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In this paper, we derive some new fixed point results in C*-algebra valued fuzzy metric space with the help
of subadditive altering distance function with respect to a t-norm. Our results generalize some existing
fixed point results in the literature. A common fixed point result is also derived for a pair of mappings
on complete C*-algebra valued fuzzy metric space. The results are supported by suitable examples along
with the graphical demonstration of the used conditions. As application, we establish the solvability
of a second order boundary value problem. Moreover, the results are also applied in control theory to
study the possibility of optimally controlling the solution of an ordinary differential equation in dynamic
programming.
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Introduction

The concept of fuzzy metric was introduced by Kramosil and Michalek [1] in 1975 and the study of
fixed points in fuzzy metric space was given by Grabiec [2] in 1988. Fixed point theory has emerging
applications in various domains including applied analysis, physics, mechanics, medical science etc.
During recent years, several researchers ([3-10]) have done the study of fixed point theory by introduc-
ing different types of mappings as well as considering different spaces along with various applications.

In 1984, Khan et al. [11] introduced the concept of altering distance function between two points
and again in 2011, Shen et al. [12] defined the same by introducing a new condition and derived many
fixed point results in fuzzy metric space. After that Roldan-Lépez-de-Hierro et al. [3] established some
results on common fixed point theorems for weakly compatible mappings in fuzzy metric spaces with
new contractive conditions. In 2018, Shoaib et al. [13] derived some fixed point results in dislocated
complete b-metric space and gave some examples as well as applications relating the results to common
fixed points for multivalued mappings. Using the altering distance function, Patir et al. [5,6,8] derived
some fixed point results using different types of mappings and gave examples as well as applications
to boundary value problem and integral equations.

The concept of C*-algebra valued metric space was given by Ma et al. [14] by replacing the set
of non negative real numbers with a (unital) C*-algebra. In 2020, Madadi et al. [15] introduced the
concept of C*-algebra valued fuzzy metric space and derived some topological properties of the same.
After that in 2021, Khaofong et al. [16] gave a new definition of C*-algebra valued fuzzy metric space
by replacing [0, 1] by [0a, 1a], where 04 and 14 are the zero element and the unit element of an algebra
A respectively in the sense of George and Veeramani [17], and established some results by introducing
C*-algebra valued contraction mapping with application to integral equations.
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Motivated by these, in this paper, we establish some fixed point results for complete C*-algebra
valued fuzzy metric space using subadditive altering distance function with respect to some ¢-norm.
We also derive a common fixed point result for a pair of mappings on complete C*-algebra valued fuzzy
metric space. Some of our results extend the works of Shoaib et al. [13] and Patir et al. [5,6,8,18] in
the setting of C*-algebra valued fuzzy metric space. In the third section we give an application of our
established result to second order boundary value problem. In view of the vast application of control
theory in present times in different technological fields viz., spacecraft control, robot technology, smart
fluid technology, etc., the section four of our paper is devoted to the study of control theory via our
derived result. Here we apply our results to study the possibility of optimally controlling the solution
of an ordinary differential equation in dynamic programming.

1 Preliminaries

Throughout the paper, A denotes a unital C*-algebra with unity 154. A complex algebra A is called
a complex *-algebra if there is an involution * : A — A defined on it by u — u*, where u* is called the
adjoint of u and having the properties that for all u,v € A, (A\u + v)* = Au* + v*, (uv)* = v*u* and
(u*)* = u, where X denotes the conjugate of A € C. A complete unital *-algebra is called a Banach
*-algebra with the norm satisfying ||u*|| = ||u|| for all w € A. Moreover, a Banach *-algebra is a
C*-algebra if |[u*u|| = ||u||? for all u € A.

An element £ € A is called a positive element of A and denoted by 04 < £ (04 being the zero
element of A) if £ € Ay and o(§) C [0,00), where A, = {{ € A : & = ¢} and o(€) is the spectrum of
&. A partial ordering on A is defined by £ < 7 (or, n = &) if and only if 0o < n — & (or, n — & = 0a).
When £ — 7 is positive and non-zero, we call & — 7 as strictly positive and denote it by & —n = 04
(or, £ = n). The set {£ € A : 04 < £} is denoted by AT and we denote (&* f)é as [¢] and for invertible
n, én~ ! as Let A’ be the set {£ € AT : &n = n€ for all n € A}. Moreover, [04,14] denotes the set
{£eA:0y 1)

Deﬁmtzon 1. [14] Let X be a nonempty set and A be a C*-algebra. Suppose that a mapping
d: X x X — AT satisfies:

(i) d(&,m) =0 if and only if £ =n for all {,n € X,

(11) d(fan) = d(777£) for all §,n € X,

(iii) d(€,m) < d(&, ) +d(C,m) for all £,71,C € X.

Then d is called a C*-algebra valued metric on X and (X, A, d) is called a C*-algebra valued metric
space.

Ezxample 1. [19] Let X = [0,1] and A = Mj(R), the set of all bounded linear operators on the
Hilbert space R?. Define d : X x X — AT by

_[lg=ml 0

where £, € X. Then, (X, A,d) is a C*-algebra valued metric space.

d\m

Lemma 1. |20,21] Suppose that A is a unital C*-algebra with unit element 14.

(i) For any £ € AT, £ % 1A if and only if ||¢]| < 1.

(i) If w € AT with |[u]| < 1, then 14 — u is invertible and ||u(1s — u)_lH <1

(iii) Suppose that u,v € A w1th 0a < u,v and wv = vu then 0p <

(iv) Suppose that A = {u € A : uv = ovu for all v € A}. LetuEA lf’U we A with 0y S w=<v

and 14 — u is a positive element in A then (14 —u)'w < (14 — u) " to.

