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We study the global solvability and unsolvability of a nonlinear diffusion system with nonlinear boundary
conditions in the case of slow diffusion. We obtain the critical exponent of the Fujita type and the critical
global existence exponent, which plays a significant part in analyzing the qualitative characteristics of
nonlinear models of reaction-diffusion, heat transfer, filtration, and other physical, chemical, and biological
processes. In the global solvability case, the key components of the asymptotic solutions are obtained.
Iterative methods, which quickly converge to the exact solution while maintaining the qualitative characteris-
tics of the nonlinear processes under study, are known to require the presence of an appropriate initial
approximation. This presents a significant challenge for the numerical solution of nonlinear problems. A
successful selection of initial approximations allows for the resolution of this challenge, which depends on the
value of the numerical parameters of the equation, which are primarily in the computations recommended
using an asymptotic formula. Using the asymptotics of self-similar solutions as the initial approximation
for the iterative process, numerical calculations and analysis of the results are carried out. The outcomes of
numerical experiments demonstrate that the results are in excellent accord with the physics of the process
under consideration of the nonlinear diffusion system.
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Introduction

The source for this article’s discussion of the doubly degenerate parabolic equations is as follows:

∂ui

∂t
=

∂

∂x

(∣∣∣∣∂uki∂x
∣∣∣∣m−1∂uki∂x

)
+ upii , x ∈ R+, t > 0, i = 1, 2, (1)

coupled through nonlinear boundary conditions:

−
∣∣∣∣∂uki∂x

∣∣∣∣m−1∂uki∂x
∣∣∣∣
x=0

= uqi3−i(0, t), t > 0, i = 1, 2, (2)

where m > 1, k ≥ 1, and qi, pi > 0 are numerical parameters. The following preliminary information
should be considered:

ui|t=0 = ui0(x), i = 1, 2. (3)

It is expected that the function and its corresponding first- and second-order derivatives conform to a
set of criteria. Specifically, these derivatives should exhibit a degree of continuity, non-negativity, and
compactness within the domain of R+.
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Population dynamics, heat transfer, chemical processes, and other phenomena all use parabolic
equations with nonlinearity (1).

The functions u1(t, x), u2(t, x) represent the biological two populations’ densities during migration,
the thickness of two types of chemical reagents during a chemical reaction, and the temperatures of
two various sorts of materials during propagation. By incorporating the dependent on the power-law
of shear stress and displacement velocity, equation (1) becomes an invaluable tool for analyzing a
liquid medium with inconsistent fluxes. This allows for a comprehensive understanding of the complex
dynamics and behavior exhibited under polytropic conditions, providing specialized professionals and
enthusiasts with the means to look into the details of these systems.

Parabolic equations (1) with nonlinearity have a significant role in several scientific fields, such as
population dynamics, heat transfer, chemical reactions, and many others. They are widely employed to
investigate a variety of phenomena, such as the biological densities of two populations during migration
and the thickness of two different kinds of chemical reagents during a chemical reaction. These equations
are also used to determine the temperature of two different types of materials during propagation. In
population dynamics, the functions u1(t, x), u2(t, x) describe the growth or decline of animal or plant
populations. Similarly, in heat transfer, they help to determine the heat flux in a material with varying
temperatures. Furthermore, they are used to describe unsteady flows in a liquid media, especially when
shear stress and displacement velocity exhibit a power-law relationship.

The local presence of ineffective solutions to problem (1)–(3) in the problem-solving domain has
been a topic of much discussion and analysis. The strict testing and experimentation conducted in this
field have consistently shown that the usual integration method is a reliable approach for determining
this specific phenomenon. This widely acknowledged fact within the community of experts demonstrates
the thorough knowledge and expertise that underpins our understanding of complex systems. Moreover,
it is worth mentioning that such a local existence can be easily established and understood by applying
the comparison principle, which has been extensively reviewed in several studies ([1; 316], [2; 26],
[3–11]). Therefore, it is safe to say that the determination of the local existence in this particular
problem can be achieved with a high level of accuracy and precision, using the appropriate tools and
methods at hand.

The study of nonlinear parabolic systems has piqued the interest of researchers all around the
world. With the aim of understanding the global existence and blow-up conditions of such systems,
researchers have employed diverse techniques and strategies to investigate this phenomenon. The
existing literature in this area is extensive, with several noteworthy contributions from experts in
the field (see [1; 176], [2,3,7–9,12] and references therein). The essential for several nonlinear parabolic
equations in mathematical physics, the Fujita exponent is one of the major topics of research, which has
drawn significant attention from mathematicians. Researchers have delved deep into this area, studying
various aspects of critical Fujita exponents in great detail (see [2,10,11,13–16] and references therein).
Overall, the understanding of nonlinear parabolic systems’ global existence and blow-up circumstances,
as well as the critical Fujita exponent, continues to be an area of active research. With further study
and investigation, researchers hope to gain deeper insights into these systems, leading to a better
understanding of the complex phenomena that underlie them.

