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In this paper, the inverse problem for a fourth-order parabolic equation with a variable complex-valued
coefficient is studied by the method of separation of variables. The properties of the eigenvalues of the
Dirichlet and Neumann boundary value problems for a non-self-conjugate fourth-order ordinary differential
equation with a complex-valued coefficient are established. Known results on the Riesz basis property
of eigenfunctions of boundary value problems for ordinary differential equations with strongly regular
boundary conditions in the space L2 (—1, 1) are used. On the basis of the Riesz basis property of eigenfunctions,
formal solutions of the problems under study are constructed and theorems on the existence and uniqueness
of solutions are proved. When proving theorems on the existence and uniqueness of solutions, the Bessel
inequality for the Fourier coefficients of expansions of functions from space Ls (—1,1) into a Fourier series
in the Riesz basis is widely used. The representations of solutions in the form of Fourier series in terms
of eigenfunctions of boundary value problems for a fourth-order equation with involution are derived. The
convergence of the obtained solutions is discussed.
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Introduction

With the further development of the theory of solvability of differential equations, with the advent
of new mathematical models in various fields of natural sciences, it becomes more and more important
to formulate new mathematical problems and to study more general cases of classical differential
equations. These are direct and inverse problems for the fourth-order partial differential equations.
A lot of papers are devoted to the study of boundary value problems for the fourth-order partial
differential equations (see, for example, [1,2], and references therein).

It should be noted that boundary value problems with complex-valued coefficients are of particular
interest. The existence and uniqueness of the solution of mixed problems for the heat equation with
a complex-valued coefficient was established in [3]. The solvability of mixed problems for a perturbed
wave equation with involution and with a variable complex-valued coefficient was studied in [4,5]. The
solvability of inverse problems for the perturbed heat equation with involution and with a variable
complex-valued coefficient was considered in [6-8].

The results on the existence of a unique solution to inverse problems for a fourth-order partial
differential equation with real coefficients depending on x and ¢ can be found in [9, 10].
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This article presents the results of studies of inverse problems for a fourth-order parabolic equation
with a variable complex-valued coefficient. The existence and uniqueness of the solution of mixed
inverse problems for a one-dimensional fourth-order equation is established

84
At @t ta(@)ulz,t) = f(z), (1)

where ¢ () = q1 (x) + ig2 (). We will use @ = {-1 <z <1, 0 <t < T} to denote an open domain,
and Q ={-1<x<1, 0<t<T} to denote a closed domain.

The space Cﬁi (2) consists of all functions wu (z,t) having continuous derivatives with respect to ¢
and x of the order [, k respectively, in the domain €.

ug (x,t) +

1 Problem Statement

Let us introduce a non-self-conjugate fourth-order differential operator Ly : D (Lq) CLy(—1,1) —
Ly (—1,1) by the formula
Ly =y" (@) +q(@)y(x), -1<z<1,

with the domain of definition

={y(x) e Wa[-1,1]: Ui(y) =0, i=1,2,3,4,}, (2)
where the linear forms U; (y) are written as U; (y)
Ui (y) = aiy” (=1) + asy” (1) + aizy” (1) + aiy” (1) + aisy’ (=1) + @iy’ (1) + airy (=1) + aigy (1),

with given complex coefficients a;;, Wi [-1,1] = {y(z) € C3[-1,1] : y'V (x) € Ly (—1,1)} is the
Sobolev space. Assume that the linear forms Uy (y), Uz (y), Us (y), Ui (y) are linearly independent.
The order of the highest derivative of the form will be called the order of the form. Then the maximum
number of forms of order 3 will be not more than two. Boundary conditions (2) can easily be reduced
to the form

/

any” (1) + a2y (1) + a13y” (—1) + a14y” (1) + a5y’ (—1) + a16y’ (1) + a17y (1) + a5y (1) = 0,

(-
az1y” (—1) + azey” (1) + azsy” (=1) + a2ay” (1) + azsy’ (=1) + a2y’ (1) + azry (—1) + azsy (1) =0,
(1) + azzy (—1) + assy (1) = 0,
aszy” (=1) + asay” (1) + assy’ (=1) + asey’ (1) + aary (1) + asgy (1) = 0, (3)

called the normalized boundary conditions [11; 66]. For the sake of simplicity, we have not changed the
notation of the coefficients. We proceed similarly if the order of the highest derivative of the forms is
less than 3.

