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In this article, the problem for a differential-algebraic equation with a significant loads is studied. Unlike
previously studied problems for differential equations with a significant loads, in the considered equation,
there is a matrix in the left part with a derivative that is not invertible. Therefore, the system of equations
includes both differential and algebraic equations. To solve the problem, we propose a modification of the
Dzhumabaev’s parametrization method. The considered problem is reduced to a parametric problem for
the differential-algebraic equation with significant loads. We apply the Weierstrass canonical form to this
problem. We obtain parametric initial value problem for a differential equations and an algebraic equations
with a significant loads. The solvability conditions for the considered problem are established.
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Introduction

Differential equations with significant loads are equations that describe how a system changes over
time, taking into account significant external influences or forces, known as “loads”. These external
influences could represent various factors such as external forces, environmental conditions, or other
external factors that affect the behavior of the system.

In the context of scientific and engineering applications, these equations are often used to model
dynamic systems where the behavior is influenced by external factors. For example, in the study of
diffusion processes, soil moisture dynamics, or the spread of infections, the differential equations with
significant loads would mathematically represent how the system evolves over time, considering the
impact of external loads on the system’s dynamics.

The solutions to these differential equations provide insights into the behavior of the system under
the influence of these significant loads, helping researchers and scientists understand and predict the
system’s evolution over time. The study of such equations is essential in various fields, including physics,
biology, engineering, and environmental science [1-17].

Solving differential equations with significant loads can be challenging, and the specific methods you
choose depend on the characteristics of the problem. Here are some general approaches: 1) Analytical
methods — they include Separation of variables, Integrating factors, Exact equations; 2) Numerical
methods — they include Euler’s method, Runge-Kutta methods, Finite difference methods; 3) Series
solutions — they include Power series. This method is useful for solving linear differential equations with
variable coefficients; 4) Transform methods — they include Laplace transform. The Laplace transform
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can simplify the differential equation into an algebraic equation, making it easier to solve; 5) Numerical
simulation — they are Finite element method, Boundary element method; 6) Special functions — they
include Bessel Functions, Legendre Polynomials, etc.; 7) Computer algebra systems and software — they
include Mathematica, MATLAB, or Python with libraries like SciPy to numerically solve differential
equations or perform symbolic computations.

When dealing with significant loads, it’s crucial to consider the nature of the load (constant,
time-dependent, etc.) and the type of differential equation (ordinary or partial). In many real-world
situations, a combination of analytical and numerical methods, possibly with the aid of computational
tools, is necessary for obtaining solutions.

Differential-algebraic equations with significant loads refer to a class of mathematical equations that
involve a combination of differential equations and algebraic equations, where the system is subjected
to significant external forces or loads. These equations are common in various scientific and engineering
applications, especially when modeling complex dynamic systems [18-33].

The presence of significant loads implies that external forces or influences play a substantial
role in the behavior of the system. These loads can be time-dependent, leading to a more intricate
mathematical formulation.

Solving differential-algebraic equations with significant loads may require specialized numerical
methods or a combination of analytical and numerical techniques. The choice of method depends
on the specific characteristics of the problem, such as the nature of the loads and the structure of
the equations. Some common methods for solving differential-algebraic equations include implicit and
explicit numerical methods, index reduction techniques, and advanced numerical solvers.

Researchers often study and develop methods tailored to the specific challenges posed by differential-
algebraic equations with significant loads to accurately model and simulate the behavior of dynamic
systems in various fields, including physics, engineering, and biology.

The present article considers a problem for the differential-algebraic equation with significant loads,
where the left-hand side of the equation involves a non-invertible matrix. To study and solve this
problem, a modification of the Dzhumabaev’s parametrization method [34| is proposed. Considered
problem is reduced to a parametric initial-boundary value problem for the differential-algebraic equations
with significant loads.

1 Statement of problem and reduction to a parametric problem

On [0, T'] the following problem for differential-algebraic equations with significant loads is considered:
Ei(t) = Az(t) + Eoz(0) + Aox(0) + f(1), t €0,T], (1)

Bz(0) + Cx(T) = d, (2)

where the matrices E, A € C™", Ey, Ag € C™", and the function f(t) € C([0,7],C"), 0 < 8 < T, the
matrices B, C € C™", the vector d € C".