Lemma 2. |22,23] Let A be a C*-algebra with unit element 14 and let u,v € A.
(i) If w is self-adjoint, then u < ||ul|14.
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(i) If 0o < u < v, then ||ul| < |[v]].
(iii) If w € A, then 14 + uu* is invertible in A.
(iv) If u € AT, then u = £*¢ for some £ € A.

Madadi et al. [15] defined the triangular norm or t-norm as follows:

Definition 2. Let A be a C*-algebra with unit element 1. A mapping 7 : AT x AT — AT is called
a t-norm if

(i) 7(a,14) = a for all @ € AT,

(ii) 7(a,b) = 7(b,a) for all a,b € AT,

(iii)axd,b<x b = 7(a,b) < 7(d,V) for all a,b,c,d € AT,

(iv) 7(a,7(b,c)) = 7(7(a,b),c) for all a,b,c € A*.

Definition 3. [16] Let A be a C*-algebra with unit element 1. For an arbitrary set X, let 7 be a
continuous t-norm on A" and My be a fuzzy set from X x X x (0,00) — [0, 1a]. Then (X, My, 7) is
called a C*-algebra valued fuzzy metric space, if it satisfies the following conditions, for each &,n,p € X
and ¢,5 > 0,

(i) Ma(&,m,t) > Oa,

(i1) Ma(&,m,t) = 14 if and only if € =7 for all ¢t > 0,

(111) MA(& m, t) = MA(nv 3 t)a

(IV) T(MA<€7 n, 5)7 MA(”: Py t)) < MA(Ev pys+ t)7

(v) Ma(&,m) 2 (0,00) — [04, 1a] is continuous.

As in [12], we define the altering distance function in C*-algebra valued fuzzy metric space as

follows.

Definition 4. Let (X, Ma,T) be a C*-algebra fuzzy metric space with unit element 14. Let ¢ :
AT — AT be a mapping. Then ¢ is called an altering distance function if

(i) ¢ is strictly decreasing and left continuous,

(ii) ¢(k) = 04 if and only if k = 14, i.e., hmk—ﬂg d(k) = 04.

Using the subadditivity condition with respect to a t-norm 7, we give the following definition of
subadditive altering distance function with respect to 7.

Definition 5. Let (X, My, T) be a C*-algebra valued fuzzy metric space. An altering distance func-
tion ¢ is said to be subadditive with respect to the t-norm 7 if ¢(7(a,b)) < ¢(a) + ¢(b),
a,b € {Mu(&,n,t) : §;m € X, t > 0}.

In the same line as Grabiec [2; Lemma 4], we can prove the following lemma in the setting of
C*-algebra valued fuzzy metric space.

Lemma 3. Let (X, My, 7) is a C*-algebra valued fuzzy metric space. Then My (&,n,t) < Ma(&,n, kt),
where k € N, {,n € X and t > 0.

Proof. Let t,s > 0 with ¢ < s. Suppose that for all {,n € X, Ma(§,n,t) = Ma(§,n,s). Now, by
condition (iv) of Definition 3,

£,n,s)
&,n,t)
£, t),
£,n,t)

which is a contradiction. So, Ma(&,m,t) < Ma(€,m,s) when t < s.
Thus, M (&,m,t) is non-decreasing with respect to ¢ for all £, € X and hence the lemma easily
follows.

T(Mu(&;n,t), Ma(n,n, s — 1)) < My
< My

T(Ma(&,m,t),1a) < My

Ma(&,n,t) < My

)

o~ o~ o~ o~

)
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Following the definition of Cauchy sequence in fuzzy metric space by George and Veeramani [17],
the Cauchy sequence in C*-algebra valued fuzzy metric space can be defined in a similar way.

Definition 6. Let (X, My, T) be a C*-algebra valued fuzzy metric space. A sequence {&,} in X is
said to be a Cauchy sequence if for all €y € (0a,14) and ¢ > 0, there exists ng € N such that for all
m > mn > no, MA(EM?&H? t) = 1a —€por eqUivalentIY7 1II_H> MA(£m7 gnv t) = la.

m,n— 00
The sequence {&,} is said to be convergent to &, if lim My (&,,§,t) = 14. If every Cauchy sequence
n—oo

in (X, My, ) is convergent, then (X, My, 7) is called a complete C*-algebra valued fuzzy metric space.

2 Main Results

In this section, we derive some fixed point results considering a subadditive altering distance func-
tion with respect to a t-norm.

Theorem 1. Let (X, Ma,7) be a complete C*-algebra valued fuzzy metric space. Let ¢ be a
subadditive altering distance function with respect to the t-norm 7 and let T be a self mapping on X
such that

QS(MA(T& T777 t)) < aTQS(MA(E? T§7 t))al + a§¢(MA(na TTL t))a2 + a§¢(MA(€7 TT]? 275))@3
+ ayp(Ma(n, T, t))as + azp(Ma(§,n,t))as

FSMAE T 1) + 9(Mar, T, ) (- SEME T

ae, (1)

where a; € A for i = 1,...,6 with 3% [|a;||> + ||as||> + ||ag|[> < 1. Then T has a unique fixed point
in X.