Let us rewrite equation (1) in the form

aszy” (—1) + azay” (1) + assy’ (—1) + asey

ug (x,t) + Lyu (z,t) = f (x), (x,t) € Q, (4)

and then consider a differential operator L, with domain generated by one of the following two boundary
conditions:
D: Dirichlet boundary conditions

Ui () =u(=1,t) =0, Uz (u) =u(1,t) =0, Us(u) = ug, (—1,¢) =0,
Uy (u) = uge (1,6) =0, t € (0,7). (5)
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N: Neumann boundary conditions
Ui (u) =uz (—1,t) =0, Uz (u) = uy (1,t) =0, Us(u) = ugge (—1,) =0,

Ut (4) = tgae (1,£) = 0, t € (0,T). (6)

We have to find a pair of functions u (z,t) and f(x) satisfying equation (4) in the domain © and
conditions

u(,0) =@ (), u(z,T) =1 (), ze(-1,1), (7)
where () and ¢ (x) are given sufficiently smooth functions.

Definition 1. A pair of functions u (z,t) and f (x) is called a solution to inverse problem (4), (5),
and (7) if the following three conditions are satisfied:

1) the function u (z,t) € C () N C’i’to (Q);

2) there are derivatives wuy (x,t), Ugpy (%,t) and Upgz, (z,t) continuous in the open domain €,
f(x) e C[-1,1;

3) functions u (z,t) and f (x) satisfy equation (4), and the functionu (x,t) satisfies conditions (5),
(7) in the usual sense.

The notion of a solution to inverse problem (4), (6) with boundary conditions (7) is defined similarly.

To prove the existence and uniqueness of a solution to the inverse problem posed, we use the
Fourier method. The advantage of this method is that we will have a representation of the solution
to the inverse problem in the form of Fourier series. A disadvantage of the Fourier method may be
increased requirements for initial data. However, the aim of this work is not to reduce the smoothness
of the initial data.

In this regard, it is necessary to solve the inverse problem of convergence of expansions of functions
from a certain class in terms of eigenfunctions of the following spectral problem:

LyX () =AX (z), -1<z<1. (8)

2 Properties of eigenfunctions of spectral problems

It is easier to prove the convergence of expansions of operator L, in eigenfunctions if the system of
eigenfunctions { X} (x)} forms a Riesz basis in the class Ly (—1,1). Therefore, in this section, we study
the basis property of the eigenfunctions of a differential operator L,. The differential operator L, is
not a self-conjugate operator. The conjugate spectral problem is written as

LiZ (z) = Nz (x), (9)

where L7Z (x) = Z1V (z) + q(x) Z (x) is the operator conjugate to the operator L,. The domain
of definition of the conjugate operator L; is given by one of the boundary conditions (D) or (NV)
so that D(Ly) = D (LZ). Suppose that all eigenvalues of the operators L, are simple and zero is
not an eigenvalue. The systems of eigenfunctions {Xj (z)} and {Zj (z)} satisfy the biorthogonality
condition [11; 30|
1
(Xi, Zn) = / Xp (@) Zn (2) d = Gpon,

-1

where g, is the Kronecker symbol. In the case of positive self-conjugate operators, the eigenvalues are
real and positive. In the case of nonself-conjugate operators, the eigenvalues can be complex numbers.
Therefore, it is necessary to study the condition of non-negativity of their real parts.
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Lemma 1. Let g (x) € C'[—1,1]. Then the inequality [Im Ag| < max|g2 (z)| holds for all eigenvalues
Ak of the operator L,. Under an additional condition Re ¢ (z) = ¢; () > 0 in the interval —1 <z <1,
all eigenvalues )\ of the operator L, satisfy the inequality Re A, > 0.