Let us now consider and revisit some well-known results. In the research conducted by V.A. Galak-
tionov, and H.A. Levine mentioned in reference [4], they extensively investigated the situation using a
single equation


ut =

(
uk
)
xx
, x > 0, 0 < t < T,

−(uk)x(0, t) = uq(0, t), 0 < t < T,

u(x, 0) = u0(x), x > 0,

(4)
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and the gradient diffusion heat conduction equation
ut =

(
|ux|k−1 ux

)
x
, x > 0, 0 < t < T,

− |ux|k−1 ux(0, t) = uq(0, t), 0 < t < T,

u(x, 0) = u0(x), x > 0,

(5)

with k ≥ 1, q > 0, and u0 has compact support. It has been established that for the problem (4),

q0 =
1

2
(k+1) is the critical global exponent, where qc = k+1 is the crucial Fujita exponent, as opposed

to (5), the critical Fujita exponent is qc = 2k as well as the critical global exponent being q0 =
2k

k + 1
.

In [5] authors analyzed the following issue with single equation and gradient diffusion:
ρ(x)ut =

(
|ux|k−2 ux

)
x

+ ρ(x)uβ, (x, t) ∈ R+ × (0,+∞),

− |ux|k−2 ux(0, t) = um(0, t), t > 0,

u(x, 0) = u0(x) > 0, x ∈ R+,

(6)

with k > 2, β, m > 0, ρ(x) = x−n, n ∈ R, u0(x) is a bounded, continuous, nonnegative, and nontrivial
initial value. They determined that the problem (6):

– in case of 0 < β ≤ 1, and 0 < m ≤
(2− n)(k − 1)

k − n
the issue can be resolved globally;

– in case of β < 1, and m >
(2− n)(k − 1)

k − n
the issue has a blow-up solution.

Consideration of the following problem is the focus of the research conducted by Zhaoyin Xiang,
Chunlai Mu, and Yulan Wang in their study published in [12]. The problem under scrutiny has been
given thorough attention and analysis by the researchers.

∂u

∂t
=

∂

∂x

( ∣∣∣∣∣∂um1

∂x

∣∣∣∣∣
p1−2

∂um1

∂x

)
∂v

∂t
=

∂

∂x

( ∣∣∣∣∣∂vm2

∂x

∣∣∣∣∣
p2−2

∂vm2

∂x

) , (x, t) ∈ R+ × (0, T ), (7)


−
∣∣∣∣∂um1

∂x

∣∣∣∣p1−2∂um1

∂x

∣∣∣∣
x=0

= vq1(0, t)

−
∣∣∣∣∂vm2

∂x

∣∣∣∣p2−2∂vm2

∂x

∣∣∣∣
x=0

= uq2(0, t)

, t ∈ (0, T ), (8)

{
u(x, 0) = u0(x)

v(x, 0) = v0(x)
, x ∈ R+, (9)

where mi > 1, pi > 2, qi > 0, i = 1, 2. They determined that:
(i) in case of q1q2 ≤ ((p1 − 1)(p2 − 1)(m1 + 1)(m2 + 1))/p1p2 the problem’s every nonnegative

solutions (7)–(9) are all global in time;
(ii) in case of q1q2 > ((p1−1)(p2−1)(m1+1)(m2+1))/p1p2, then the problem (7)–(9) has solutions

that blow-up in a limited length of time.
If q1q2 > ((p1 − 1)(p2 − 1)(m1 + 1)(m2 + 1))/p1p2:
(i) in case of min{α1 + β1, α2 + β2} > 0, then solution of the problem (7)–(9) is global in time;
(ii) in case of max{α1 + β1, α2 + β2} < 0, then the solution of problem (7)–(9) is blow-up.
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Many mathematical models of nonlinear cross-diffusion in [17, 18] are described using nonlinearly
linked partial differential equation systems. Finding explicit analytical solutions for these systems is
difficult, though. To tackle the complexities of these systems, researchers have delved into the realm
of numerical methods, employing them to derive approximations. In their pursuit, they have turned to
the use of nonlinear parabolic equations, coupled with nonlinear boundary conditions, as a means to
accurately describe and analyze these intricate systems. By harnessing the power of these mathematical
tools, deeper investigation of the intricacies is possible for researchers and intricacies of these complex
phenomena, providing valuable insights that pave the way for advancements in their respective fields.
To investigate the qualitative properties of a cross-diffusion system with nonlocal boundary conditions
and nonlinearity, self-similar analysis and the standard equation approach have been employed. The
results of these studies have helped researchers understand the behavior of these systems under different
conditions. Despite the challenges posed by the nonlinearly coupled systems of partial differential
equations, and improvements in numerical techniques have paved the way for obtaining accurate
approximations, thus making significant contributions to the field of nonlinear cross-diffusion. The
quest for further exploration and understanding of these systems continues to fuel research in this
area. The situation of slow diffusion, researchers have devised several self-similar solutions to tackle
the cross-diffusion problem. The intricate nature of a nonlinear cross-diffusion system, comprised of
interconnected parabolic equations, poses a significant challenge in the realm of mathematical analysis.
These complex systems often exhibit behavior that defies traditional methods of solution due to the
presence of nonlinear boundary conditions. As a result, finding global solutions becomes an arduous
task requiring advanced computational techniques and deep understanding of the underlying dynamics
at play. Self-similar analysis and the comparison principle were used to identify the critical exponents,
namely the global solvability and Fujita type critical exponents. The comparison theorem has further
enabled researchers to establish upper and lower limits for global solutions and blow-up solutions,
respectively. These findings underscore the importance of carefully considering numerical parameters
when dealing with slow-diffusion scenarios.