Proof. For & € X, we consider the Picard sequence &,+1 = T¢,, n € NU{0}. Now,

P(Ma (&5, &j+1,t))

< afd(Ma(€i-1,TE-1,t))ar + ayd(Ma (&5, TE;,t))az + azp(Ma(§5-1,TE;, 2t))as
+ a3 p(Ma(&5, TEj-1,t))aa + azd(Ma(§j-1,§5,t))as

03O0 (€1, T -1,0) + 60 (65,765, ) oS bt Tt )
< Mar|P1ad(Ma(&-1,&5,1))) + llazl*1ad(Ma (&), €11, 1)) + |las] P Lad(Ma (&1, 11, 2t))

+ llas|P1ad(Ma(&-1,&5, 1)) + llas|P1ad(Ma(&-1,&5, 1)) + llas]*1ad(Ma (&5, €11, 1)) (2)

ae

Using the property of t-norm and the altering distance function ¢, we have

Mp(&-1,85+1,2t) 2= T(Ma(&-1,85, ), Ma(&5,&541,51)),
P(Mp(&j-1,85+1,2t)) < A(T(Ma(&-1,85,1), Ma(&5,&+1,1)))

< P(Ma(€5-1,85,t)) + (Ma(&j, 85415 1))-
So, from (2), we get

d(Ma(&5,€541,1)) < |lar|[PLad(Ma(&5-1,&5, 1)) + [|az| PLad(Ma (&), €41, 1)) + |las|[*1ad(Ma (&1, &, 1))
+ ||as|[PLap(Ma (&5, Ej41, 1)) + |las| P Lad(Ma(&-1,&5, 1)) + [|as]|*1ad(Ma (-1, &5, 1))
+ [lag| [P1ad(Ma (&5, €51, 1))
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Then the above equation becomes
(1 = llaz|® = llas|[* = [las||*) 1ad(Ma (&), €51, 8)) < (llanll* + las|* + [las|* + |las|[*) 1ad(Ma(&-1, €5, 1),

. (llaa][* + llas||* + llas||* + [las||*) .
¢(MA(£]7§j+1vt)) (1 — (Ha2H2 + Ha?)HQ + HCLGHQ)) 1A¢(MA(§j717£]at))a

A(Mp(&j,&5415t)) S YO(Ma(&5-1,85,1))
< Y S (Ma (0,61, 1)), (3)

N

(llaa|1>+llas||*+]as|*+]lac|[*)
(1=(llaz[[*+las|[*+as[I*))

D(Ma (&, &1, O < VP [[¢(Ma (o, 1, 1))

where v = 1a. Taking norm on both sides of the equation (3), we get

Taking the limit as j — oo, since ||y|| < 1, from the above equation, we get
lim ¢(Mpy (&5, §j+1,t)) = Oa,
j—00

lim Mp (&5, &41,) = La. (4)
]*)OO

Next we show that {;} is a Cauchy sequence. If not, then there exists 0p > es > 1a, for which we
can find two subsequence {§,(;)} and {;)} of {§;} with 7(j) > s(j) > j, j € NU {0} such that

My (&r(jy> Es(j)> ) < 1a — ea- (5)

Now, without loss of generality, we can choose 7(j) as the smallest positive integer satisfying r(j) > s(j)
in (5). Then,

Mp(&r)=158s(5)> 1) = 1a — €a. (6)
Now,
t t .
M (&)1 6s)-151) 7 T(Ma(&r(i)-1: 6500 5)s Mal&s(i), Esi)-15)), T €N
t

= T(1a — ea, Mp(€s5), Esj)—15 5)) (by (6)),
jl;r{:o MA(gr(j)—bgs(j)—l?t) = T(lA — €A, 1A) =1y —€p (by (4))7

]15210 Ma(&r(j)—1,Es(j)—151) = 1a — ea. (7)
Again, from (5),

1o —ea = Mp(&(5), Es(j)» 4t)
T(Ma (&) Eri)—1528), T(Ma(&r(j)—15 Es(i)—15 1) s Ma(Es5)s Es(i)—151)))
T(lAa T(jliglo MA(fr(j)—la gs(j)—lv t)v 1A)) (by (4))7

1o —€n 7 jli{go MA(&r(j)fl’ fs(j)fla t) (8)

NS

Hence, from (7) and (8), we get

]1520 Mp(&rjy—15€s(j)—151) = 1a — €a-
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o(1a — €a) < A(Ma(&r(j)s Es(h)o 1)
< GTQS(MA(@(]‘)—M Tfr(j)—la t))a1 + a§¢(MA(§s(j)—1> Tgs(j)—lv t))as
+ a3(Ma(&r(j)—15 Tés(j)—1,2t))az + ayp(Mu(TEsjy—1, Tér(j)—1,1))aa
+ a5(Ma(&r()—15Es(j)—15 1)) as + ag(S(Ma(&rjy—1, Tér()—151))
(1a + ¢(Ma(&r(j)—15 Tér(jy-1,1)))
M (€ary—y, TEw
+ d)( A(gs(g)—la 55(3)—15t))) (1A ¥ ¢(MA(£7’(]')—17gs(j)—lat)))

By taking the limit as j — oo the above expression becomes

ag.

S(La —en) < llar|[PLad(La) + [lazl*1ad(1a) + [las|[*Lad(la — ea) + llaa|Lag(1a — €n)

(1a 4+ o(14))
+ [las|*1ad(1a — en) + |lag|*(6(1a) + ¢(1a)) (Ip+ 6(1lp — €2)’
O(1a — €n) < |laslPp(1a — en) + |las||*d(1a — €a) + llas|*¢(1a — €a),

(Z)(lA—EA)%OA == 1y —€ep =1y = GAZOA,

which is a contradiction. Therefore, {¢;} is a Cauchy sequence. Then there exists a point z in X such
that &, — z. Now,

A(MpA(TEn, T2, 1)) < a1 p(Ma(&ns Tén,t))ar + asd(Ma(z, Tz, t))as
+ azdp(Mp(&n, Tz, 2t))as + ayp(Ma(z, T, t))as + azp(Ma(&n, 2, t))as

O T ) TS

Taking the limit as n — co and by Lemma 3, from the above equation, we get

O(Ma(2,T2,t)) < ||az]|*1ad(Ma(z, Tz, 1)) + |lag|[*1ad(Ma(z, Tz, t)) + ||ag|[*1ad(Ma(z, T2, 1)),
(1= [laz||* = [las|[* = |las|[*) Lad(Ma(z, Tz,t)) < Oa.

