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This article is about Minkowski difference of sets, which is one of the Minkowski operators. The necessary
and sufficient conditions for the existence of the Minkowski difference of given regular polygons in the
plane were derived. The method of finding the Minkowski difference of given regular tetrahedrons in the
Euclidean space R3 was explained. At the end of the article, the obtained results were summarized and a
geometric method for finding the Minkowski difference of the convex set M and compact set N given in Rn

was shown. The theory of foliations was applied to find the Minkowski difference of sets. New geometric
concepts such as “dense embedding” and “completely dense embedding” were introduced. An important
geometric property of the Minkowski operator was introduced and proved as a theorem.
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Introduction

Not all operations on sets may have a geometric meaning. For sets with elements of any kind, we
can perform operations such as union, intersection, and difference.

So, the above operations do not necessarily mean geometrically in some cases. The Minkowski sum
and difference on the sets were introduced precisely for the purpose of solving geometric problems, and
these operations depend on the nature of the elements that make up the sets. That is why Minkowski
operations are not performed for the sets given in the above example.

Definitions and some properties of Minkowski operators are presented in works [1, 2]. Among the
known scientific works, the Minkowski difference was first used in [3] to solve the problem of pursuit in
differential games under the name “geometric difference”. Later, in other works such as [4, 5], various
properties of this “geometric difference” were studied, and with their help, the conditions for solving
the problem of chasing were eased. Also, many geometric properties of Minkowski difference and sum
are presented in [6–9]. To date, several scientific researches have been conducted to find algorithms for
calculating the Minkowski sum. Y. Yan, D.S. Chirikjian, A. Baram, E. Fogel, D. Halperin, M. Hem-
mer, S. Morr, O. Eduard, M. Sharir, A. Kaul, M.A. O’Connor, V. Srinivasan, S. Das, S.D. Ranjan,
S. Sarvottamananda, W. Cox, L. While, M. Reynolds and other scientists obtained fundamental results
on the calculation of the Minkowski sum of polygons in the plane [10–15].

Finding the Minkowski difference of sets is more complicated than finding their Minkowski sum.
There are also not many works on finding the Minkowski difference of given sets [16, 17]. Several
properties and calculation methods of the Minkowski difference are presented in the works of specialists
such as L.A. Tuan, L. Yang, H. Zhang, J.B. Jeannin, N. Ozay, Y.T. Feng, Y. Tan, Y. Zhang, W. Qilin
[18–21]. However, so far, the conditions for the Minkowski difference of an arbitrary given set to be
empty or non-empty have not been obtained.
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The theory of foliation is one of the developing branches of modern geometry, and it has applications
to many areas of geometry [22–28]. In summarizing the obtained results in this article, the foliation
theory was also used. Through new geometrical concepts, an efficient method for finding the Minkowski
difference of given compact sets in Rn has been created.

This article presents important geometric properties of the Minkowski operator and geometric
ways to find the Minkowski difference of some sets using these properties. In this article, we solved
the following problems:

1) a new geometric method and exact formula for finding the Minkowski difference of given regular
polygons in the plane R2;

2) finding the Minkowski difference of two given regular tetrahedrons in the Euclidean space R3;
3) a new geometric property for finding the Minkowski difference of arbitrary sets;
4) applying foliation theory to finding the Minkowski difference.

1 Research Methodology

Definition 1. Let the sets A and B be non-empty sets of the n dimensional Euclidean space Rn.
Their Minkowski sum is the set of points formed by adding each point of set A to each point of set B,
i.e.

A+B = {c ∈ Rn : c = a+ b, a ∈ A, b ∈ B}.

Using this introduced operation, the Minkowski difference of two sets is defined as follows.

Definition 2. Let the sets A and B be non-empty sets of the n dimensional Euclidean space Rn.
The following set is called their Minkowski difference:

D = A∗B = {d ∈ Rn : d+B ⊂ A}.

Definition 3. The Minkowski operators of a multi-valued mapping G : Rn → 2R
n are the operators

AG : 2R
n → 2R

n and BG : 2R
n → 2R

n given by the formulas

AGS =
⋃
x∈S

(x+G(x)),

BGS = Rn\(AG(Rn\S)),

for any set S.