Proof. Consider equation (8) with boundary conditions (5) or (6). We multiply both parts of
equation (8) by the complex conjugate function Xy (z) and integrate the resulting equality twice by
parts over the interval (—1,1). After this, the non-integral terms that arise disappear, and we obtain
the equality

1 1 1
X"y, ()2 dz + [ q (@) | X (2)de = N, [ Xy (2)]?de.
[t | /

Writing out the real and imaginary parts of the last equality separately, we get the following two
relations:

1 1
/q2 (2) | X (z)]Pda = Im)\k/|Xk (z)|*d,
—1 —1

1 1 1
X"y, (2)Pde + | g1 (2) | X, (2)Pde = Re Ay [ | Xy (2)]*da.
/ / /

From the first equality we obtain the first assertion of the lemma

max |g2 (x)] > [ImAg|, k€ N.
z€e[—1,1]

To prove the second assertion of the lemma, we assume the contrary. Let there be a subsequence
{An, } satisfying the condition Re A, < 0. Then the second relation implies the inequality

1 1 1
/ |X”nk (x)|2d1‘ + /ql (x) | Xn, (x)]de =Re,, / | X, (ac)|2da: <0,
21 21 21

whence, by virtue of ¢; () > 0, we get a contradiction, which proves the lemma.

Note that this lemma is valid for continuous ¢ (x) € C'[—1,1]. In this case Re A\, > 0, starting from
some number ko, as Re A\ > |min ¢ (x)| for & > ko, if ming; (z) < 0.

For further presentation, let us dwell on some well-known facts. Let A\ = p?. In the complex p-
plane, consider a fixed region S,, v =0,1,2,...,7, defined by the inequality “* < argp < % . We
enumerate w1, ws, ws,wy different roots of the number v/—1 so that for p € S, Re (pw1) < Re (pwe) <
Re (pw3) < Re (pwa).

It is well known that the normalized boundary conditions (3) are called regular (see, for example,
[11; 67] if the numbers #_;, 6; defined by the equality

anwi  (ar1 + sai2) wi (an + *a12) w§’ aowj

e aniw}  (ag1 +saxn)ws (a2 + fag)wi  agw}
s o asgsw? (ass + sazs) w3  (ass + ass) w3 a34wj
a43w% (@43 + Sa44) w% (CL43 + §a44) w§ a44wz

are different from zero. Here the power of the number w; is equal to the order of the highest derivative
of the corresponding boundary condition. We proceed similarly if the order of the highest derivative of
the forms is less than 3.

If the additional condition 63 — 46_16; # 0 is satisfied, then the boundary conditions (3) are called
strongly regular.
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Note that the differential operator L, generated by strongly regular boundary conditions can have
only a finite number of multiple eigenvalues.
The papers [12], [13] imply the following important theorem.

Theorem 1. [12], [13]. If the operator L is generated by strongly regular boundary conditions, then
the eigenfunctions and associated functions of this operator form a Riesz basis in the space Ls (—1,1).

It is easy to check that the boundary conditions (5) (and (6)) are strongly regular, so the system
of eigenfunctions { X}, (x)} of the operator L, forms a Riesz basis in the space Ly (—1,1). This is also
valid for the system of eigenfunctions {Zj (z)} of the operator L.

Everywhere below we will assume that all eigenvalues of the operator L, are single.

