we have the

following estimate
t1
2+/ A (,t1) ||
oty
1/n
Ouy (z,t1)

Proof. By multiplying equation (4) scalarly by the function — g, in space Lo(Qy,), fort; = 1/n
we will obtain:

Oup (x,t1)
oty

dt1 < Ky [’fn(m7 1/”)‘2 + ”fn(xﬂt1)||12/V21(1/n,T1;Vt’1) : (34)

2
]f’%{;ﬁ/m - (fu, 1/n>,8“n<gj/”>) < If, 1/ | 2B L)
i.e., we get
2
N < ol (35)

Now we differentiate equation (4) with respect to ¢;, then by multiplying the equation scalarly

by the function %f;tl) in space L2(£2};,), and considering (by virtue of Lemma II.1.3 from [4]) the

following equality
ou,, Ouy,
b >y ) = 07
(u at, 8151)

2
Ouy, Oup\ _ (Ofn Oup
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We have
Oouy, Oouy, ou, Ouy, Oouy, 6un
b -, o Un, 5, =|-b , Un SC A, Un é
‘ (8151 8t1>’ ‘ <0t1 oty )‘ ° |l ot (L)’ la ”(L @z,))"
Oou, 3/2 Oup, 1/2 v || Ouy, 2 aun
<G| Zn| | L 0 <152 +cC n :
<050 | o] e =2 on o I H( @)’

Here we have used Lemma 1.6.2 from [3] and Young’s inequality (p~* + ¢! =1):

|AB| = <a1/pA) (al/qB>‘ < E‘A’p ’B‘q
a P qad
where y
3/2
:Haun B C@]un|1/2 aun s a:2—y7p:é’ (]:47
ot | Lagap,, )2 3 3
2 2 2
Ofn Oun\ _ o |Ofn]|On| _ C5|Ofn )" 1 |0un
8t1 8t1 atl 8151 2 (‘3t1 8t1

By using these inequalities and relations (35)—(36), we get uniform in ¢; and n required estimate (34).
The statement of Lemma 3 is proved.

Lemma 4. Let the conditions of Theorem 6 and Corollary 2 be met. Then there exists a positive
constant K3 independent of n, such that at all ¢; € [1/n, T3] for the solution wu,(x,t;) to BVP (4)—(7)
we have the following estimate

]Vun(ac,tl)]Q + / ]Aun(a:,tl)\Q dt1 < K3 - Fi,

1/n

where
Fin = |fa(z, 1/n)|2 + an(xatl)”l2/[121(1/n7T1;Vt’1) + ”f?’b(xatl)”%m(l/n,Tl;Htl) :

Proof. First, note that, by Lemma II.3.1 from [4] function B u,(z,t1), defined by equality
< By, v >= b(up, up,v) Yv € V;; almost everywhere on [1/n,T],

belongs to space Li(1/n,Ti; V{)).
We write equation (24) in the form

va(un(z,t1),0(z)) = (gn(z,t1),v(x)) Vo € Vy, (37)
where 5
gn(z,t1) = —% — Bup + fa (38)

Since uy, € Loo(1/n,T71; V4, ) and according to Lemmas 1.6.1-1.6.2 from 3]
\b(un(a:, tl)a Un(.%', tl)v 'U((L')| <

< Collun (2, t1) llacop,, 2 lun (@, )10 Lo, 2 < Cullun (@, 1) 0ll 2y, )2 (39)
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then Buy € Loo(1/n,T1; (Ly/3(%,))?). From (38) and the inclusion

Oun
aztt +fn€L (1/n,T1;Ht1>

(here we have used the statement of Lemma 3) we have

9n(@,t1) € Loo(1/n, T1: (Lay3(2,))?)- (40)
Further, applying the theorem from ([23]|, 309-311) and (|4], 1.2.5) for the elliptic BVP (37), we get

Up € Loo(1/n, T; (W4/3(Q;‘tl)) ), and the following estimates
2
Hun(l‘, tl) ”Loo(l/"’Tl?(Wf/s(ﬂztl))2) + ||pn($, tl)HLoo(l/n:Tl;Wi/J( Etl)/qu) <
2
<K Hgn(matl)HLoo(l/n,Tl;(L4/3(9”t1))2) ; (41)
where W, /3( t,)/ X2, 1s a quotient space in the subspace X}, consisting of all possible constants k =
const defined on the set €2}, . But according to Sobolev embedding theorem Wf/?’(Qgtl) Loo(S234,),

then u, € (Loo(Q%,))?.

xty
Now we can improve the inclusion (40). We replace inequality (39) with the following

[b(un(, 1), un (2, t1),0(2))] < Collunll(L (o, 2 llun (e, t)llv]],

from which it follows that Bu,, € Loo(1/n,T1; Hy, ). Thus, we obtain that g, € Loo(1/n,T1; Hy,).