If, in particular, we take the multi-valued mapping G to be constant G(x) = G0 for all x ∈ S, the
Minkowski operators correspond to Minkowski sum and difference, respectively:

AGS = S +G0, BGS = S ∗(−G0).

Minkowski sum and Minkowski difference have been used to obtain sufficient conditions for ending the
game in differential games [3–5]. Today, the approximate calculation of Minkowski sum and difference
takes an important place in solving practical problems with the help of differential games. At the same
time, it is one of the most important issues to evaluate the Minkowski difference from below and above
in theoretical studies.

Minkowski operator were first applied to the study of differential games in the works of L.S. Pon-
tryagin [3, 4]. He called this operator geometric difference and marked it as (∗). In [17], a necessary
and sufficient condition for the Minkowski difference of two squares to be non-empty was obtained.
Formulas for calculating Minkowski differences are also presented in these works.
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2 Minkowski Difference of Regular Polygons

On the Euclidean plane R2, let regular n-sided polygons PA and PB be given by verticesA1, A2, ..., An
and B1, B2, ..., Bn, respectively. Using these points, we can express vectors corresponding to the sides
of regular polygons PA and PB:

−−→
A1A2 = ~a1,

−−→
A2A3 = ~a2, ...,

−−→
AnA1 = ~an,

−−→
B1B2 = ~b1,

−−→
B2B3 = ~b2, ...,

−−→
BnB1 = ~bn.

Theorem 1. In order for the Minkowski difference PA ∗PB of regular polygons PA and PB given
on the Euclidean plane R2 to be non-empty, the following relation is necessary and sufficient:

|~a1|
2 tan π

n

≥

∣∣∣~b1∣∣∣
2 sin π

n

· cos
(π
n
− αi

)
. (1)

Here αi = min
i=1,n

{
arccos

(
〈~a1,~bi〉
|~a1||~bi|

)}
is the smallest angle between vectors ~a1 and ~bi, i = 1, n.

Proof. Since PA is a regular polygon, the centers of the circumcircle and incircles of this polygon are
at the same point. Let’s denote this point as OA. In the same way, we mark the center of circumcircle
and incircles of the polygon PB as OB. PA ∗PB 6= ∅ means that the set PB can be nested inside the
set PA. For this, we move the set PB parallel until the point OB falls on the point OA, that is, we
move the set PB parallel along the vector

−−−−→
OBOA. There can be two cases.

 

Figure 1. The Minkowski difference of regular polygons with parallel sides

In the first case, it can be ~a1 ↑↑ ~b1, ~a2 ↑↑ ~b2, ...,~an ↑↑ ~bn (Fig. 1). In such a situation, the images
of points B′1, B′2, ..., B′n formed by parallel displacement of points B1, B2, ..., Bn along vector

−−−−→
OBOA

will be located on straight lines OAAi, i = 1, n. In order for the points B′1, B′2, ..., B′n to belong to the
regular polygon PA (here, the points inside the polygon are also considered to belong to the polygon),
it is necessary and sufficient to satisfy the relation∣∣OAAi∣∣ ≥ ∣∣OAB′i∣∣ , i = 1, n. (2)

The length of the segments OAB′i, i = 1, n is equal to the radius of the circumcircle of the PB

polygon, i.e ∣∣OAB′i∣∣ =
∣∣∣~b1∣∣∣

2 sin π
n

, i = 1, n. (3)
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The length of the segment OAAi, i = 1, n is equal to the radius of the circumcircle of polygon PA, but
if we express it by the radius of the incircle of the polygon PA, it will be in the form of

∣∣OAA′i∣∣ = |~a1|
2 tan π

n

· 1

cos πn
, i = 1, n. (4)

Since ~a1 ↑↑ ~b1, follows that αi = min
i=1,n

{
arccos

(
〈~a1,~bi〉
|~a1||~bi|

)}
= 0. From this we can write equation(4) as

∣∣OAA′i∣∣ = |~a1|
2 tan π

n

· 1

cos
(
π
n − αi

) , i = 1, n. (5)

If we put equations (5) and (3) to relation (2), condition (1) is obtained.