This article, influenced by the works we have mentioned earlier, serves a twofold purpose. First,
it aims to identify the (1)–(3) system’s essential global existence curve, and in order to achieve that,
the article emphasizes the importance of constructing self-similar super-solution and sub-solution.
Second, the essay presents a theory regarding the critical curve of the Fujita type supported by certain
recent findings. As opposed to dealing with a single equation, we are dealing with a system, we need
to devise some innovative strategies to tackle the challenges that come with it. In conclusion, this
article is a valuable addition to the literature on critical global existence curves, self-similar super- and
subsolutions, and the critical curve of the Fujita type.

It is widely accepted in the field of mathematics that degenerate equations often lack classical
solutions. When confronted with such equations, mathematicians have to find other solutions that are
more general in nature. In conclusion, while degenerate equations may present unique challenges, there
are still various ways to approach them and derive meaningful solutions.

Definition. The function u(x, t) is viewed as an insufficient solution to problems (1)–(3) in

Ω = {(0,+∞)× (0, T )}, if 0 ≤ ui(x, t) ∈ C (Ω),
∣∣∣∣∂uki∂x

∣∣∣∣m−1∂uki∂x ∈ C (Ω) , i = 1, 2, if it complies with

(1)–(3) with regard to distribution in Ω, where the longest time period that can be allowed is T > 0,
see [5].

1 Main results

Solutions to the global existence and nonexistence theorems play a crucial role in understanding
complex systems. To further explore this topic, it is necessary to discuss the creation of self-similar sub-
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and super-solutions to equations (1)–(3). These solutions provide valuable insights into the behavior of
these equations under various conditions. By examining the properties of sub-solutions, we can gain a
deeper understanding of how certain factors contribute to the existence of global solutions. As opposed
to that, studying super-solutions allows us to analyze situations where nonexistence solutions arise.
This comprehensive approach enables researchers and professionals to make informed decisions when
dealing with complex systems in their respective fields.

We will use the comparison principle to prove our first theorem, which focuses on determining
the conditions necessary for the global solution of problem (1)–(3). By establishing a framework for
analyzing self-similar sub-solutions and super-solutions, we gain valuable insights into the intricacies
of global existence and nonexistence solutions. This theorem represents a significant advancement in
our understanding of complex systems, as it showcases the interplay between comparison principles
and the concept of self-similarity. The comprehensive examination of these factors allows us to delve
deeper into the realm of global solutions, providing a solid foundation for further research and analysis
in this field. Our findings highlight the importance of considering self-similar sub- and super-solutions
when studying problems with global implications.

Theorem 1. If r1r2 ≤

(
m

m+ 1

)2

(k + 1− s1) (k + 1− s2), then every nonnegative solution of the

problem (1)–(3) is global in time.

Proof. By emphasizing the construction of a self-similar super-solution, one can gain an additional
understanding of the theorem and its intricate nuances. This particular super-solution serves as a
powerful demonstration of the theorem’s validity and its ability to address complex problems. Through
meticulous analysis, it becomes evident that this super-solution possesses certain limitations for any
given t > 0. As researchers strive towards achieving their objective, their attention has been directed
towards the identification and analysis of strict super-solutions that conform to the self-similar form.
These endeavors pave the way for a more comprehensive understanding of the intricacies involved in
this intricate realm of study,

ūi(t, x) = eh2i−1

(
N + e−Kixe

−h2it
) 1

k
, (10)

where Ki > 0, h2i−1, 2i > 0, N = max
{
‖ūi‖k∞ + 1

}
; i = 1, 2.

Using comparison principles and the substitution of (10) into (1)-(2), it has been determined:

∂ūi

∂t
= h2i−1 · eh2i−1t ·

(
N + e−Kixe

−h2it
) 1

k
+ e(h2i−1−h2i)t ·

1

k
·Ki · x · h2i

(
N + e−Kixe

−h2it
) 1

k
−1
≥

≥ h2i−1eh2i−1t
(
N + e−Kixe

−h2it
) 1

k ≥ h2i−1eh2i−1tN
1
k ,

∂

∂x

(∣∣∣∣∂ūki∂x
∣∣∣∣m−1∂ūki∂x

)
= mKm+1

i e[h2i−1km−(m+1)h2i]t × e−mKixe
−h2it ≤ mKm+1

i e[h2i−1km−(m+1)h2i]t,

ūsii = esih2i−1t
(
N + e−Kixe

−h2it
) si

k ≤ esih2i−1t (N + 1)
si
k ,

−
∣∣∣∣∂ūki∂x

∣∣∣∣m−1∂ūki∂x
∣∣∣∣
x=0

= Km
i e

(h2i−1k−h2i)mt, ūri3−i
∣∣
x=0

= erih5−2it (N + 1)
ri
k .