Since the left hand side of the above expression is positive and as, a3, ag € A’, using Lemma 1, we get
P(Mp(2,Tz,t)) =04 = Mp(2,T2,t) =1y = z2="Txz.
Uniqueness of the fixed point can be proved easily by (1).

Remark 1. The above theorem generalizes the results given by [13] and [5] if we consider C*-algebra
valued fuzzy metric space in place of b-metric space and fuzzy metric space respectively.

We present the following example to demonstrate the above theorem.

Ezxample 2. Let X = A =[0,1] and d(§,n) = | — n| for all £,n € X. Let My be a fuzzy set from
X2 x (0,00) to [0, 1] such that My (&, n,t) = m Then (X, My, 7) is a complete C*-algebra valued
fuzzy metric space with respect to the ¢-norm, 7(a,b) = min{a,b}, a,b € [0,1]. Let T : X — X be
defined by T'(§) = % for all € € X and ¢(\) =1— A\, A €0,1]. Let a; = % fori=1,...,6.

Now,

1 1
¢(MA(T€’T"% t)) = ¢(1—|—|T€—T77|> =1- W (9)

7
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Again,

a){d)(MA(Ea T¢, t))al + a§¢(MA(777 T, t))a2 + a§¢(MA(£7 T, Qt))a’?) + GZ¢(MA(777 Té¢, t))a4

a6 0)as + (GO TED) + 90 (. Ty, ) T AL

ag

1[5 { 1 N 1 N 1 N 1 N 1 H
9 14le—% 1+m—2 1+E-2 1+@p-§ 1+I6—n]

_|_

1 ( 1 1 ) <2 N 1+|£1—T£|) 10)

“(2- - .
9 VHIE=TE 1+ =Tnl) (,
1+[€—n]

We represent the equations (9) and (10) in the following figure.

M Surface represented by equation (10)

L] Surface represented by equation (11)

Figure 1. Demonstration of the condition of Theorem 1 by mapping T’

In Figure 1, the yellow surface represents the equation (10) and the blue surface represents the
equation (9), where the values of £, n are between 0 and 1. Clearly, for all values of £, n, the value of
(10) is greater than the value of (9). Hence, the condition of Theorem 1 is satisfied. Clearly, 0 is the
fixed point of T here.

Ezample 3. Let X = {(1,1),(2,1),(2,7)} € R? and A, My, 7 and ¢ be as in Example 2. Let

T : X — X be defined by T'(1,1) = T(2,1) = (1,1) and T(2,7) = (2,1) and a1 = az = /15,

a4 = a5 = % and az = ag = 0. Then for { = (2,1) and n = (2,7),
1 1 1

SMATE T ) =1 = g oy~ 53

and

a){d)(MA(Ea T¢, t))al + a§¢(MA(777 T, t))a2 + a§¢(MA(£7 T, 2t))a’3 + GZ¢(MA(777 Té¢, t))a4

a6 0)as + (GO TED) + 90 (T, 1)t AL
1

1 1
+022(1 - ————==+1—=) =0.5734 > .
( 1437 6) 2

Therefore, the condition of Theorem 1 is satisfied. Clearly, (1,1) is the fixed point of 7" in X.

ag

1 1
=015(1--+4+1—--
0.15( 2-|— 7)
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In the following result, we use minimum and maximum conditions to prove the existence of fixed
point. We note that for a; € [0a,14], i =1,2,...,n, n € N, MIN(a;) denotes an element a;, 1 <k <n
such that a; < a; for each 7, 1 <i < n. Slmllarly, MAX (a;) denotes an element ag, 1 < k < n such
that ay = a; for each i, 1 < i < n.

Theorem 2. Let (X, Ma,7) be a complete C*-algebra valued fuzzy metric space. Let ¢ be a
subadditive altering distance function with respect to the t-norm 7 and let T" be a self mapping on X
such that

¢(MA(T§7 T, t)) < QTMIN{(b(MA(& n, t))v ¢(MA(£7 T€7 t))a ¢(MA(§, T, 2t>)7 (b(MA(T]? Tf, t))?
¢(MA(U7 T, t))}al + GSMAX{(b(MA({? n, t))a (b(MA(& Tg? t>)7
¢(MA(§7 Tn, 2t))7 ¢(MA(777 T¢, t))7 ¢(MA(777 Tn, t))}a2a (11)

where a1, as € A’ with ||a1||? + 2||az||? < 1. Then T has a unique fixed point in X.
Proof. For & € X, let £,41 = T¢,, n € NU{0}. Now,

O(Ma(&5, &+1,t) < alMIN{G(Ma(§-1,§5,1), 9(Ma(§-1,TEj-1,1)), d(Ma (&1, TE;,2t)),
P(Ma(&5, TE-1,1)), (M (&5, T¢;, 1)) tar + aaMAX{d(Ma(&5-1,&5, 1)),
P(Mp(&—1,TEj-1,1)), p(Ma(&-1,T€;5,2t)), d(Ma(&5, TEj-1,1)), 6(Ma (&5, T, t)) bas
< Nlar|PLaMIN{G(Mp (&1, &5, 1)), (Ma(&j-1, €11, 2t)), (Ma (&5, &541,1))}
+ [laz| P1aMAX{G(Ma(&5-1,&,1)), d(Ma(€j-1, €11, 28)), H(Ma (&5, &41,1) }
< Nlar|PLaMIN{G(Ma (€51, &5, 1)), d(Ma( O(T(Ma(&-1,&5,t), Ma(&5, &1, 1))}
(& ) (