 

Figure 2. The Minkowski difference of regular polygons with corresponding sides not parallel

In the second case, relations ~ai ∦ ~bj ; i, j = 1, n are appropriate, that is, none of the sides of the
polygons PA and PB are parallel to each other (Fig. 2). In studying this situation, we must first
determine the smallest angle between the vectors ~a1 and ~bi, i = 1, 4 and we denote this angle as αi
and calculate it as follows

αi = min
i=1,n

arccos


〈
~a1,~bi

〉
|~a1|

∣∣∣~bi∣∣∣
 .

Suppose this angle is the angle between the vector
−−→
A1A2 and the vector

−−→
BkBk+1, k = 1, n(Bn+1 = B1).

In that case, we construct the vector
−−−→
OAA, whose beginning is at the point OA, and whose end is at

the point A, the middle of the segment A1A2. This vector forms an angle π
n − αi, i = 1, n with the

vector
−−−→
OAB′k, whose beginning is at point OA and whose end is at point B′k. In order for the points

to belong to the regular polygon PA, it is necessary and sufficient that the length of the orthogonal
projection of the vector

−−−→
OAB′k onto the vector

−−−→
OAA is not greater than the length of the vector

−−−→
OAA

(Fig. 3), i.e ∣∣∣∣−−−→OAA

∣∣∣∣ ≥ ∣∣∣∣−−−→OAB′k

∣∣∣∣ · cos(πn − αi) . (6)

The length of the vector
−−−→
OAA is equal to the radius of the incircle of the regular polygon PA,∣∣∣∣−−−→OAA

∣∣∣∣ = |~a1|
2 tan π

n

. (7)
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The length of the vector
−−−→
OAB′k is equal to the radius of the circumcircle of the regular polygon PB,∣∣∣∣−−−−→OAB′k

∣∣∣∣ =
∣∣∣~b1∣∣∣

2 sin π
n

. (8)

If we put equations (8) and (7) to relation (6), condition (1) is obtained. This completes the proof.

3 Minkowski Difference of Regular Tetrahedrons

We know that a polyhedron is called a regular polyhedron, if all its faces are congruent regular
polygons and all dihedral angles are also congruent. Since at least three edges of the polyhedron pass
through each vertex, the sum of all plane angles at that end is less than 2π. A regular tetrahedron is
a pyramid with all faces consisting of equilateral triangles, and it has 4 vertices, 4 faces and 6 edges.
The spheres drawn inside and outside a regular tetrahedron have their centers at the same point. To
define a tetrahedron in a three-dimensional Euclidean space, it is enough to give the coordinates of its
vertices.

Let’s say that the points corresponding to the vertices of the tetrahedron TA are given by
Ai =

{
α1
i , α

2
i , α

3
i

}
, i = 1, 4 coordinates, and the points corresponding to the vertices of the tetra-

hedron TB are given by Bi =
{
β1i , β

2
i , β

3
i

}
, i = 1, 4 coordinates. Then the coordinate of the center of

the circumsphere and insphere of the tetrahedron TA is in the form

OA = {a1, a2, a3}, aj =
1

4

4∑
i=1

αji , j = 1, 3.

Similarly, the coordinate of the center of the circumsphere and insphere of the tetrahedron TB is
also in the form

OB = {b1, b2, b3}, bj =
1

4

4∑
i=1

βji , j = 1, 3.

We denote the vectors starting at point OA and ending at the points where the medians of the
faces of the tetrahedron TA intersect as ~rAi , i = 1, 4 and the coordinates of these vectors are in the
form

~rAi =
1

3
{a1 − α1

i , a2 − α2
i , a3 − α3

i }, i = 1, 4.

The lengths of these vectors are the same and equal to the radius of the insphere of the tetrahedron
TA, i.e. ∣∣~rAi ∣∣ = √612 |~a1| , i = 1, 4.

Where ~a1 =
−−→
A1A2 and represents the vector corresponding to the edge of the tetrahedron TA.

Let’s denote the vectors starting at OB and ending at points Bi, i = 1, 4 as ~RBi , i = 1, 4 respectively,
and the coordinates of these vectors are in the form

~RBi = −{b1 − β1i , b2 − β2i , b3 − β3i }, i = 1, 4.