We suppose that the matrix pair (E, A) is regular.

A solution to problem (1), (2) is called a function z(t) € C(]0,7],C") having derivative #(t) €
C(]0,T],C™), satisfies to differential-algebraic equations with significant loads (1) and two-point
condition (2).

The aim of the paper is to propose a constructive method for solving problem (1), (2).

For solving the problem for differential-algebraic equations with significant loads (1), (2) Dzhumabaev’s
parametrization method is applied [34].

We introduce a parameter £ in the following form: E{ = FExz(0), a.e. as a value of the unknown
function at the left endpoint. Then, in the problem (1), (2) we replace z(t) by a new function in the
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form z(t) = y(t) + £. The two-point problem for differential-algebraic equations with significant loads
(1), (2) transfers to the parametric problem

Ey(t) = Ay(t) + Eoy(0) + Aoy(0) + [A+ Aol + f(), ¢ €[0,T], (3)
Ey(0) =0, (4)
[B+ Cl¢ + Cy(T) = d. (5)

We obtain the parametric for differential-algebraic equations with significant loads and initial condition
(3)—(5). Relation (5) can be interpreted as an algebraic equation, containing unknown parameter £ and
value of the unknown function y(¢) at the point ¢t = T.

A solution to the parametric problem for differential-algebraic equations with significant loads and
initial condition (3)—(5) is called a pair (y(t),£) with elements y(t) € C([0,T],C") and £ € C™, satisfies
to system (3), initial condition (4) and system of algebraic equations (5).

Subsequently, based on the properties of the obtained parametric problem (3)—(5), we give the
solvability conditions to the considered problem (1), (2). For this purpose, in next Section the Weierstrass
canonical form is applied to the parametric problem (3)-(5).

2 Weierstrass canonical form and solution to parametric problem

Further, we apply Weierstrass canonical form [18], it is a specific representation of differential-
algebraic equations. The Weierstrass canonical form simplifies the analysis and numerical solution of
differential-algebraic equations by separating the differential and algebraic components of the system.
It provides a structured representation that is easier to work with when applying numerical integration
techniques or performing stability analysis.

Let P and @ be nonsingular matrices on dimension n which transform (3) to the Weierstrass
canonical form

rra=lo, ) raeslo, Tl rreg) o

where I, and I, is a identity matrices on dimension nj, ng, respectively, O,, and O,, is a null
matrices on dimension ni, no, respectively, NV is a nilpotent matrix on dimension neo, J is a matrix in
Jordan canonical form on dimension ny, ny +ny = n. Following [18], we call the index of nilpotency of
N in (6) the index of the matrix pair (F, A), denoted by v = ind(E, A).

We suppose that the matrices Fy and Ay have the forms

_ | Lny Ony _ | Mp, On,
PEOQ - |:On1 Ln2:| ) PAOQ - |:O'n,1 an )

where Ly, , M, and L,,, M,, are a constant matrices on dimension ni, ng, respectively.
Using (6), (7) we reduce parametric problem (3)—(5) to the next form:

i (t) = J((t) + &) + L, §1(0) + M, 51(0) + My, &1 + f1(2), (8)
71(0) =0, (9)

Nija(t) = §a(t) + & + Lnyija(0) + My 2(0) + My, & + fa(t), (10)
Ny2(0) =0, (11)

B+ CIE =d— Cy(T), (12)
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where § = (§1,32)" = Q7 'y, fu(t) € C([0,T],C™), §a(t) € C([0,T],C™), & = (&,6)" = Q7'E,
fl € (Cnlv 52 € Cnga B = Bch = CQ

Problems (8), (9) and (10), (11) are initial value problems with parameter for differential equations
with significant loads.

A pair (§(t),€) with § = (41, 92)7 and € = (€£1,&)7 is called a solution to problem (8)-(12), if it
satisfies the initial value problems (8), (9) and (10), (11), and the relation (12).