The solution ūi is regarded as global, if inequalities:

∂ūi

∂t
≥

∂

∂x

(∣∣∣∣∂ūki∂x
∣∣∣∣m−1∂ūki∂x

)
+ ūsii , i = 1, 2, (11)
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hold for any x ∈ R+, t > 0. Eventually, the following expressions have been achieved using the
computations above in (11):

h2i−1e
h2i−1tN

1
k ≥ mKm+1

i e[h2i−1km−(m+1)h2i]t + esih2i−1t (N + 1)
si
k ,

Km
i e

(h2i−1k−h2i)mt = erih5−2it (N + 1)
ri
k ,

Ki = (N + 1)
ri
km , rih5−2i = (h2i−1k − h2i)m, i = 1, 2,

h2i−1 ≥ h2i−1km− (m+ 1)h2i + sih2i−1, h1k − h2 =
r1

m
h3,

h3k − h4 =
r2

m
h1,

h2i ≥
(km+ si − 1)h2i−1

m+ 1
,

h1k −
r1

m
h3 ≥

(km+ s1 − 1)h1

m+ 1
,

h3k −
r1

m
h1 ≥

(km+ s2 − 1)h3

m+ 1
.

Thus, it is evident that for the solution of the problem (1)–(3) to be global in time, the last inequality
should always hold for any m > 1, k ≥ 1, as the theorem proves.

Remark. Theorem 1 demonstrates that r1r2 =

(
m

m+ 1

)2

(k + 1− s1) (k + 1− s2) is critical global

existence of the problem (1)–(3).

Theorem 2. If 0 < pi ≤ 1, and qi ≥
m(p3−i − 1)(pi + k)

(pi − 1)(m+ 1)
or pi > 1, and ri ≤

m(p3−i − 1)(pi + k)

(pi − 1)(m+ 1)
then, each of the solutions to (1)–(3) blows up.

Proof. To prove the theorem, it was necessary to search for sub-solutions of the problem (1)–(3),
and this was achieved by looking for them in the next form:

u i(t, x) = tαifi(ξi), ξi = xt−βi , (12)

where αi =
1

1− pi
, βi =

pi − km
(pi − 1)(m+ 1)

, i = 1, 2.

By analyzing the super-solutions obtained from equation (12), we can observe the emergence of
a self-similar form in the resulting equations (1)–(3). These self-similar inequalities and boundary
conditions play a pivotal role in determining whether a solution is deemed as a blow-up solution
or not. It is imperative to adhere to these self-similar inequalities and boundary conditions in order
to accurately classify and understand the behavior of the system under study. The presence of such
intricate relationships highlights the complexity of the problem at hand, requiring a comprehensive
and meticulous approach for its exploration. To fully comprehend the underlying dynamics, further
research and analysis are warranted to delve deeper into these self-similar forms and their implications
on the overall system:

d

dξi

(∣∣∣∣dfkidξi
∣∣∣∣m−1dfkidξi

)
+ βiξi

df

dξi
− αifi + fpii ≥ 0, (13)

−
∣∣∣∣∂uki∂x

∣∣∣∣m−1∂uki∂x
∣∣∣∣
x=0

≤ uqi3−i(0, t). (14)

Mathematics series. No. 1(113)/2024 33



M.M. Aripov, Z.R. Rakhmonov, A.A. Alimov

Let

fi(ξi) = Ai

(
a

m+1
m

i − ξ
m+1
m

i

) m
mk−1

. (15)

By substituting equation (15) into inequalities (13) and (14), we can derive the necessary conditions
that unequivocally illustrate the occurrence of equation (14) under all circumstances. This crucial step
not only solidifies our understanding of the underlying principles, but also provides a robust framework
for further analysis and exploration within this complex system:(

k(m+ 1)

mk − 1

)m(
m+ 1

mk − 1

)
Amki ≥ βi

m+ 1

mk − 1
Ai,

Ai ≥

[
βi

(
mk − 1

k(m+ 1)

)m] 1
mk−1

,

fpii = Apii

(
a

m+1
m

i − ξ
m+1
m

i

) m
mk−1

+

(
a

m+1
m

i − ξ
m+1
m

i

) m
mk−1

(pi−1)

+

≤

≤ Apii a
(m+1)(pi−1)

mk−1

i

(
a

m+1
m

i − ξ
m+1
m

i

) m
mk−1

+

,

Apii a
(m+1)(pi−1)

mk−1

i ≥ αiAi +Amki

(
k(m+ 1)

mk − 1

)m
.

By taking

a
(m+1)(pi−1)

mk−1

i ≥ αiA1−pi
i +Amk−pii

(
k(m+ 1)

mk − 1

)m
,

0 < pi ≤ 1, and qi ≥
m(p3−i − 1)(pi + k)

(pi − 1)(m+ 1)
can be easily checked and ensure that A1, and A2 can

be taken sufficient to prevent inequalities (13) and (14) are valid. Because of this, if the initial data
u1(x, 0), u2(x, 0) are large enough that u10(x) ≥ u 1(x, 0), u20(x) ≥ u 2(x, 0), then u i(t, x), i = 1, 2
is a subsolution to (1)–(3). In accordance with the comparison principle, it is established that when
dealing with a substantial amount of initial data, the solutions provided in (1)–(3) will eventually blow
up within a finite time frame. The comprehensive proof has been successfully concluded, cementing
this understanding.