The lengths of these vectors are equal to the radius of the circumsphere of the tetrahedron TB:∣∣∣~RBi ∣∣∣ = √64 ∣∣∣~b1∣∣∣ , i = 1, 4,

where ~b1 =
−−−→
B1B2 and represents the vector corresponding to the edge of the tetrahedron TB. By α

we denote the smallest angle between ~rAi , i = 1, 4 vectors and ~RBi , i = 1, 4 vectors.
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Figure 3. Minkowski difference of tetrahedrons

Theorem 2. In order for the Minkowski difference TA ∗TB of regular tetrahedrons TA and TB given
in Euclidean space R3 to be non-empty, the following relation is necessary and sufficient:

|~a1| ≥ 3|~b1| cosα. (9)

Proof. To calculate the difference TA ∗TB, we move the tetrahedron TB parallel to the vector
−−−−→
OBOA. Let us denote the images of points Bi =

{
β1i , β

2
i , β

3
i

}
, i = 1, 4 in this parallel displacement

as B′i, i = 1, 4 respectively (Fig. 3). In order for the difference TA ∗TB not to be empty, these points
must lie inside the tetrahedron TA or at most on its faces.

Let the points B′i, i = 1, 4 lie on the faces of the tetrahedron TA. The radius of the insphere of
the tetrahedron TA drawn from the point OA to the face formed by the vertices A2 =

{
α1
2, α

2
2, α

3
2

}
,

A3 =
{
α1
3, α

2
3, α

3
3

}
, A4 =

{
α1
4, α

2
4, α

3
4

}
of the tetrahedron TA falls on the point where the medians of the

triangle M A2A3A4 intersect and is perpendicular to this face. Let’s designate the vector corresponding
to this radius as ~rA1 , its coordinate will be in the form

~rA1 =
1

3
{a1 − α1

1, a2 − α2
1, a3 − α3

1}.

The length of the orthogonal projection of all vectors starting from OA and ending at points lying
on the face A2A3A4 onto the vector ~rA1 is equal to

∣∣~rA1 ∣∣. Hence, if any point B′i, i = 1, 4 belongs to
face A2A3A4, equality

proj~rA1

−−−→
OAB′i =

∣∣~rA1 ∣∣ , i = 1, 4 (10)

holds. Points B′i, i = 1, 4 can also be located inside the tetrahedron TA, so we generalize equation (10)
and write it in the form

proj~rA1

−−−→
OAB′i ≤

∣∣~rA1 ∣∣ , i = 1, 4. (11)

We can write the same relation for other faces of the tetrahedron TA:

proj~rA2

−−−→
OAB′i ≤

∣∣~rA2 ∣∣ , i = 1, 4,

proj~rA3

−−−→
OAB′i ≤

∣∣~rA3 ∣∣ , i = 1, 4,

proj~rA4

−−−→
OAB′i ≤

∣∣~rA4 ∣∣ , i = 1, 4.

(12)

Summarizing relations (11) and (12), we can write as follows

proj~rA
j

−−−→
OAB′i ≤

∣∣~rAj ∣∣ , i = 1, 4, j = 1, 4. (13)
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We know that the lengths of vectors
−−−→
OAB′i are the same and equal to the radius of the circumsphere

of the tetrahedron TB. ~rAj vectors have the same length and are equal to the radius of the insphere
of the tetrahedron T . Based on these, we write relation (13) in form (9), were α is the smallest of
the angles between vectors ~rAj , j = 1, 4 and vectors

−−−→
OAB′i, i = 1, 4. Because the cosine of a smaller

angle is greater than the cosine of a larger angle. This means that if relation (9) holds for the smallest
angle, it holds for the rest of the angles as well. Therefore, (9) is considered a necessary and sufficient
condition for the relation TA ∗TB not to be empty.