5] fj—&-la )) A(
+ ||a2]P1a MAX {$(Ma(&-1,&5, 1)), (Ma (&, Ej1, 1)), H(T(Ma(&1, &5, 1), Ma(&5,&511, )}

Again, ¢(a) < ¢(7(a,b)) and ¢(b) < é(7(a,b)). So, MIN{p(a), 4(b), ¢(7(a,b))} = MIN{¢(a),p(b)}

for all a,b € [04, 14]. Hence,

O(Ma(&5,&541,1) < |lar|PLaMIN{G(Ma (-1, &5, 1)), d(Ma (&), i1, 1))}
+Ha2”21A¢( T(Ma(§5-1,85:1), Ma(&5,85+1,1)))
< Nar|PLaMIN{G(Mp (&1, &5, 1)), (Ma(&), €511, 1))}
+ |laz|P1a((Ma(&-1,€5,1)) + S(Ma (&5, &1, 1)) (12)

If MIN{p(Ma(&j-1,85,1)), p(Ma(&j,&j4151)) } = ¢(Ma(§j-1,&5,1)), then
(My(&5, 851, 1)) < [aa|PLad(Ma(€i-1,&5,1)) + laz| P1ad(Ma(&-1, &5, 1)) + [laz|[P1ad(Ma (&5, €51, 1)),

2 2
P(Ma(&5,&j+1,1) < (HC&H_ F‘La!ﬁﬁy )1A¢(MA(§j—1,§jat)) = 1NO(Ma(§-1,5,t))-

Again) if MIN{Q%)(MA(g],l,f],t)), ¢(MA(€]’§]+1at))} = ¢(MA(€ja§j+l7t))a then from (12)7 we get
P(Mu(&5,8511:1) < [ar]P1ad(Ma(€5, &ir1, 1)) + laol P1ad(Ma(&5-1, &5, 1)) + [laz|[P1ad(Ma (&5, €41, 1)),

[laz|I?

A(Mp(&5,8541.1)) < (1 Tl - Ha2”2)1A¢(MA(§j—1,fj,t)) = Y20(Ma(§-1,&5,1)),

2 2 2 . . . .
%)L& and yo = (H%%)l A are positive elements in A and strictly less

than 15. Proceeding as in Theorem 1, we can easily show that the sequence {&,} is a Cauchy sequence.

where v; = (
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Let &, — z. Now,

A(MpA(TEn, T2, 1)) < a}y MIN{G(Mp(&n, 2,1)), S(Mp(En, TEn, 1)), (Mp(6n, T2, 2t)), p(Ma(2, Tép, t)),
¢(Ma(z,Tz,t)}ar + a3 MAX{G(Mp(n, 2, 1)), §(Ma(En, Tén, t)), S(Ma(én, T2, 21)),
O(Ma (2, Tén, ), $(Ma(z,Tz,t)) }az
< afMIN{p(Mp(&n, 2,1)), 9(Ma(&ns Ens1, 1)), (Ma(€n, T2, 2t)), ¢(Ma(2, Enr1,t)),
d(Ma(z,T2,t))ar + asMAX{G(Map(&n, 2, 1)), (Ma(6ns Ent1:1)), ¢(Ma(én, Tz, 2t)),
O(Ma(z,8n+1,t)), 9(Ma(z,T'2,t)) bas.

By taking the limit as n — oo, the above equation becomes

d(Mp(2,Tz,t))
(1= [lar|* = [la2|[*)1a¢(Ma(2, T, 1))

< | Po(Ma (2, Tz, 1)) + ||ag| *¢(Ma (2, T, 1)),
< 04,
which gives z = T'z. Clearly, by using (11), the fixed point is unique.
Remark 2. The above theorem can be taken as a generalization of Theorem 2.11 of [5] and Theorem

2.1 of |24] in the setting of C*-algebra valued fuzzy metric space.

It may be noted here that the mapping we have considered is not necessarily continuous, which
can be seen from the following example.

Ezample 4. We consider (X, My, 7) and ¢ as in Example 3. Let T': X — X be defined by

Let a1 =0 and as = 1—70. Now, three cases will arise:

Case 1. If &,m € [0,3), then ¢(Ma(TE, Tn,t)) =1 —
true.

Case 2. If £,n € [3,1], this is similar to Case 1.

Case 3. If £ € [0,1) and n € [}, 1], then

= 0. So, condition (11) is trivially

1 1
(Mp(TE,Tn,t) =1 — [ENi =3 (13)

and

GTMIN{QZ&(MA(&? 7, t))v ¢(MA(£7 Tf? t))a ¢(MA(€) TT]? Qt))’ ¢(MA(U’ Tf, t))) ¢(MA(U) TT]? t))}al
+ a;MAX{¢(MA(§7 m, t))a ¢(MA(€7 Té¢, t))? d)(MA(E? T, 2t))7 QS(MA(TL T¢, t))? QS(MA(T]? T, t))}a’Q
49 1 1 1 1 1
= —MAX<1— — — _ _ ]
100 {1 T T T R i 1+!£—nl}
(14)

Figure 2 describes equations (13) and (14). Here, the yellow surface represents the equation (14)
and the blue surface represents the equation (13). From Figure 2, it is clear that for all £ € [0, %) and
n € [3,1], the value of (14) is greater than the value of (13). Thus, the condition of Theorem 2 is

satisfied. Clearly, % is a fixed point of T
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M Surface represented by equation (14)

L Surface represented by equation (15)

Figure 2. Demonstration of the condition of Theorem 2 by mapping T

Next we derive the following common fixed point theorem.