From equations (8) and (10) we determine the values 71 (#) and ij2(#). We have

J1(0) = J(1(0) + &1) + Ly §1.(0) + M, 51 (0) + My, &1 + 1(6), (13)
Ng2(0) = §2(0) + &2 + Ly §2(0) + My, §2(0) + Moy + fo(0). (14)
From (13) and (14) we obtain
[Iny = Ly J§1(0) = [J + M, 151(0) + [J + My, )61 + f1(6), (15)
[N = Ly ]92(0) = [Iny + M ]52(0) + [Iny + My, )2 + fo(6). (16)

Assuming that the matrices I,,, — Ly, and N — L,,, are non-singular in (15), (16), we have the following
presentations for g1 (6) and g2(6):

gl (9) = [Im - Lm]il[J + Mm]gl(e) + [Im - Lm]il[J + Mnl]gl + [[m - Lm] 9), (17)
152(9) = [N - an]il[lnz + an]g2(9) + [N - an]il[Inz + an]& + [N - an] 0)‘ (18)
Substituting (17), (18) into the equations (8), (10) instead of the values ¢;(8) and §j2(6), we obtain
J1(t) = JGi(t) + & + Loy §1(0) + Ly &1 + fi(8) + Ly [y — L] 7' f1(6), (19)

)
Nija(t) = §a(t) + &2 + Ly §2(0) + Lny&a + fo(t) + Ly [N — Ln,] " fa(6), (20)
where Ly, = Ly, [In, = Ln,] 7' [J + My, ] + My,, Lny = Ly [N = Ly Iy + Myy] + My,
For fixed &; solution to initial value problem (19), (9) has the next representation:

L
ol

t t t
7 (t) = /e(t_s)stJél —I—/e(t_s)‘]dsJI:mg]l(H) +/e(t_5)stJl~}m§~1+
0 0 0
t t
+ / =97 fi(s)ds + / e ds Ly [In, — Lo, )" f1(0),  te[0,T). (21)
0 0

By Lemma 2.8 [18] and property of matrix N, for fixed & equation (20) has the unique solution in
the form:

v—1 .

R T~ .. 1 ()

Jot) == NI {52 + Loy §2(0) + Lo + fo(t) + Ly [N — Ly ] 7' fo(0)| T =
=0
v—1 o _ ~ L ~

== 3 N 0) = Luia(6) — & — Lnso — Lus[N = L, |7 2(6). (22)
j=0
From expressions (21) and (22) we determine values of functions g (t) and 72(t) at the point ¢ = 6:
0 0 0
71(0) = / = ds e, + / e~ s T Ly i1 (0) + [ O ds T L, &1+

0 0 0
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0 0
+ [ 9 fi(s)ds + [ O dsT Ly, [In, — Ln,| " f1(0), (23)
[ [
v—1
g2(0) = — ZNjféj (0) = Lny§2(0) — & — Liny&a — Lny[N — Lny] ™' f2(6). (24)
=0

From equations (23) and (24) we have

0 0 0
[[nl _ /e(e_S)stJim]ﬂl(H) _ /e(G—S)JdSJEI + /e(G_S)stJz/mél—l-
0 0 0

0
+ /e(e_s)Jfl(S)ds + e(G_S)JdSJLm [Im - Lm]_lfl (9)7 (25)
0

o — 5

[Inz + ZNJf n2£2 Ly, [N - an]_lfQ(a)- (26)

We suppose that the matrices Dy, = I, — f e®=9dsJL,, and D,, = I, + Ly, are invertible, a.c.
0

non-singular. Then, from algebraic equations (25), (26), we obtain the expressions for g1(0) and g2(6):
0
B(6) =Dyl [ Ol + Lulét
0
0 0
+D,} / =) f1(s)ds + Dy, ! / e~ ds.J L, [T, — Lny] ' f1(6), (27)
0 0
Z N 90 — Dy Ly [N = L, 7' f(0). (28)