Again, applying the theorem from ([23], 309-311) and ([4], [.2.5) for the elliptic BVP (37), we
get that u, € Loo(1/n,Th; (W3 (Q%,))?) C La(1/n,T1; (W3 (2%,))?), and estimates for the case of
Theorem 6:

2
et (s O w200, y2) + 1P (s L1 fmmwd (@ n/xE) S

<K ||gn($7tl)HLoo(l/n,Tl;Htl) ) (42)

and for the case of Corollary 2:
2 2
Hun(l‘, tl)||L2(1/n,T1;(W22(Q;Lt1))2) + ||pn($7 tl)HLQ(l/n,Tqu( a:tl)/thl) >

< K l|gn(@, Oy 1m0, - (43)
where W3 (Q7,)/X7, is a quotient space in the subspace X, consisting of all possible constants
k = const defined on the set Q7, . From here we also get that Vu, € Loo(1/n, Th; (W (Q2,))?) C
Lo(L/n, Ty; (W3 (1,))%)-

It remains to estimate the right-hand side in (41)—(43) with respect to the function f,(z,%1).
According to (38), it remains to estimate only the summand B u,,. We have

1B tnll Lo (1/n11:0:,) < C3llun(z, t1)]],
the right-hand side of which is estimated in Lemma 3. This completes the proof of Lemma 4.

Lemma 5. Let the conditions of Theorem 6 and Corollary 2 be satisfied. Then there exists a
positive constant K4 independent of n, such that for a solution to the boundary value problem (4)—(7)
the following estimate takes place

Oun(z, )|

oty (La(@m )2 + |‘Aun(x,t1)‘|?L2(Qgtl))2 + van(%tl)H?LQ(Q;ztl))z < Ky F, (44)
2 xtq

where
Fy = |f(x,0)]* + ’|f($,t1)||12/V21(0,T1;Vt'1) + ||f(mat1)||%L2(le))2‘
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Proof. The proof of Lemma 5 directly follows from the statements of Lemmas 3 and 4.
Thus, the statement of Theorem 7 follows from Lemmas 2, 5 and inequalities

2 2
1Fnllzaiap, 2 < 1 za(@er 2
i.e., we obtain the required estimate (44):
Hun(%tl)H?W;,l(Q;ztl))z + van(%tl)H?LQ(Qgtl))z S Ky Fop < Ky - Fy,

where
Fop = |fal, 1/n)|* + an<m7tl)”%/[/%(l/n,Tl;Vt’l) + an(xatl)H%L2(Qgtl))2 :

5 Proof of Theorem 8: the existence and uniqueness of a solution to boundary value problem (1)-(3)

Let {un(x,t1),pn(x,t1)} be a solution to boundary value problem (4)—(7), which exists and is
unique according to Theorems 4-6, Corollary 2 and Theorem 7. Denote by {u,(z,t1),pn(x,t1)} the
continuation of solutions {u,(x,t1),pn(x,t1)} by zero to the entire cone Q,,. Theorem 7 implies the
following inequality

”u’vn(xatl)H?Wg’l(tal))Q + ”vlf);(x’tl)H?LQ(thl))? < K-F,
that is uniform over n, where
F = 1£@,0)P + 1) gomay ) + 1700 gy e

It follows that from the bounded sequence {un(x, t1), Von(x, t1)},—; it is possible to extract a subsequence
(to denote the index of which we keep the letter n), such that the following limit relations take place:

Oup(z,t7) ou(x,t1)
oty oty

weakly in (L2(Qut, )%

Aup(x,t1) = Au(x,t;) weakly in (Lg(thl))2,

Up(x,t1) — u(x,t1) strongly in (Lg(thl))2,

Oug(z,t1)
8:1/‘1'

Vpn(z,t1) — Vp(x,t;) weakly in (Lg(thl))2.