Theorem 3. Let (X, Ma,7) be a complete C*-algebra valued fuzzy metric space. Let ¢ be a
subadditive altering distance function with respect to the t-norm 7 and let 7, S : X — X be such that

¢(MA(T€7 577’ t)) < aTMIN{qb(MA(ga m, t))7 @(MA(&, T¢, t))a ¢(MA(§7 5777 2t))’ ¢(MA("7’ T¢, Qt))a
¢(MA(7L Sn’ t))}al + a;MAX{¢(MA(§7 m, t))v ¢(MA(€a Té-, t))’ ¢(MA(§a Sna 2t))7
¢(MA(7]a Téa Qt))v ¢(MA(777 5777 t))}a2a

where a1, ay € A’ with ||a1||? + 2||az||? < 1. Then T and S have a unique common fixed point.

Proof. For &y € X, let £9i41 = T€9; and E9i40 = S§2i+1, 1€ NU {O} Now,

A(Ma(§2i41,E2iv2, 1)) = G(Mp(TE2i, SE2i41,1))
< af MIN{P(Mp(2i, 6241, 1)), d(Ma(E2i, TE2:, 1)), d(Mp(E2i, S€oiv1, 21)),
d(Ma(E2iv1, T62i,2t)), H(Mp(§2i41, 582141, 1)) far
+ as M AX{P(Mp(&2i, E2i41, 1)), O(Ma (&2, TE2i, 1)), p(Ma(E2is SE2i41,21)),
P(Mp(§2i11, T62i,2t)), p(Mp(§2i41, S&2it1, 1)) baz
= [lax|P1a M IN{G(Ma(E2i, E2it1, 1)), S(Ma (62, Eaiva, 2t)), 9(Ma (i1, Eaiva, 1))}
+ [|aa| PLaM AX{S(Ma (&2, E2i11, 1)), D(Ma (&2, Laivas 28)), S(Ma(E2i41, L2itas t))}
< NJar|PLaMIN{p(Mp (€21, E2iv1,t))s H(T(Ma (€25, 20414 1)), D(Ma(€it1, E2i42, 1)),
(Mp(&2i+1, E2i42: 1)) }
+ ||ag|[P1a M AX{G(Ma(Sai, €241, 1)), d(T(Ma (€26, E2it1, 1)), H(Ma(Sait1, E2ivas 1)),
P(Ma(E2iv1,E2iv2,1)) }-

Since MIN{¢(a), p(b), d(t(a,b))} = MIN{p(a),d(b)} for all a,b € [04,14], we have

(M (E2i11,E2it2, 1)) < [|aa||PLaMIN{G(Mp(Sai, E2i11,1)), G(Ma(E2ig1, 2ir2, 1))}
+ [|az|P1ad(T(Ma (&2, €2i41, 1)), D(Ma(E2is1, E2iva, 1))
< Maa|P1aMIN{$(Ma (&2, E2i41, 1)), B(Ma(Eaivr, Eaivast))}
+ llag| P14 (G(Ma (€2, S2i41, 1)) + (M (241, E2ir2, 1)) (15)
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Similarly,

P(Ma(&2i+2, E2i+3, 1)) = G(Ma(SE2i+1, Té2i2,t))
< af MIN{G(Ma(&2it1, §2i+2: 1)) O(Ma(E2i41, S&i+1, 1)), @(Ma(&2i1, T2i+2, 2t)),
O(Ma(E2it2, S€2it1,2t)), d(Ma(&2iv2, Té2it2, 1)) Yar
+ as MAX{G(Ma(§2i+1, 2125 1)), O(Ma(E2i1, SE2i41, 1)), H(Ma(&2i1, T2it2, 2t)),
(M (§2i+2, S€2it1,2t)), p(Ma(E2i+2, T2i42, 1)) az
< a1 |PLaMIN{¢(Ma(€ois1, E2itas t)), H(T(Ma(E2it1, E2it2, 1)), S(Ma(E2ita, E2its, 1)),
O(Ma(&2it2, Caivss 1))} + [|a|PLa M AX{S(My (E2i11, E2iv2, 1)), H(T(Ma(E2i41, Loivas 1)),
(M (&2it2, §2i43: 1)), P(Ma(&2it2, §2i43: 1)) }
< [Jaa|PLaMIN{G(Mp(ai1, E2i2: 1)), S(Ma(Eaira, Eaivs, )}
+ [|a|P1ag(T(Ma (E2i41, E2it2, 1)), D(Ma(E2iva, E2iv3, 1))
< lar|[PLaMIN{G(Ma(E2it1, 2ivas b)), S(Ma(Eaita, 2iv3, 1))}
+ [laz| P14 (G(Ma(€2it1, S2ivar 1) + S(Ma(Siva, E2ivss t)))- (16)

Putting j =2i+1,:=0,1,2,..., from (15) and (16), we get

¢(MA(£ja€j+17t>) < HalelAMIN{(b(MA(gj—lafjvt)>7¢(MA(§j7£j+lat))}
+ |lag| P1a(S(Ma(&-1,&5,1) + H(Ma(&, &1, 1)) (17)

If min{¢(Ma(&-1,&5,1)), 0(Ma(&,8541,1))} = d(Mu(§j-1,&;,t)), then from (17), we get

llax | + [laz|*
1 — ||ag[?