Substituting (27) and (28) into the expressions (21), (22) instead of the values y;(6) and §2(0), we
obtain

t t 0
g1(t) = / e s I L, + Ln, &1 + / =97 qsJL,, Dy} / =45 (I, + Ln,)é1+
0 0 0

t 0 0
+/e(t S)stJLm{ /e 0=5)7 F (s )ds+D;11/ew—sﬂdsJLm[Im —Lnl]_lfl(e)}—i-
0 0 0
t t
- / =) f (s)ds + / e dsJ Ly, [In, — L, ] 7 f1(0),  t€[0,7T7, (29)
0 0

:-@-ZNJ t) + L, Dy, ZNJ 90
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=+ ‘EHZ‘D;;LTLQ [N - Ln2]71f2(0) - an [N - an]ilfhi?(e)' (30)

Hence, taking into account initial condition (11), we obtain that the second component of the parameter é
is uniquely determined and the vector £ has the next form

v—1 v—1
&= NIFD(0) + LoDyt ST NI (0)+
j=0 7=0

+ f’nzDrtglLTu [N - Ln2]_1f2(€) - Ln2 [N - LHQ]_le(Q)' (31)

As can be seen from (30) and (31) the second components of § and & became known.

Now, we are interested in finding only the first components 3; and §~1 which are interrelated by (29).
Therefore, the appropriate number of imposed boundary conditions must match the number of n;
differential equations in (1).

A natural question arises: what should be the structure of boundary matrices B and C?

3 The solvability of problem (1), (2)

We assume that the n x n matrices and the right-hand side n-vector of the relation (2) are of the

form B -
5 _ | Bt Op, A | C1 Oy, s
BQ =B= |:On1 Onz], c=C= [Om Om], d= [O , (32)

where Bl, C’l e C"™ gnd d € C™. )
Now, by substituting (29) into (2), we get the following algebraic equation with respect to &;:

e = d, (33)
where
T T (%
=B +C+Cy / e T ds ][I, + Ln,] + C1 / e "= dsJL,, Dy} / e~ dsJ(I,, + Ln,]
0 0 0
and
t 0 0
d=dy —Cy / elt=s)7 dsJEmD;f{ / W= f1(s)ds + / e~ ds T Ly, [In, — Ln,| ™" fl(e)}—
0 0 0

-y

t
=7 f1(s)ds — C, / e dsT Ly, [In, — Ln,| " f1(6).
0

o _

If the matrix ® is nonsingular, a.e. is invertible, then system of algebraic equations (33) has the unique
solution &} :~<I>*1d. Substituting &7 into (29), we find g7 and hence the first components of the unique
solution (g*,&*) of the parametric problem (8)-(12):

t t 0
HOE / e ds (I, + Ly @~ d + / =97 4sJL,, Dy} / e =9 ds (I, + Ln,]® d+
0 0 0
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t 0
+/et stSJLm{ 1/69 7 fi(s)ds + D;, / = ds T Ly [Ty — Ly ] f1(6 )}
0 0

t t
+ / =7 f1(s)ds + / e = ds T Ly, [In, — Ln,) " f1(6), t e [0,7), (34)
0 0

&=t (35)

As shown earlier, the second components of (7*, é*) are determined by:

Z NI §9) Z N D@, telo,T), (36)

v—1
=S N P(0) + Ln, Dy, ZNJf
7=0

+Lﬂ2D L”Q[N_LnQ]_1f2(0) _LHQ[N_LTLQ]_IfQ(H)' (37)
Therefore, taking into account the interrelation between the parametric problem (3)—(5) and the initial

value problem with parameter (8)-(12), we can summarize our result for this case.

Theorem 1. Let (E,A) be a regular pair of square matrices and let P and @) be nonsingular
matrices which transform (3) to Weierstrass canonical form (6). Furthermore, let v = ind(E, A) and
feC¥([0,T],C"). Assume that:

i) the matrices Ey and Ay have the forms (7) with constant matrices L,,, M, and L,,, M,, on
dimension nq, no, respectively;

ii) the matrices I,, — Ly, and N — L,,, are non-singular;

0 - ~

iii) the matrices Dy, = I, — [ 6(9""’)“7CL<>*JL,L1 and Dy, = I, + L,, are non-singular, where
0

Ly, = L, [In, — Lm]_l[J + My, + My, , Ly, = Lny [N — an]_l[Inz + Mu,] + Mp,.