Lemma 2. For any function ¢ € D (L) each of the Fourier series

o0

p(x) =) (o Zk) Xy (z = (0. Xp) Zp (x (10)
k=1 k=1

by eigenfunctions { Xy (x)}, {Zk (z)} converges uniformly for —1 < x < 1.
(

Proof. Let us rewrite equation (8) in the form (the number A = 0 is not an eigenvalue)

XL () + g () Xi (2)

X (z) = "
Then . )
_ v _ XY (2) +q () Xy ()
(@,Xk)—/1g0(x)Xk(:c)da:—/1gp(x) k 3, de =
1
- jk J 16 @)+ a(a) o @) T (o) do = jk (Lo, %)
21

Using this relation, the second series in (10) can be written as

p(r) =) =2k (x), (11)

where

-1
On the other hand, it is well known that the conjugate spectral problem is equivalent to the integral

equation
1

Zela) =% [ 6 (@) Zu (0,
-1
where G* (x,t) is the Green’s function of the conjugate boundary value problem for A = 0. By definition
[11; 45], the Green’s function G* (ac t) is continuous for x € [—1,1] and ¢ € [—1, 1] and therefore it is

bounded. Let’s denote C (x f G* (x,t) Zy, (t) dt. Then equality (11) takes the form
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Further, using the inequality ab < % (a2 + b2), we obtain the following estimate

k=1

A,
:Z
VG (v)

=3 ARGk (2) < D AR+ |Ck (2) (12)
k=1 k=1 k=1

As the quantities Ay are the Fourier coefficients of the expansion in the Riesz basis Zy (x), k =
1,2,3, ..., and C (z) are the Fourier coefficients of the expansion of the Green’s function G (z,t) in the
Riesz basis { X} (x)}, due to the Bessel inequality for the Riesz bases, both series on the right side of
inequality (12) converge and

0o 1
SO ICk (@) < /|G* (2, 8)2dt < Mo, Vo € [—1,1].
k=1 k8

This implies absolute and uniform convergence of the second series (10) . The absolute and uniform
convergence of the first series (10) is proved similarly. The lemma is proved.

8 Formal solution to the inverse problem

In this section, we construct a formal solution to the inverse problem for equation (4) with Dirichlet
boundary conditions (5) and conditions (8). Recall that if the domain D (L) of the operator L, is
generated by one of the boundary conditions (D), (IV), then each of the systems { Xy, (x)} and {Zj, (z)},
consisting of the eigenfunctions of the operators L, and L7, respectively, forms a Riesz basis in the
space Lo (—1,1). The functions u (z,t) and f (z) can be represented as Fourier series

u(xvt) = ch (t) Xk (.’E), (13)
k=0

@) = X (@), (14)
k=0

1

1
Ch (1) = / w () Zy (x) de, fi, = / F (%) Z () da, (15)
—1 -1

where Cf (t) are unknown functions and f; are unknown constants. Substituting (13) and (14) into
equation (4), we obtain the equation

C't (t) + MC (8) = fr,

whose solution will be written in the form

I

Ch (t) =Dy - e Mkt + .
Ak

(16)

As, according to condition (7) and formula (15),

1 1
Cy (0) =/u<x,0>zk<x>dx=/so<x>2k (z) dz = g,
21 21
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1 1
Cy (T) = / w(2,T) Zy () dz — / b (2) Zy (z) da =,
1 2

from equality (16) we get

Dk + fk = Pk,
Dye~ ’\kT+ {Z = .

Solving this system of equations, we find the unknown quantities

Dy = %, fr = (er = Dg) A,

using which from relation (16) we find

1— —Akt

T e N7 [k — Yr] -

Ck(t)ZQOk_l

Substituting the found values of the unknowns Cj (t) and fi into (13) and (14), we find the formal
solution to the inverse problem in the form of the following series

u(a, +Z P (1) X (o), (17)
and
F@) = Lyp (@) = 32 2 X ). (18)
k=0

Now we have to prove that the functions (17) and (18) will be the classical solution to the studied
inverse problems.