Theorem 3. If q1q2 <

(
m(k + 1)

m+ 1

)2

, and pi >

(
1 +

1

k

)
m +

1

k
, then every solution of problem

(1)–(3) blows up in finite time.

Proof. It is vital to comprehend that the delineated by (1)–(3) can be convincingly shown for
equations that lack a source. The necessary conditions for this to occur can be satisfied entirely through
internal mechanisms. As such, we proceed to build our targeted solution in a subsequent manner.

uib(t, x) = tµigi(ξi), ξi = xt−γi , (16)

where gi are two compactly supported functions,

µi =
m[m(k + 1) + (m+ 1)qi]

(m(k + 1))2 − (m+ 1)2qiq3−i
,

γi =
m[mk(k + 1) + (mk − 1)qi]− (m+ 1)q1q2

(m(k + 1))2 − (m+ 1)2qiq3−i
.
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We now insert (16) into (1)–(3) and derive the following result:

d

dξi

(∣∣∣∣dgkidξi
∣∣∣∣m−1dgkidξi

)
+ γiξi

dgi

dξi
− µigi ≥ 0, (17)

−
∣∣∣∣dgkidξi

∣∣∣∣m−1dgkidξi
∣∣∣∣
ξi=0

≤ gqi3−i(0). (18)

Finding self-similar solutions to the issue (17), (18) is now necessary.
Let

ḡi(ξi) = Bi(bi − ξi)
m

mk−1 , (19)

then by inserting (19) into (17), and (18), we obtain

dḡi

dξi
= −

Bim

mk − 1
(bi − ξi)

m
mk−1

−1,

γiξi
dgi

dξi
− µigi = −

Bim

mk − 1
ξi (bi − ξi)

m
mk−1

−1 − µiBi (bi − ξi)
m

mk−1 =

= −
Bim

mk − 1
ξi (bi − ξi)

m
mk−1

−1 − µiBi (bi − ξi)
m

mk−1
−1 (bi − ξi) ≥

≥ −
(
biBim

mk − 1
− µibiBi

)
(bi − ξi)

m
mk−1

−1
+ ,

d

dξi

∣∣∣∣∣dgkidξi
∣∣∣∣∣
m−1

dgki
dξi

 = Bmk
i

(
m

mk − 1

)m+1

km (bi − ξi)
m

mk−1
−1

+ ≥

≥ biBi

(
µi +

m

mk − 1

)
(bi − ξi)

m
mk−1

−1
+ ,

Bmk−1
i ≥

bi

km

(
mk − 1

m

)m+1(
µi +

m

mk − 1

)
,

−
∣∣∣∣dgkidξi

∣∣∣∣m−1dgkidξi
∣∣∣∣
ξi=0

≤ ḡqi3−i(0).

The following benefits result from applying comparison principles to the aforementioned expressions:

−
∣∣∣∣dgkidξi

∣∣∣∣m−1dgkidξi
∣∣∣∣
ξi=0

=

∣∣∣∣Bk
i (bi − ξi)

m
mk−1

−1
+

∣∣∣∣m−1 · (Bk
i

(
bi − ξi

) m
mk−1

−1
+

)∣∣∣∣
ξi=0

=

= Bmk
i (bi − ξi)

( m
mk−1

−1)m
+

∣∣∣∣
ξi=0

= Bmk
i b

m
mk−1

i ≤ Bqi
3−ib

qim

mk−1

3−i .

And this illustrates unequivocally that when pi >

(
1 +

1

k

)
m+

1

k
, equations (17) and (18) hold true.

The concept of comparison leads us to conclude that (1)–(3) have solutions that invariably end in
blow-up in a finite amount of time.

Theorem 4. If q1q2 ≤ (m (k + 1))2, and pi > 1, then every solution of the problem (1)–(3) is blow-up
in finite time.
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Proof. The same approach used in [11,18] can be used to establish Theorem 4.
Let us demonstrate how self-similar solutions asymptotically behave.

The case q1q2 >

(
m(k + 1)

m+ 1

)2

, and
1

m
< pi ≤ 1. Take into account the following self-similar solution

of (1)–(3).
Auxiliary systems of equations are a fundamental aspect of mathematical problem-solving in

various fields. The intricacy of these systems can often be overwhelming, but with the right methods
and techniques, they can be simplified. Through the application of specific transformations, such
as substitution or elimination, the complex nature of these systems can be broken down into more
manageable components. These methods have been extensively studied and proven effective in numerous
academic research papers. By implementing these strategies, professionals and enthusiasts alike can
confidently approach and solve even the most intricate auxiliary systems of equations:

ui(x, t) = (T + t)αi ϕi(ξi), ξi = x(T + t)−βi ,

where αi and βi parameters defined above.

d

dξi

(∣∣∣∣dϕkidξi

∣∣∣∣m−1dϕkidξi

)
+ βiξi

dϕi

dξi
− αiϕi + ϕβii = 0, (20)

−
∣∣∣∣dϕkidξi

∣∣∣∣m−1dϕkidξi

∣∣∣∣
ξi=0

= ϕqi3−i(0). (21)

Let us consider the function

ϕ̄i(ξi) =

(
di −Diξ

m+1
m

i

) m
mk−1

, di > 0, Di =
β

1
m
i (mk − 1)

k(m+ 1)
.