During the proof of the theorem, we derived the algorithm for finding the Minkowski difference
of two tetrahedrons given by their vertices in the Euclidean space R3. According to it, the following
should be done in sequence:

1) Let’s say that the points corresponding to the vertices of the tetrahedron TA are given by
Ai =

{
α1
i , α

2
i , α

3
i

}
, i = 1, 4 coordinates, and the points corresponding to the vertices of the tetrahedron

TB are given by Bi =
{
β1i , β

2
i , β

3
i

}
, i = 1, 4 coordinates. First of all we determine the Minkowski

difference of tetrahedrons TA and TB is not empty. For this we check relation (10) according to the
above theorem. The numbers |~a1| and

∣∣∣~b1∣∣∣ in relation (10) are lengths of vectors
−−→
A1A2 and

−−→
B1B2

respectively, and they are founded by following equality:

|~a1| =
∣∣∣−−→A1A2

∣∣∣√(α1
2 − α1

1

)2
+
(
α2
2 − α2

1

)2
+
(
α3
2 − α3

1

)2
,∣∣∣~b1∣∣∣ = ∣∣∣−−→B1B2

∣∣∣√(β12 − β11)2 + (β22 − β21)2 + (β32 − β31)2.
2) Suppose that as a result of the check, equality |~a1| = 3|~b1| cosα is satisfied. This means that

difference TA ∗TB consists only one point and this point is in the form OA −OB.
3) Suppose that as a result of the check, relation |~a1| > 3|~b1| cosα is satisfied. In this case to

calculate the difference TA ∗TB, we construct a tetrahedron T̃B such that, the edges are parallel to the
edges of the tetrahedron TA, and the vertices of the tetrahedron TB lie on the faces of this tetrahedron.
Such a tetrahedron is unique, the center of the insphere of this is at point OB and the radius is equal
to
√
6
4

∣∣∣~b1∣∣∣ · cosα. If we designate the vertices of the tetrahedron T̃B as B̃i, i = 1, 4 the directions of the

vectors
−−−→
OBB̃i, i = 1, 4 are the same as the directions of the vectors

−−−→
OAAi, i = 1, 4, and their lengths are

equal to the radius of the circumsphere of the tetrahedron T̃B. Since the radius of the circumsphere of
the regular tetrahedron is three times longer than the radius of its insphere, the lengths of the vectors−−−→
OBB̃i, i = 1, 4 are equal to the number 3

√
6

4

∣∣∣~b1∣∣∣ · cosα. The coordinates of the vectors
−−−→
OAAi, i = 1, 4

are as follows: −−−→
OAAi =

{
α1
i − a1, α2

i − a2, α3
i − a3

}
, i = 1, 4.

From these we can find the coordinates of vectors
−−−→
OBB̃i, i = 1, 4:

−−−→
OBB̃i =M ·

−−−→
OAAi, i = 1, 4, M =

3
∣∣∣~b1∣∣∣ · cosα
|~a1|

.

Using these vectors, we find the points B̃i, i = 1, 4 the vertices of the tetrahedron T̃B:

B̃i =M
{
α1
i − a1 + b1, α

2
i − a2 + b2, α

3
i − a3 + b3

}
, i = 1, 4.

4) We find the vertices of the tetrahedron formed as a result of difference TA ∗TB by subtracting
the corresponding coordinates of the points found from the coordinates of points Ai =

{
α1
i , α

2
i , α

3
i

}
,

i = 1, 4:
Ai − B̃i.
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4 Generalization of the results

In this section, we summarize the results obtained above [23–26]. Let, we are given convex set M
and compact set N in Rn. We denote by ∂M0 = L0 the boundary of a convex compact set M = M0.
Mα, ∂Mα = Lα, α ∈ A are chosen in such a way that: 1)

⋃
α∈A

Lα =M ; 2) Mα
∗Mβ 6= ∅ for arbitrary

α, β ∈ A and α ≤ β. Based on I. Tamura [23], we call F = {Lα : Lα = ∂Mα, α ∈ A} a foliation and
Lα, α ∈ A a leaves of the foliation. Let ∂

(
Mα

∗Mβ

)
∈ F be for arbitrary α, β ∈ A.