Then the initial value problem with parameter (8)—(12) with the matrices B, C, and vector d of
the form (32) has a unique solution (7*,£*) if and only if the matrix

T T (%
d=B+C+Cy / e T ds ][I, + Lp,] + C1 / e "= dsJL,, Dy} / =945 J(I,, + Ln,]
0 0 0
is nonsingular.

Taking into account the interrelation between of the parametric problem (3)—(5) and the initial
value problem with parameter (8)—(12), we write the unique solution (y*(¢),£*) of the parametric
problem (3)—(5) in the following form

where the functions 7 (t), 95(t) and the vectors g‘{, g‘ are determined by (34), (36) and (35), (37),

respectively, R
_ [A®)
Pr = A0,
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0 0

e<t5>stJZmDml{ / =97 F1(s)ds + / e~ ds T Ly, [In, — Ln,| " fl(e)}—
0 0

d=d, —C,

o _

t
—Cy | 9 fi(s)ds — Cy / e ds T Ly, [In, — Ln,| " f1(6).
0

o _

From the equivalence problems (3)—(5) and (1), (2) it follows that

Theorem 2. Let (E,A) be a regular pair of square matrices and let P and @ be nonsingular
matrices which transform (3) to Weierstrass canonical form (6). Furthermore, let v = ind(E, A) and
feC¥([0,T],C"). Assume that:

i) the matrices Ey and Ag have the forms (7) with constant matrices L,,, My, and Ly,, M,, on
dimension nq, no, respectively;

ii) the matrices I,, — L, and N — L,,, are non-singular;

4 - -
iii) the matrices Dy, = I, — [ e"=9)dsJL,, and Dy, = I, + Ly, are non-singular, where
0

‘an = L, [In, — Lm]_l[‘] + My, ] + Mp,, f’nz = L, [N — an]_l[ITu + My,] + Mp,.
Then the problem (1), (2) with the matrices B,C, and vector d of the form (32) has a unique
solution if and only if the matrix
T T 0
®=DB+C+C /«C,’(T_S)‘]als,][ln1 + L, |+ C1 / e(T_S)‘]dSJINJmD;ll e~ dsJ(I,, + Ln,]
0

0 0

is nonsingular. And, the solution x*(¢) of problem (1), (2) is determined by equality
(b)) =y () +&5  te0,T],

where the function y*(t) and the vector £* are defined from (38) with components % (t), 73 (t), £F, &
give the expressions (34)—(37).
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Eneymi xxykremesiepi 6ap auddepeHnmaabK-aareopajblkK TeHaeyJiep

56

YIIiH ecen

A.T. Acanosa!, 2K.M. Kamup6aesa?, P.A. Mener6exosa®, C.T. Mubaesa'+?

1
Mamemamuka dHcone MaAMeMamukaivk, modeavoey uncmumymot, Aamamo, Kasaxeman;
2 Xanvikapaavi; aKnapammonk, mezroaoeuasap yrusepcumemi, Aamamu, Kasakemar;