Theorem 5. The compactly supported solution of problem (20)-(21) has the asymptotic

ϕi(ξi) = ϕ̄i(ξi)(1 + o(1)),

when ξi →

(
di

Di

) m
m+1

= ξi0.

Proof. The function ϕi is looked for in the following form

ϕi(ξi) = ϕ̄i(ξi)ωi(ηi).

It is enough to show that ωi ≈ 1. Let

ηi = − ln

(
di −Diξ

m+1
m

i

)
, and ηi

ξi→ξi0−→ +∞. (22)
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Upon substituting (22) into (20)-(21) we get the next expressions:

ϕ̄i(ξi) = e−
m

mk−1
ηi , ϕi(ξi) = e−

m
mk−1

ηiωi, ξi =
(
di − e−ηi

) m
m+1 D

− m
m+1

i ,

dξi

dηi
=

(
m+ 1

m

)
D

m
m+1

i eηi
(
di − e−ηi

) 1
m+1 ,

βiξi
dϕi

dξi
− αiϕi + ϕpii = βi

(
m+ 1

m

)
e(1−

m
mk−1

)ηi
(
di − e−ηi

)
×

×

(
ω
′
i −

m

mk − 1
ωi

)
− αie−

m
mk−1

ηiωi + e−
mpi

mk−1
ηiωpii ,

d

dξi

(∣∣∣∣dϕkidξi

∣∣∣∣m−1dϕkidξi

)
=

(
m+ 1

m

)m+1

Dm
i e

(1− m
mk−1

)ηi×

×
(
di − e−ηi

) [
((Liω)m)

′
+

(
e−ηi

di − e−ηi
−

m

mk − 1

)
· (Liω)m

]
,

where Liω =
(
ωki
)′
−

mk

mk − 1
ωki .

Now (20) takes a next look:

(
(Liω)m

)′
+

(
a1(ηi)−

m

mk − 1

)
(Liω)m + a2(ηi)ω

1−k
i Liω − a3(ηi)ωi + a4(ηi)ω

pi
i = 0,

where a1(ηi) =
e−ηi

di − e−ηi
, a2(ηi) =

βi

k

(
m

Di(m+ 1)

)m
,

a3(ηi) = di

(
m

m+ 1

)m+1

D−mi a1(ηi)e
−m(pi−1)

mk−1
ηi , ηi ∈ [η0; +∞).

In a specific region around +∞, the solutions to the last system fulfill the following inequalities:

ωi > 0,
(
ωki

)′
−

mk

mk − 1
ωki 6= 0.

Assuming that νi(ηi) = (Liω)m, then

ν
′
i(ηi) = −

(
a1(ηi)−

m

mk − 1

)
νi − a2(ηi)ω1−k

i Liω + a3(ηi)− ωia4(ηi)ωpii . (23)

Furthermore, we consider the functions:

θi(ηi, µi) = −

(
a1(ηi)−

m

mk − 1

)
µi − a2(ηi)ω1−k

i Liω + a3(ηi)− ωia4(ηi)ωpii , (24)

where µi ∈ R.
The functions θi(ηi, µi) keep the sign for interval [η1i; +∞) ⊂ [ηi0; +∞) regarding each fixed

value µi. Therefore, the functions θi(ηi, µi) satisfies one of the following inequalities, for all ηi ∈
[η1i; +∞),

ν
′
i > 0, or ν

′
i < 0, (25)
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from what one can conclude that when ηi ∈ [η1i; +∞):

lim
ηi→+∞

a1(ηi) = lim
ηi→+∞

a3(ηi) = 0,

0
a2 = lim

ηi→+∞
a2(ηi) =

βi

k

(
m

νi(m+ 1)

)m
,

0
a4 = lim

ηi→+∞
a4(ηi) =


0, if pi > 1− k + 1

m ,(
m

m+ 1

)mD−mi
di

, if pi = 1− k + 1
m ,

+∞, if pi < 1− k + 1
m .

Suppose now that for the functions νi (ηi), a limit ηi → +∞ does not exist. It should be taken into
account the situation where one of the inequalities (25) holds. As νi (ηi) are oscillating functions around
νi = µi, and in [η1i; +∞), the intersection of this straight line’s graph with itself is infinite.

But given that in the interval [η1i; +∞), this is not possible. Since there is only one real inequality (25),
it follows from (24) that the graph of the function νi (ηi) only crosses the straight line νi = µi, once
over the interval [η1i; +∞). The function νi (ηi) therefore has a limit at η → +∞.

The functions νi (ηi) are assumed they have a limit at η → +∞. Then, w′i (ηi) has a limit at
η → +∞, and this limit is zero. Then

νi (ηi) =

(
mk

mk − 1

)m (
0
ωi

)km
+ o (1) ,

at η → +∞.
Furthermore, by (23) functions νi (ηi) derivatives have limits at η → +∞, which are plainly equal

to zero.
As a result, it is required

lim
ηi→∞

[(
a1(ηi)−

m

mk − 1

)
νi + a2(ηi)ω

1−k
i Liω − a3(ηi) + ωia4(ηi)ω

pi
i

]
= 0.