Theorem 3. If the condition N ⊂Mα is satisfied for the convex compact sets M , Mα and compact
set N given in Rn, the equality

M ∗N =
(
M ∗Mα

)
+
(
Mα

∗N
)

holds.
Proof. Let be z ∈M ∗N , then we show that there are elements z1 ∈M ∗Mα and z2 ∈Mα

∗N such
that z = z1+z2. We can write the relation z+N ⊂M using the definition of the Minkowski difference
for the element z ∈M ∗N . Therefore, for any c ∈ N , there is an element a ∈M such that the equality
z + c = a holds. From this we get the expression

c = a− z ∈ N. (14)

By condition, since N ⊂ Mα, relation Mα
∗N 6= ∅ is valid. Let z2 ∈ Mα

∗N . It follows that
z2 +N ⊂Mα. This relation holds for all elements of the set N . Hence, according to (14), we can
write the relation

z2 + a− z ∈Mα. (15)

According to the condition, M ∗Mα 6= ∅. Let z1 ∈ M ∗Mα. Then, z1 +Mα ⊂ M is appropriate.
Since this relation holds for all elements of the set Mα, it also holds for the element z2 + a − z in
expression (15)

z2 + z1 + a− z ∈M.

Since a ∈M , z1 + z2 − z = 0 and hence, the equality z1 + z2 = z holds true.
Now, let z ∈

(
M ∗Mα

)
+
(
Mα

∗N
)
, then there are elements z1 ∈ M ∗Mα and z2 ∈ Mα

∗N such
that z1 + z2 = z. According to the definition of Minkowski difference from relation z1 ∈ M ∗Mα, we
can write relation z1 +Mα ⊂ M , similarly, we get the expression z2 + N ⊂ Mα from the relation
z2 ∈ Mα

∗N . From these two expressions we get z1 + z2 + N ⊂ M , which leads to z1 + z2 ⊂ M ∗N .
The theorem is proved.

Definition 4. A compact set N is said to be embedded in a foliation F , if such a leaf Lα = ∂Mα,
α ∈ A and an element z ∈ Rn are found for which the relation z +N ⊂Mα holds.

Definition 5. A compact set N is said to be densely embedded in a foliation F , if z + N ⊂ Mα0

and the index α0 is the smallest among the numbers α ∈ A for which the relation z +N ⊂Mα holds.
It is easy to understand from this definition that if the compact set N is densely embedded in

foliation F , the dimension of the geometric difference Mα
∗N is smaller than the dimension of the

space Rn.
Definition 6. A compact set N is said to be completely densely embedded in a foliation F , if

Minkowski difference Mα
∗N = {a} consists of a single point.

Theorem 4. If compact set N completely densely embedded in a foliation F , then the equality

M ∗N =
(
M ∗Mα

)
+ a

holds.
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Using the concept of “complete dense embedding”, we can write the following results for cases where
the “subtrahend” set in the theorem 1 and theorem 2, above is an arbitrary compact set N .

Theorem 5. For polygons PA and PB in the Euclidean plane R2, condition (1) holds. If compact
set N is completely dense embedded in set PB, then the equality PA ∗N = PA ∗PB holds.

Theorem 6. For tetrahedrons TA and TB in the Euclidean space R3, condition (9) holds. If compact
set N is completely dense embedded in set TB, then the equality TA ∗N = TA ∗TB holds.

Conclusion

The Minkowski difference is actually useful as a research and conceptual tool. But, unfortunately,
it is well known that there are serious difficulties in finding the Minkowski difference for given arbi-
trary forms of sets. This is the main obstacle for using the Minkowski difference in various practical
applications. The results of the analysis of the work done by experts so far on finding the Minkowski
difference and sum have shown that the Minkowski sum of sets is sufficiently studied, but there is a
lack of data and literature on the Minkowski difference and its calculation.

Above, we introduced new methods for finding Minkowski differences of regular polygons given by
vertices in the plane R2, regular tetrahedron given by vertices in space R3. Taking these results, we
came to the conclusion that the form of the Minkowski difference of these sets will be similar to the
“minuend” set.

But we cannot state this conclusion for the Minkowski difference of n-dimensional cubes in Rn.
Because the Minkowski difference of two cubes can also be a rectangular parallelepiped edges of which
are parallel to the edges of the “minuend” cube. At the end of the article, we stated a theorem that
helps to calculate the Minkowski difference of arbitrary convex compact sets in Rn using the elements
of the theory of foliation.
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