4 Main results

In [9], the authors of this work proposed a new approach to prove the uniform convergence
of formally differentiated series, which represent a formal solution to the inverse problem for the
equation of a fourth-order hyperbolic equation with complex-valued coefficients. This approach has
two advantages: 1) the first advantage is the use of estimates of the norms of eigenfunctions derivatives
through the norm of eigenfunctions [14]; the second advantage is the use of the properties of uniform
boundedness of Riesz bases consisting of eigenfunctions of the differential operator [15]. In this section,
this approach is developed for the case of inverse problems for a fourth-order parabolic equation with
complex-valued coeflicients. It is clear that the formal solutions to hyperbolic and parabolic equations
have completely different structures. The conditions for the existence of solutions are also different.

Let us formulate the main result of the present work. The solvability of the inverse problem (4),
(7) with the Dirichlet boundary conditions (5) is formulated as the following theorem.

Theorem 2. Let q(x) € C*[—1,1], and functions ¢, ¥ are such that o, ¥, Lyp, Lytb € D (L,).
Then inverse problem (4), (5), (7) has a unique solution, which can be represented as Fourier series
(17), (18).

Proof. We have to show that the resulting formal solution in the form of series (17), (18) satisfies
equation (4) and conditions (5), (7). Let us first show that series (17), (18), as well as the formal
derivative with respect to the variable ¢t and formal derivatives up to the fourth order with respect to
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the variable x of series (17), converge uniformly in the open domain §2, i.e. let us prove the uniform
convergence of the series (17), (18) and the uniform convergence of the formally differentiated series

P — _
Z —e AkT )\kth (.T), (19)
- —¢
ug(z,t) = ¢ () + ;0_’“67_)\]:} (e*)"ct - 1) X'k (2), (20)
k=0
ok — Yk oAkt 7
Uza (2, 1) +Z T T —1) X" (2), (21)
S -9
g (1) = @ (@) + 3 7 (67— 1) X7 (@), (22)
k=0
— k=Y
k — ¥k _
tnaa(@,) = ¢!V (@) + Y 72—t (e = 1) X{Y (@), (23)

The uniform convergence of series (17) follows from the obvious inequality

u(z, )] < e (2)] + +

> (¢, Z1) X (2 > (W, Zk) X (@
k=0 k=0

and Lemma 2, taking into account Lemma 1 (Re A\ > 0).
To prove series (18) in the expressions ¢, = (¢, Zk), Y = (¥, Zx), the function Zj, (z) is replaced
by the conjugate equation (9). Then

etk = M (0, Z1) = (@, Ly Zi) = (Lo, Zi) , Muthi = (Lgth, Zy) - (24)

Substituting them into (18), we obtain

F) = Lyp (o) - Y et T S ).

Hence we get the inequality

1 (@) < 1 Lg (@) + Y (L, Zi) X ()| + Y (Lgwh, Z) X ()]
k=0 k=0

As, by the condition of the theorem Ly, Lyp € D (Lg), then, by virtue of Lemma 2, both series
on the right-hand side of the last inequality converge uniformly. The uniform convergence of the
series  (17), (18) is proved. The uniform convergence of the series (19) is proved as well as the
convergence of the series (18), taking into account the boundedness of the quantities e M = 0,
k — oo.

Let us prove the uniform convergence of series (20)—(23). Applying (24) to the series (20) we obtain
the relation

[e.e]

el )] < [¢ )] + 32 COL TSI (1) X )]

— A (1 —e~ )‘kT)
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In [14] the validity of the estimates

max ‘X,gs) ({E)) < cl<\4/ \)\k|>smax | X% (z)], s =1,2,3, (25)

for the eigenfunctions of the fourth-order differential operator is shown. Using estimates (25), from the
last inequality we obtain the estimate

|z (z, )] (2)] + a1 Z [(Lye, Zi) = (Lq, Zi)| max | X, ()] .