Again, if MIN{p(Mp(§-1,&5,1)), o(Ma(&5,&541,1)) } = d(Ma(&j,€j+1,1)), then

A

(M (&,8541,1)) < ( J1ad(Ma (&5, Ejr, t))- (18)

llaz||?
1= lar||* — [laz|?

J1ad(My(&j-1,&5,1)). (19)

P(Ma (&), & 4151)) < (

Proceeding as Theorem 1, from (18) and (19) we can easily show that {{,} is a Cauchy sequence and
let lim &, = 2. Then,
n—oo

My (2, 62n41,1)) + ¢(Ma(§2n41, 52, 1))

My (2,62n41,1)) + O(Mp(Té2n, Sz,t))

(Ma(z, Sant1,t)) + af MIN{G(Ma(§2ns 2, 1)), P(Ma(E2n, Té2n, 1)),
¢(Mp(&an, Sz,2t)), B(Ma(2, Té2n, 2t)), (Ma(z, Sz, 1)) tar

+ aaMAX{d(Ma(§2n, 2, 1)), D(Ma(E2n, T2n, 1)),

d(Mp(&an, Sz,2t)), S(Ma (2, Té2n, 2t)), p(Ma(z, Sz, 1)) tas.

t)
t)

Taking the limit as n — co and by Lemma 3, from the above equation, we get

¢(MA(27 Szvt)) < ”al”Q(ZS(MA(Z?SZ?t)) + HaQHZqS(MA(z,Sz,t)),
(1 — [Jar|]* = llaz|[*)1a¢(Ma(z, Sz, 1)) < Oa,

which gives z = Sz. Similarly, we can show that z is also a fixed point of T.
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Theorem 4. Let (X, Ma,7) be a complete C*-algebra valued fuzzy metric space. Let ¢ be a
subadditive altering distance function with respect to the t-norm 7 and let T, S be two self mappings
on X such that

P(Mp(TE, Sn,t)) < ajp(Ma(§,TE, t))ar + as0(Ma(n, Sn,t))az + azd(Muy (€, Sn,t))as
+ ayp(Mp(n, TE, t))as + asp(Ma(§,m,t))as,

where a; € A’ for i = 1 to 5 with 327, ||a;||> < 1. Then T and S have a unique common fixed point.

The proof is similar to Theorem 3.
For T'= S, the above theorem reduces to the following fixed point theorem.

Theorem 5. Let (X, My, 7) be a complete C*-algebra valued fuzzy metric space. Let ¢ be a
subadditive altering distance function with respect to the t-norm 7 and let T" be a self mapping on X
such that

¢(MA(T§, T77> t)) < a;¢(MA(§7 Tg? t))al + a§¢(MA(777 T777 t))a2 + a§¢(MA(§7 T777 t))a3
+ ayp(Ma(n, T, t))as + a5d(Ma (&, 1, t))as,

where a; € A’ for i = 1 to 5 with ||a1]|*> + ||az||*> + 2||a3||? + ||as||> < 1. Then T has a unique fixed
point.

8 Application to boundary value problem
We consider the following boundary value problem:
2y +ay —y=fltyt), 0<z <1, tel=10,1], (20)

(where f is a function from I x R to R), with the boundary conditions: y(x) is bounded as x — 0 and
y(1) = 0. This boundary value problem is equivalent to the integral equation:

1
u(t) :/0 Gt 5) (s, uls))ds, 0 < t,5 < 1,

where
t1 - L t
G(t,S):{%( 152)a s >
i(t_?)’ s<t

is the Green’s function.
Let C(I,R) denote the set of all continuous functions f : I — R such that for z,y € C(I,R),
|z(t) — y(t)| < k for some k > 0 and for all ¢t € I.

Theorem 6. For the above problem (20), we consider f as a continuous function from I x R — R
satisfying the following condition:

fls,u(s)) — f(s,v(s)) < %|u(s) —v(s)|, for all u,v € C(I,R), s € I.

Then the problem (20) has a unique solution.

Proof. Let T : C(I,R) — C(I,R) be defined by Tu(t) = fol G(t,s)f(s,u(s))ds, uw e C(I,R). Let
A = [0, 1] with the usual norm on R. Let X = C(I,R) with d(z,y) = sup;c; |z(t)—y(t)], z,y € C(I,R).
Here 04 = 0 and 1, = 1. We consider My : X x X x (0,00) — [0, 1] given by My (z,y,t) =1 — d(i’y),
x,y € X, t>0. Then (X, My, 7) is a complete C*-algebra valued fuzzy metric space with respect to
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the t-norm 7(z,y) = max{z +y — 1,0}, z,y € [0,1]. Also let ¢(t) =1—t, t € [0,1] be the subadditive
altering distance function. Now, for u,v € X and ¢1 > 0,

O(Mp(Tu, T, t1)) = d(Tl;{;TU) = listg]j:) |Tu(t) — To(t)]
1 1 1
= %S;lég) /0 G(t,s)f(s,u(s))ds—/o G(t,s)f(s,v(s))ds
1 1
=g | [ G (s u() = Fls.0(s))ds
1 ! 1
< z 821615) /0 G(t,s)§|u(s) —v(s)|ds
U, v !
< ;d(k’ ) Stlellj) /0 G(t, s)ds
w.v t 1
:gl)d(k; )Stlel? /0 ;(t—i)ds—k/t %(1_8%)d5
_ ld(u,v)

1 1
t—1| = —p(M )=
o & s;lgl | 3¢( au,v, 1))3,

where a; =0 for i =1 to 4 and a5 = % Then all the conditions of Theorem 5 are satisfied. Hence the
boundary value problem has a unique solution.