Oupen (2, 1) ——

Uin (2, 1) D, Ugn (z,t1) — ui(z,t1) ug(z,t1) weakly in Lo(Qquy), i,k =1,2,
(2

Further, in a standard way, it is easy to show that
{ule,t),p(x,11)} € {W3 (Quin))? X La(0, Ths Wi (Qury)/Xor,) }

is the solution of the boundary value problem (1)—(3), where W3 (€.4,)/ X, is a quotient space in the
subspace X, consisting of all possible constants & = const defined on the set €24, .

We pass to the proof of uniqueness in problem (1)—(3). Let {@(x, t1), p(x, t1)} and {u*(x,t1), p*(z, t1)}
be two solutions of the boundary value problem (1)—(3), and let

u(x>t1) = ﬁ($,t1) - U*('rvtl)v p($,t1) :]3($,t1) —p*($,t1),
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which according to (1)—(3) satisfy the following equation:

(gtu,w> + va(u,w) + b(u, @, w) + b(u, u,w) — b(u, u, w) = 0.
1

If we take as the test function w = u, then we will have the equality

1 d _
57 ulBr, + vVl = b u, ), (45)
since b(u,u,u) = —b(u,w,u), b(u,u,u) =0, b(u,u,u)=0.

Further, proceeding in the same way as in the proof of Lemma 3, from (45) we obtain

d
Sillulf, < Kl

where K is a positive constant, and by Gronwall’s lemma it follows that v = 0, and thus the property
of uniqueness is proved.
This completes the proof of the main result of the work formulated in the following theorem.

Conclusion

The results of the work can be generalized to the case when the section of the cone for each
fixed t; can change according to the rule r = /2% + 23 < ¢(t1), t1 € [0,T1], ¢(0) = 0, under
some natural requirements for the function ¢(¢1). For example, the function ¢(t1) must satisfy the
following two conditions: 1°. in a sufficiently short period of time (0,#}) the function ¢(t1) could have
the representation ¢(t1) = pt1, where p is the given positive constant (in our work it was equal to
one); 2°. on the interval [t}, T3] the function ¢(#;) would be continuously differentiable and possess the
property of monotonicity, providing a one-to-one transformation from independent variables {x,¢;} to
variables {y,t}.
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Konycrars! ekiemmem i HaBbe-CToOKC TeH/ieysIepiHiH, XKyiieci YImiH
KOWBLJIFaH MIeKapaJbIK, €CENTiH IMeITiMIiIIri TypaJjbl

M.T. 2Kuenosmmes, A.M. Cepik, M.T'. Epranues

Mamemamuxa stcone mamemamuraisry modeavdey uncmumymat, Aamamo, Kazaxcman

Hapre-Crokc TeHmeynepi Komanba bl TYPFBIIAH MAHBI3IbI KOTITETE€H KBI3BIKTHI €CENTePIiH KONBLIYbIHIA
Ke3JIeceTiHaiKTeH, OyJT TeHaeyaep OipHele OHIaraH KbLIaap OOibl MEXaAHHKTEP/IiH, MATEMATHKTEPIIH KOHe
backa J1a FaJIbIMJAapAbIH Ha3apbiHaa Oospl. bipak 6yran kapamactan Hasbe-CTOKC TeHJeyiHe apHaJFaH
KOIITEreH eCeIrTep OChbl KYHTe Jeiin ot ge 3eprreivered. 2KyMbIcTa MUIMHAPJIK eMeC O3TelleIeHeTiH 00JIbI-
CcTarbl, aTall alTKaHIa Tebeci KoopauHaTaJIapablH OachlHIa OpHAJacKaH KoHycra exiemmemal Hasbe-CToke
Ky#leci yIIIiH meKapaJiblK, ecenTiH IeniMIaIiri 3eprrenred. Byran neitin ocbl ecenTiH chI3bIKTHI HaBbe-
Crokc Kyiteci yIiH KOWBLIYBI HEMECE ©3TelleIeHEeTIH eMeC UINHIPIIK OOJIBICTapAaFbl KONBLTY bl 3€PTTE-
PeH, COHJIBIKTAH OYJI 3KYMBIC OCBI OAFBITTAFbI AJIIBIHFBI 3€PTTEY/IEP/IiH JOTUKAJIBIK, KAJIFAChl OOJIBIIT TadbLIa~
nwl. 2Korapblia aTajaraH e3rellejeHeTiH 00JIbICKA ©3TellleJIeHETIH eMeC KeCJIeH KOHYCTap YKUBIHBI COUKECT-
iKKe KoMbLIaIbl. Bys obsbIcTap €3 Ke3erinie MUINHIPIIIK 0b/IbIcTapFa e3apa 6ipMOH/II TYPJIEHIIPY apKbLIbI
KeJiTipiziesi. Bysian keilin KapacThIPBLIBLIIT OTBIPFAH €Cell YIIIH 00JIbIC MHIEKCIHIH 3repyiHe KAThICThI 6ipTeK-
Ti alPUOPJILIK, barasayaapbl aifKbIHIAJIBII, 9pi Kapail, anpuopJblk Oarasaynap meH Paemo-lanepkun omicin
KoJimaHa OThIpbIn, CobOJIEB KaacTapbIHIarbl IIENINMHIH 0ap »KoHe KAJIFbI3 eKeHIIrH J9JIes e, OepiareHn
GYHKIULIaPbIH, TEricTiri apTKaH CalblH OHBIH, PETYJIsiPJILIFBIH AHBIKTAFaH.