()’

It follows from [15] that only uniformly bounded systems of eigenfunctions of ordinary differential
operators can be Riesz bases. Therefore, due to the conditions of the theorem Lgp, Ly € D (Ly), the
Bessel inequality for the Riesz bases, and the asymptotics of the eigenvalues [11; 99|, the series on the
right-hand side of the following inequality

) 2
Juz(z,1)| < |¢' (= \+01Z[ (Las Zk)* + (La¥, Zg) +(\/E)3]

converges. The uniform convergence of series (20) is proved.
Using the estimates (25), the convergence of series (21), (22) in the open domain € is similarly
proved. Consider the uniform convergence of the series

o
¥ Zk w Zk) —
Upgza (T, 1) )+ g q)\k . @—/\iT) <e Akt 1) XV (x).
=0

Replacing the fourth derivative with the help of equation (8), we obtain the estimate

tgzze (z,1)] < [TV (z)

ZA() [(Lyes Ze) X () — (Lyth, Ze) X ()]
k=0

e}

> 1 Lge, Zi) X (z) — (Lath, Zi) Xi ()]

k=0

. (26)

The second series on the right-hand side of (26) converges by virtue of the conditions of the
theorem Lgp, Lqp € D(L,) and Lemma 2. The convergence of the first series in (26) follows from
the uniform boundedness of the system {X} (x)} [15], the Bessel inequality for the Riesz bases, the
asymptotics of the eigenvalues [11; 99|, and the boundedness of the function ¢ (x). This proves the
uniform convergence of the series uzz.s (2,t) in the open domain 2. Thus, we have shown that series
(17), (18) satisfy equation (4).

Obviously, the formal solution (17) satisfies conditions (7):

o0

i o= Uk (ot _
tiltr){lkou (2,1) = til(?}w [SO () + P 1 — e—2T (6 1) X (33)] =@ (z),

lim w(xz,t)= lim [90 (z) + L_qf:T (e‘Akt - 1) Xk (f)] = ().

t—T—0 t—T—0 1—e
k=0

The boundary conditions are satisfied as each term of the series (17) satisfies them. The existence of a
classical solution to problem (4), (5), (7) has been completely proved. To prove the uniqueness of the
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solution, we assume the contrary. Suppose that there are two sets of solutions {u; (z,t),

{ug (z,t), fo(x)} to the inverse problem (4), (5), (7). Denote
u(z,t) =uy (z,t) — ug (z,t)

and

(@)= fi(z) = fa(z).

fi(x)} and

Then the functions u (z,t) and f (x) satisfy equation (4), boundary conditions (5), and homogeneous

conditions

u(z,0) =0, u(z,T) =0, z € [-1,1].

Consider the Fourier coefficients:

1
g (1) = /u(m,t) X, (@) da, ke N,
1

1
sz/f(@xk(x)dw, ke N,
el

and note that the homogeneous conditions (27) lead to equalities

Differentiating equality (28) with respect to the variable ¢, we obtain

1
o (1) = / oy (2 8) Xy (2) da,
21

where the derivative u; (x,t) will be replaced using equation (4)

1

1
'y (t) = / [—tgzaz (2,1) — q () u (z,t)] Xk (z) dx + /f (x) Xk (x) dx,
]

-1

or

1
U/k (t) = / [_Uxoc:c:(: (SC, t) —4q (SC) u (x7 t)] Xk ($) dr + f.
-1

After integrating by parts four times, we get

W) = [ XY @)~ 7(0) X @)] () do + f

or

Welt) = [ NEu (@) u (et ot fi

Mathematics series. No.1(113)/2024
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The last equality can be rewritten as
u't, (1) + Mguy, () = f-
As (29) is satisfied, i.e., ug (0) = ug (T') = 0, the last relation implies
fe =0, u (t) =0.
The basis property of the system {X} ()} implies the equality
fx)=0, u(z,t) =0, (z,t) € Q.