3 HTvimmenm yrusepcumemi, Hlwmxenm, Kasaxeman;

4 . . .
K. XKybanos amwindazes Axmebe onipaix ynusepcumemi, Axmebe, Kasaxcman

Maxkanana eneymi Kykremesepi 6ap auddepeHInaIIbK-aaredpaiblK, TeHIEYIep YIMH eCell 3€PTTEe/ITEH.
Egeyni xxykremesnepi 6ap guddepeHnmaliibiK, TeHIeyaep VIliH OYPbIH 3epPTTEJINeH eCenTepIeH aiflblpMAaIllbl-
JIBIFBI, KAPACTBIPBIIBII OTBIDFAH TEHJIEY/IIH COJI »KAFBIHJAFbl TYBIH/IBIHBIH, AJIIbIHIA KARTHIMCHI3 MaTpPUILA
6ap. Enpemte, Tenneynep xyiteci quddepeHaiIbK, TeHIEYIEPMEH KOCa, AJIre0pAIBIK, TeHIEYIEPIl /16 KaM-
Tubl. Koitbuiran ecenti memry yirin 2KyMmabaeBThHIH mTapaMeTpJiiey 9/IiCiHIH MOIU(MUKAIUICH! YChIHBLIAIbI.
KapacThIpbLIBIIT OTBIPFaH ecel eJieyiii KykTemesepi 6ap auddepeHuaIbK-aarebpablK, TeHIeYIep VIIiH
mapaMeTpJiiK ecenke Kearipiaren. Ocel ecenke Beitepirpacc KaHOHIBIK, (GOpMAChl KOJJAHBLIAILI. FKieyiti
KykKTemesepi 6ap guddepeHnnaliIblK, *KoHe ajaredpaJIblK TeHJIey/Iep VIIMH TapaMeTpJiK OacTalKbl ecelr
aJIbIHFaH. 3epPTTeJII OThIPFaH €CeNTiH IMEeNIMIUNK IapTTapbl aHbIKTAJIFAH.

Kiam cesdep: nuddepeHImaibIK-aarebpaibiK, TEHIEYIIEp, eeyli XKyKTemMeepi 6ap TeHeyiep, mapamerp,
mapaMeTpJiiK 6acTanKbl €Cerl, MIEIIiM.

Samava s nuddepeHnuaabHO-aaredpaniecKnx ypaBHEeHMI C
CYIIIECTBEHHBIMU HATrPy3KaMU

A.T. Acanosa!, 2K.M. Kamupbaesa?, P.A. Mener6exosa®, C.T. Munbaesal+?

L nemumym mamemamusy u Mamemamuueckozo modeauposarua, Aamame, Kazaxcman;
2 MeotcOyrapodnniii yrueepcumem uHBOPMAuUOHHHE mexnoroeut, Aimamo, Kazazcman;
3 MTvimxenmerxuts yrusepcumem, Hlvimxenm, Kasazeman;

4 Axmiobuncrut pezuonarvied yrusepcumem umenu K. Xybanosa, Axmobe, Kazaxcman

B crarpe nccnenosana 3amaga ais auddepeHnaabHO-aarebpanieckoro ypaBHeHHsI C CyIeCTBEHHBIMU Ha-
rpyskamu. B orimyme or paHee M3y4YeHHBIX 3aJa4 g auddepeHnmraabHbIX YPABHEHUI C CyIIeCTBEHHON
Harpy3KoOil, B pacCMaTpUBaeMOM YPaBHEHWH B JIEBOI YaCTW MPU MIPOU3BOIHON MMEETCsl HeobpaTuMasl MaT-
puma. CiieoBaTeIbHO, CHCTEMAa yPABHEHNN BKJIIOYAET B ceOs Kak AudhepeHImaibHbe, TaK U ajrebpande-
ckue ypaBHeHus. JlJisi penieHus: IOCTaBJIEHHON 3a/1a9u MPEJJIoYKeHa MOJUdUKAIUs METO/Ia IIapaMeTpu3a-
muu JIzxymabaesa, U 3a/1ada CBeJIEHA K TTapaMeTPUIECcKOil 3amade mjis auddepeHIna bHO-aIredbpandeckoro
YPaBHEHUsI C CyIIECTBEHHbIMHM Harpy3kamu. K 3Toil 3a1ade mpuMeHsieTcs KaHOoHUYecKas ¢dopma Beitep-
mrpacca. Ilosydena mapamerpudeckasi HadasJbHas 3aja4da st JuddepeHnnaibHbIX U ajJredpandecKnx
YPaBHEHUI C CYIECTBEHHBIMU HATPY3KAMU. YCTAHOBJIEHBI YCJIOBUSI PA3PEIINMOCTH UCCIEIYEMOM 33/ Ia9N.

Karouesvie crosa: muddepenimaibHo-aarebpandeckue ypaBHeHNsI, YPaBHEHUS C CyIIIECTBEHHON HArPY3KOIA,
mapaMeTp, ImapaMeTpudeckas HadaJ bHas 3aJ1a9a, PEIICHUE.
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