Kiam cesdep: HaBbe-CToKc XKyiieci, e3remenenerin obbic, ['amepkun oici.

O pa3penmmMoCTH OJHOI I'PAHMYHON 3a/Ja4M JJid ABYMEPHOI CUCTEMbI

98

ypaBHenuii HaBbe-CTOoKCca B KOHYCe

M.T. Txxenamumes, A.M. Cepux, M.I'. Eprasues

HHcmumym MAMEMAMUKY U MATNEMATUYECKO20 MoaenupoeaHun, Amamm, Kazaxcman

B cuy Toro, uro ypasuenusi HaBbe-CTOKCa y4acTBYIOT B TOCTAHOBKAX GOJIBIIIONO KOJUYECTBA WHTEPECHBIX
33184, BaXKHBIX C IPUKJIAJHON TOYKN 3pEeHNd, JaHHbIe YPABHEHNSA B Te€UeHNE HECKOIBKNAX JeCATUIETUN TOd-
psizt 6BLTH OOBEKTOM BHUMAHMS MEXAHUKOB, MATEMATUKOB U APYTUX y4aeHbix. Ho, HeCMOTps Ha 9TO, MHOXKe-
CTBO 3aJ1a4 111 ypaBHeHusi Hapbe-CTOKCa OCTAIOTCST HEMCCJIEIOBAHHBIMHI | TIO Ceii JeHb. B 3Toit paboTe MbI
WCCTeyeM pa3pelmMOCTh TPAHUIHON 3a7a49n 11 aByMepHoit cuctembl HaBbe-CTOKCA B HEIUINHIpUAYIE-
CKOI1 BBIPOXKJIAIOIIEHCsT 00/IACTH, & UMEHHO B KOHYCe C BEPIIMHON B Hadaje KoopauHaT. Panee Mbl u3y4daan
cllyJyan JInHeapu30BaHHON cucreMbl HaBbe-CTOKCA, MM HEBBIPOXKIAIOIINXCS TUJIMHIPUIECKUX 00J1acTeil,
IO9TOMY JIaHHAsT paboTa SBJISETCS JIOTUIECKUM ITPOIOI?KEHNEM HAINUX MIPEIbIIYIINX UCCIEIOBAHUN B 9TOM
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HaIpPaBJI€HNN. BBINIeyIOMSHYTOM BBIPOXK JAIONMIENCS 00JIACTU MBI COIIOCTABJISIEM CEMENCTBO HEBBIPOXK A0~
[IAXCST YCEUEHHBIX KOHYCOB, KOTOPBIE, B CBOIO OYepe b, (POPMUPYIOTCS IIyTEM B3aNMOOHO3HAYHOTO MPeod-
pa30BaHUsA B IUJIUHIpUYECKne OOJACTH, T/e MJIs PACCMATPUBAEMON 33/1a9M YCTAHABIUBAIOTCS APUOPHBIE
OIIEHKH, OJTHOPO/IHbIE OTHOCUTEILHO H3MEHEHUs HHIeKCa obacreil. Jlanee, ncronp3yst anpropHbIE OIEHKU U
merox Pasmo-laepkuHa, MBI YCTAHOBHUJIN CYIIIECTBOBAHUE, €IMHCTBEHHOCTD pelnreHns: B Kiaaccax CobosieBa
¥ €ro PEryJsipHOCTD IO MepPe YBEJIMICHHS TJIAJIKOCTA 38IaHHBIX (DYHKITAN.

Kmouesvie caosa: cucrema Hapre-CToKca, BBIpOXKIatomasics 061acTb, Mmeton [ajgepKuHa.
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