The uniqueness of the solution is proved. The theorem is completely proved. The assertion of the
theorem is fully applicable to the case of inverse problem (4), (6), (7).

Conclusion

The inverse problem of determining the right side for a fourth-order parabolic equation with a
complex-valued variable coefficient is studied. The existence of a unique solution to the inverse problem
with Dirichlet and Neumann boundary conditions is established
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Komniekc monai KoadduimenTi 6ap TOPTIiHII peTTi mapabdboJiadabIK,

TeHJley YIIIiH Kepi eCenTiH MIeNIiM/IiJIir TypaJbl
A.B. Nnman6erosal, A.A. Copcen6i®?, B.H. Ceiinbexos*

M. Oyeszos amvindazv. Onmycmix Kasaxeman yrusepcumemsi, Ivmkenm, Kasaxceman;

2]\4. Qyes06 amuvindaev. Owmycmix Kaszaxceman yrnusepcumemi, Teopuanvik, sicone Koadanbasv, Mamemamura
)

2HABLMU UHCTRUMYMYL, Kasakcmar;
32K.A. Towenos amwimdazs ynusepcumem, Ivmxenm, Kasaxcmar;
L Onmycmir Kasaxcman memaexemmir nedazozuxarvik ynueepcumemi, Hlvmkenm, Kasaxcman
) p

MakaJtasia aitHbIMaJIbLIAP/IBI A2KBIPATY 9ICIMEH aifHbIMAaJIbl KOMILIEKCTI KoadduimenTi 6ap TOPTIHII peTTi
mapaboJIasblK, TEHEY YIIiH Kepi ecen 3eprrenren. Komiuteke MoHai Koaddurenti 6ap e3iHe-e31 TyitiHmec
eMmec TepTiHII perTi 6ipTekTi Muddepennuasabk Tegaey yiria JIupuxie xxone HeiimaH 1mekapaJibik, ecerr-
TepiHiH MEHIIIKTI MOHJIEPiHIH KacueTTepi 6enrisenren. KymmTi peryssip/ibl mekapaJsblK, maprrapbl 6ap 6ip-
TekTi mudHepeHIMANIBIK TEHIEYJIED YITH MIEKAPAJIBIK, €CENTEP/IiH, MEeHTKTI hyHKImanapuabiH, Lo (—1, 1)
kenicririggeri Puc 6a3uctik Kacueri 60ibIHIIA OeJIriyi HoTHKeJIep Haijaaanbliaabl. MeHmmkTi dyHKIims-
sapabiy Puc 6asncrik KacueriHiy Herisinge 3eprreserin ecenrepain OPMAJIbIbI MIEMIIMIEP] KYPaCThIPbI-
JIBIT, THEermMIepaiH 6ap GOybl MEH XKAJFBI3ABIFBI Typajbl TeopeMasap maenaenren. [lemimaepain 6ap
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€KeH/IIN MeH »KaJIFbI3IBIFbl TYpPaJIbl TeOPEMaHBI Jasesaey Kesinme Beccenb Tencizniri @ypre koaddbumm-
enrrepi Lo (—1,1) xenicririnen Puc 6a3uci Goiibiaima @ypre KarapbiHa GyHKIUAIAD/BIHE, XKIKTeTiHyl yIIiH
KEeHiHEH KOJIIAHbLIAIbI. VIHBOIIOMUSIIBI TOPTIHII PETTI TEH LY VIIIH IETTIK eCenTePIiH MEeHITKTI (pyHKIIM-
anapsl 6oitbiaina Pypre KaTapapsl TYPiH/e MemiMAep/iH TYD CHIIATHI *Ka3blIIbl. AJIBIHFAH IIEIIiMIeP/IiH
JKUHAKTBLIBIFEI 1 TaJKbLIAHFAH.