And the following algebraic equations can be obtained

mk

mk − 1

(
mk

mk − 1

)m
km
(

0
ω
)mk
− 0
a2

mk

mk − 1

0
ωi = 0,

or

0
ωi =

(
βi

k

(
mk − 1

kDi(m+ 1)

)m) 1
mk−1

. (26)

The best case:
0
ωi = 1. From the last equation (26), it has been achieved that

0
ωi ≈ 1, and thus

ϕi(ξi) = ϕ̄i(ξi)ωi(ηi).

Theorem 6. If pi > 1− k +
1

m
, and q1q2 <

m2 (k + 1− p1) (k + 1− p2)
(m+ 1)2

, then

ui(t, x) = ci(t+ T )αi ḡi(ξi)(1 + o(1)),

where ci =

(
mk − 1

m
biγi

) 1
mk−1

(
mk − 1

Bim

)
.

Proof. Theorem 6 is demonstrated in a manner similar to that of Theorem 5.
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2 Numerical solution of the problem

Drawing upon the extensive knowledge in the field of numerical analysis, experts have established
that the process of selecting an initial approximation is of utmost importance in maintaining the
nonlinear characteristics of a system of equations. Through rigorous research and analysis, it has been
determined that an ill-suited initial approximation can lead to significant distortions in the accuracy
and efficiency of the numerical solution. As such, professionals in this domain are constantly exploring
innovative techniques and methodologies to ensure optimal selection of initial approximations for
complex systems. Recognizing this significance, a computer experiment was recently undertaken to
investigate the qualitative properties of solutions in relation to the global solvability of the system.
To ensure utmost accuracy in our calculations, we employed equation (1) as our primary tool. This
equation, which takes into account the second order with respect to x and the first order with respect
to t, allows us to accurately model complex systems. By leveraging this approximation method, we
can gain a deeper understanding of intricate phenomena and make informed decisions based on highly
accurate data. The construction of the iterative process for numerical modeling involved employing
the Thomas algorithm to calculate the node values during each step of the iteration. This meticulous
approach guarantees the precision and reliability of the numerical analysis for the given system of
nonlinear equations.

To shed some light on the effectiveness of different approaches, we conducted a series of numerical
experiments. Through these numerical experiments, we were able to gain valuable insights into the
influence of different initial approximations on both the convergence of the solution and the preservation
of the qualitative properties of the intricate nonlinear processes under study. Our findings revealed that
even slight variations in the initial approximations could have a significant impact on the final outcome,
highlighting the importance of careful consideration and precise initialization in computational simula-
tions. These results underscore the necessity for thorough numerical analysis and further emphasize the
intricate nature of these nonlinear systems. Through our experiments, we were able to gather valuable
insights into the behavior of the system of nonlinear equations under different numerical parameters
and boundary conditions.

Figure 1. k = 1.0, m = 2.3, p1 = 2.1, p2 = 2.0, a1 = 1, a2 = 1
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Figure 2. k = 1.8, m = 1.7, p1 = 2.5, p2 = 2.4, a1 = 1, a2 = 1

Figure 3. k = 0.8, m = 3.7, p1 = 1.4, p2 = 1.5, a1 = 1, a2 = 1

Figure 4. k = 1.7, m = 1.6, p1 = 2.8, p2 = 2.4, a1 = 1, a2 = 1
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Figure 5. k = 1.5, m = 1.7, p1 = 2.6, p2 = 3.4, a1 = 1, a2 = 1

Figure 6. k = 1.4, m = 1.7, p1 = 1.6, p2 = 1.4, a1 = 1, a2 = 1

Figure 7. k = 1.4, m = 1.7, p1 = 1.6, p2 = 1.4, a1 = 1, a2 = 1

Mathematics series. No. 1(113)/2024 41



M.M. Aripov, Z.R. Rakhmonov, A.A. Alimov

Figure 8. k = 1.4, m = 1.7, p1 = 1.6, p2 = 1.4, a1 = 1, a2 = 1

Conclusion

It has been established upper and lower estimates for global and unbounded generalized solutions
and also Fujita-type critical exponents are obtained for a nonlinear mathematical model of the system
of parabolic equations with sources and nonlinear boundary conditions. In the study of a mathematical
model of a nonlinear diffusion equation with a double nonlinearity and a source, it has been confirmed
that perturbations propagate with finite velocity. This finding sheds light on the behavior of solutions
within this complex system, revealing the intricacies of spatial localization. By understanding these
properties, researchers can delve deeper into the dynamics of nonlinear diffusion equations, advancing
our knowledge in this specialized field of study.

An asymptotic behavior of compactly supported generalized solutions of the nonlinear diffusion
problem with a source and with nonlinear damping is proved.