4 Application to control theory

In [25], Pathak et al. and in [26] Rhoades et al. investigated the possibility of optimally controlling
the solution of ordinary differential equation via dynamic programming. Inspired by their work, we
give an application to solve such ordinary differential equations in control theory using C*-algebra
valued metric space.

Let K be a compact subset of R™ with the Euclidean distance which we denote here by |.|. Let
T, : R" — R"™ be a mapping such that T,(§) = f(& a) for each a € K and for all £ € R", where
f:R" x K — R" is a bounded continuous function such that

|f (&, a)] < C for some C >0 (21)
and for t; > 0, &, € R,
t < at 2l a1 + a4 2l as + ak b a
b+ [f(€a)— fna) = e fEal T Pt fal C Parle - fa)

+aj b as + a; _ as
Y+ — (& a) St lE—n

(22)

where ||a1||? + ||az||? + 2||as||? + ||as]|? < 1. For X = R™ and A = R, 7(¢,n) = min{¢,n}, £,n € R,
we define My (€, n,t1) = m We take ¢ as the identity mapping on A™.

Now, we study the possibility of optimally controlling the solution £(.) of the ordinary differential
equation:

{f’(s) = f(&(s)als), t<s<T, (23)

£(t) = ¢,

90 Bulletin of the Karaganda University



Fixed point results ...

where £ € R™ is a given initial point, taken by £(.) at the initial time ¢t > 0, and 7" > 0 is a fixed
terminal time and &’(s) = %(Ss). Here «f.) is a control function which is some appropriate scheme for
adjusting parameters from the compact set K as time progresses thereby affecting the dynamics of the

system modelled by (23). We assume that
K'={a:[0,T] — K,«(.) is measurable}

denotes the set of admissible controls. Since T,(§) = f(&,a) for all £ € R", a € K, from (21) and (22)
we have

h <aj b a1 + a3 b as + al 2 as
t1+ |Ta(§) = Ta(n)| = "t +[€ = Tu(§)] t1 + |n —Ta(n)| St + € — Tu(n)]
t t
+ aj ! ag+ai——a
t1+n— Tu(§)] t1+ 1€ =

for all &,m € R™, t; > 0 and a € K. Now, applying Theorem 5, we deduce that for each control
a(.) € K', the ordinary differential equation (23) has a unique continuous solution ¢ = £%()(.), existing
on the time interval [t,T]. Solving the ordinary differential equation for almost everywhere time
t < s < T, we say that £(.) is the response of that system to the control a(.), and £(s) is the state of
the system at a particular time s.

To find a function o*(.) which can control the system, the following cost criterion is introduced for
each admissible control a(.) € K’ (refer to [27]).

T
Qe 4(0(.)) = / P(E(s), a(s))ds + q(€(T)), (24)

where £ = §a(')(.) is a solution of (23) and p: R" x K — R, ¢ : R™ — R are given functions, where p
is the running cost per unit time and ¢ is the terminal cost. Suppose that,

max{|P,(¢)],]¢(&)|} < C for some C' >0

t1 * i1 * 11 * 11
PR AGEAG] S Qe Rt Q2nTn-rm %2 T BETE- R %3
* i1 * t1
T - Pa@) 4 T A5 e 45
t1 * t1 * t1 * t1
B2 —a()] S O EEq@™ T 2 n mam® T BT —qm %8

* t * t n
+a4ma4 + a5ma5, fOT all 5,7’] S R , a c K,

where P, : R" — R" is a mapping such that P,(§) = p(§,a) for all £ € R™. For given £ € R and
0 <t < T, we are to find if possible a control o*(.) which minimizes the cost functional (24) among
all other admissible controls.

For the solution of the above problem we now apply the dynamic programming as described in [27],
where the value function u(§,t) is defined by

u(é,t) = a(i?efK’ Qer(a() EeR”, 0Kt LT

Here u(&,t) is the least cost for the position £ at time t.
For fixed £ € R™ and 0 < ¢t < T, proceeding as in [27; 554], the following theorem gives the
optimality conditions:

Theorem 7. For each ¢ > 0 small enough such that t +( < T,

t+¢
w(Et) = inf { / p<§<s>7a<s>>ds+u<s<t+<>,t+c>},

o )eK’

where & = £*0) solves the ODE (23) for the control (.).
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Proof. The proof follows from Theorem 5 and [27; 554].

Conclusions and Future Works

In this paper, we have obtained some fixed point and common fixed point results for some general-
ized mappings in C*-algebra valued fuzzy metric space. Moreover, the results are applied to boundary
value problem and control theory. Some open problems concerning our results are as follows.

In Theorems 1, 2 and 3, we have considered complete C'*-algebra valued fuzzy metric space. The
investigation of the existence of fixed point via our defined contractive conditions in case of incomplete
C*-algebra valued fuzzy metric space is a problem of further study.

In [28] and [29], the authors obtained some important results in fuzzy bipolar metric space. The
analogous study in case of bipolar C*-algebra valued fuzzy metric space for the mappings defined in
this paper is a scope for future research.

In 2024, Gnanaprakasam et al. [30] applied fixed point techniques to discuss solvability of fractional
integro-differential equation in orthogonal complete metric space. In this regard, we can extend our
study to investigate solvability of fractional integro-differential equation.

Further investigation can be done considering coupled fixed point, best proximity point, coupled
best proximity point, etc., using our mappings in the setting of C*-algebra valued fuzzy metric space.
The works done in this paper thus open up a wide scope of investigation in C*-algebra valued fuzzy
metric space considering various emerging applications.
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