Kiam ceadep: napabosiasiblk TEHIEY, Kepi ecelr, KJIacCHUKaJIbIK IrentiM, Pypbe oici, KYIITI peryssipsl mie-
KapaJiblK Imaprrap, Puc 6aswmci.

O paspermmMocTu 00paTHOI 3a/Ia4u JIJIsd TapaboJInYecKOro ypaBHEHUsT
4eTBEPTOro NOPsIKA C KOMILJIEKCHO3HAYHBIM K03 PUIMeHTOM

A.B. Uman6erosal, A.A. Capcenou®?, B.H. Ceitnbexon®*

L FOoeno-Kasaxemanexuti yrusepcumem umenu M. Ayszoea, ITvimxenm, Kazaxcman;
2 Hayunoiti uncmumym « Teopemuseckas u npukiadnas mamemamuras FOocno-Kazazemanckozo yrusepcumema
umenu M. Ayassosa, Hlvmxenm, Kazaxcman;
3 Vnusepcumem umenu XK. A. Towenosa, Ivmrenm, Kazaxcman;
4 JOorcno- Kasazemarckud zocydapemeeniiti nedazozuveckuts ynusepcumem, Hlvvkenm, Kasaxcman

B nacrosmeit pabore MeTooM paszesieHus TEPEMEHHBIX M3yUueHa oOpaTHas 3aJad9a Jjis mapabomdecKo-
ro ypaBHEHHUs] Y€TBEPTOrO IOPs/IKA C ITEPEMEHHBIM KOMIIJIEKCHO3HAYHBIM KO3 MUIIMEHTOM. YCTAHOBJIEHDI
CBOWMCTBA COOCTBEHHBIX 3HAUYEHUN KpaeBbIX 3asa4d upuxse u Heiimana sy HECAMOCONPSIXKEHHOTO OOBIK-
HOBEHHOTO udHEPEeHITNATHLHOTO YPABHEHUST Y€TBEPTOrO MOPSIKA C KOMIIJIEKCHO3ZHAYHBIM KO3 uiimen-
ToM. Vcronbp30BaHbl U3BECTHBIE PE3Y/IbTATHI 0 6asucHocTn Pucca B npocrpancrse Lo (—1,1) coberBeHHBIX
GbYHKIUN KpaeBbIX 38724 JIJIs OOBIKHOBEHHBIX TU(MMOEPEHIINATBHBIX YPABHEHUN C YCUIEHHO PEryIsPHBIMU
KpaeBbiMu ycyaoBusiMu. Ha ocHoBanuun 6a3ucHocTu Pucca cobcTBEHHBIX (DYHKITNN TOCTPOEHBI (hOpMaTbHBIE
pellleHnsl U3y9YaeMbIX 3aJ[a9 U JOKA3aHbI TEOPEMbBI O CYIIIECTBOBAHUU U €JIMHCTBEHHOCTH perieHus. [Ipu Jj1o-
Ka3aTeJIbCTBE TEOPEM O CYIIECTBOBAHWH U €IMHCTBEHHOCTHU PEIeHUI TPUMEHEHO HEPABEHCTBO Beccest st
koaddurmentos Pypbe pasnoxkennit Gyuaknuit u3 npocrpanctsa Lo (—1,1) B pag @ypbe no 6asucy Pucca.
Bruimmcansr nipejicraBiienus pemenuii B Bujie psioB Pypbe 110 coGCTBEHHBIM (DYHKIMAM KPAeBbIX 3314 JJIsi
YPaBHEHUsT YETBEPTOTO MOPsIIKA ¢ MHBOJIONMEH. TakxKe 00CYKIeHA CXOIUMOCTh TOJTYYE€HHBIX PEIeHMUIA.

Karoueswie caosa: mapaboiamdeckoe ypaBHeHHe, oOpaTHas 3ajada, Kjaccudeckoe pernenne, meror, Pypoe,
YCHJIEHHO DeryJisipHbIe KpaeBble ycjoBusi, basuc Pucca.
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