In Figures 1–8, we are presented with a visual representation of the numerical solution to the
boundary value problem (1)–(3). These graphs not only provide a comprehensive view of the solution,
but also showcase the intricate nature of the problem at hand. By examining these figures, one can
discern the complex patterns and behaviors that emerge from this system, further reaffirming the need
for rigorous analysis and research in this field. In this case, the process has the property of a finite
perturbation propagation velocity. The size of the perturbation propagation region increases with time.
The results of numerical experiments provide compelling evidence of the rapid convergence observed
in the iterative process. This phenomenon can be attributed to the meticulous selection of the initial
approximation, a crucial step that sets the foundation for subsequent computations. Through careful
analysis and validation, it becomes evident that this method yields accurate and efficient solutions,
making it a valuable tool for tackling complex problems in various domains. All the figures show that
the increase in the propagation of a disturbance depends on the numerical parameters of the medium.
The numerical experiments conducted in this study have demonstrated the remarkable convergence
rate of the iterative process towards the precise solution. This notable result can be attributed to
the careful selection of an appropriate initial approximation. Notably, regardless of the variation in
numerical parameters, the number of iterations required does not surpass a mere five. Such findings
emphasize the efficiency and reliability of our computational methods in solving complex problems.
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Бейсызықты шекаралық шарттары және дереккөзi бар
бейсызықты диффузиялық жүйе шешiмдерiнiң өзгеруi туралы

М.М. Арипов1, З.Р. Рахмонов1, А.А. Алимов1,2

1Мырза Ұлықбек атындағы Өзбекстан ұлттық университетi, Ташкент, Өзбекстан;
2В.Г. Плеханов атындағы Ресей экономикалық университетiнiң Ташкент филиалы, Ташкент, Өзбекстан

Мақалада баяу диффузия жағдайындағы бейсызықтық шекаралық шарттары бар бейсызықты диф-
фузиялық жүйенiң глобалды шешiлетiндiгi және шешiлмейтiндiгi зерттелген. Бейсызықты модель-
дерiнiң реакция-диффузия, жылу алмасу, сүзу және басқа да физикалық, химиялық және биология-
лық процестердiң сапалық сипаттамаларын талдауда маңызды рөл атқаратын критикалық Фуджита
типтi көрсеткiшi алынды. Глобалды шешiмдiлiк жағдайында асимптотикалық шешiмдердiң негiзгi
компоненттерi алынады. Зерттелетiн бейсызықты процестердiң сапалық сипаттамаларын сақтай оты-
рып, нақты шешiмге тез жақындайтын итерациялық әдiстер сәйкес бастапқы жуықтаудың болуын
талап ететiнi белгiлi. Бұл бейсызықтық есептердi сандық шешу үшiн күрделi мәселе болып табы-
лады. Бастапқы жуықтауларды сәттi таңдау есептi шешуге мүмкiндiк бередi, ол теңдеудiң сандық
параметрлерiнiң мәнiне байланысты, олар бiрiншi кезекте асимптотикалық формуланы қолданатын
есептеулерде ұсынылады. Итерациялық процестiң бастапқы жуықтауы ретiнде өзiндiк ұқсас шешiм-
дердiң асимптотикасын пайдаланып, сандық есептеулер жүргiзiлген және нәтижелер талдауы берiл-
ген. Сандық тәжiрибелерден алынған нәтижелер бейсызық диффузиялық жүйеде қарастырылатын
процестiң физикасымен тамаша сәйкес келетiнiн көрсетедi.

Кiлт сөздер: күрделену режимi, бейсызықты шекаралық шарт, шешiмiнiң бар болуының критикалық
глобалды қисығы, өзгешеленген параболалық жүйелер, Фуджита типтi критикалық көрсеткiш.

О поведении решений нелинейной диффузионной системы с
источником и нелинейными граничными условиями

М.М. Арипов1, З.Р. Рахмонов1, А.А. Алимов1,2

1Национальный университет Узбекистана имени Мирзо Улугбека, Ташкент, Узбекистан;
2Ташкентский филиал Российского экономического университета имени В.Г. Плеханова, Ташкент, Узбекистан

Изучены глобальная разрешимость и неразрешимость нелинейной диффузионной системы с нели-
нейными граничными условиями в случае медленной диффузии. Получены критические показатели
типа Фуджиты и существования, которые играют существенную роль при анализе качественных ха-
рактеристик нелинейных моделей реакций—диффузии, теплопереноса, фильтрации и других физиче-
ских, химических и биологических процессов. В случае глобальной разрешимости получены ключевые
компоненты асимптотических решений. Известно, что итерационные методы, быстро сходящиеся к

44 Bulletin of the Karaganda University



On the behaviors of solutions ...

точному решению при сохранении качественных характеристик изучаемых нелинейных процессов,
требуют наличия соответствующего начального приближения. Это представляет собой серьезную
проблему для численного решения нелинейных задач. Успешный выбор начальных приближений поз-
воляет решить эту задачу, которая зависит от значения числовых параметров уравнения, которые, в
первую очередь, в расчетах рекомендуются с использованием асимптотической формулы. Применяя
асимптотику автомодельных решений в качестве начального приближения итерационного процесса,
проведены численные расчеты и приведен анализ результатов. Результаты численных эксперимен-
тов показывают, что полученные результаты прекрасно согласуются с физикой рассматриваемого
процесса в нелинейной диффузионной системе.

Ключевые слова: режим с обострением, нелинейное граничное условие, критическая глобальная кри-
вая существования, вырожденные параболические системы, критические показатели типа Фуджиты.
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