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Cesaro polynomials have been extended in various ways and applied in diverse areas. In this paper, we aim
to introduce a multivariable and multiparameter generalization of Cesaro polynomials. Then we explore
several generating functions, an addition formula, a differential-recurrence relation, a multiple integral
formula for this extended Cesaro polynomial, as well as a multiple integral formula whose kernel is this
extended Cesaro polynomial. Also we present several bilinear and bilateral generating functions for this
extended Cesaro polynomial, two of whose examples are demonstrated.
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Introduction

The generalized Cesaro polynomials gﬁf)()\, x) are defined by [1]

(0 ) = <s+n> JF\ [ —n, A ’ (1)

n —s—n;

where
9 (z) = g% (1,2), ne€Ny:=NU{0} (2)

are the Cesaro polynomials [2-7]. Here o F} denotes the hypergeometric function (or Gaussian hyper-
geometric function) [8]:

> b
2F1 (aab; (& x) = F(CL, b, C; .CC) = W.’L’k,
ko \CJRF

where (), denotes the Pochhammer symbol.

The generalized Cesaro polynomials g,%s)()\, x) in (1) have the following generating function [9]:

S gDt = (L 5= (1 - o), 3)
n=0

Recall the following double series manipulations: Let f, g : Ng x Ng — C be functions and p € N.

Then
o [n/p]

DD Fkyn) =YY" fk,n+pk), (4)

n=0 k=0 n=0 k=0

*Corresponding author. E-mail: eerkusduman@gmail.com
Received: 28 January 2024; Accepted: 28 May 2024.
(© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Mathematics Series. No.4(116),/2024 159



N. Ozmen, E. Erkug-Duman

n [k/p] [n/p] n—pj
S>> gk =Y glk+pig), (5)
k=0 j=0 J=0 k=0

where [A] denotes the integer part of A € R.

Cesaro polynomials have been generalized in various ways and used in diverse areas [1-7], [10; 62].
For example, Malik [11] has introduced Cesaro polynomials in two and three variables and has given
their generating functions. In this paper, we provide a multivariable and multiparameter generaliza-
tion of Cesaro polynomials. Then we investigate several generating functions, an addition formula,
a differential-recurrence relation, a multiple integral formula for this extended Cesaro polynomial, as
well as a multiple integral formula whose kernel is this extended Cesaro polynomial. Also we explore
several bilinear and bilateral generating functions for this extended Cesaro polynomial, two examples
of which are considered.

1 Multivariable and multiparameter Cesaro polynomials

In this section, we define a multivariable and multiparameter extension of the generalized Cesaro

(s)

polynomials g’ (A, x) in (1) and obtain their generating functions. Also, we derive several properties
for these polynomials.

Definition 1. Let m € N; n € Ng; s € C\Ny; A\j, z; € C (j =1, ..., m). Then an m variable and
m parameter extension of the generalized Cesaro polynomials is defined by

(5)()\1,...,)\m;:n1,...,xm) :

_ s+n (—n)(;m " ()‘j)rj x? (6)
= 2 ( n )(—8—n)5 (ry)t 7

T+ +rm=n mog=1
where
O =11+ + 7. (7)
The summation notation > in (6) represents the following m-ple series:
rit-trm=n
non—ry  N—Ti——Tmo1

2. =X ®)

1+ +rm=n r1=0 ro=0 rm=0

Figure demonstrates the surfaces of the generalized Cesaro polynomials g,(f)(/\l, A2, T1,x2) in two

variables for some parameter values. We should remark that the special case of m = 1 in (6) im-
mediately reduces to the generalized Cesaro polynomials gq(f)()\,x) in (1). Also if we take \; =1

(j = 1,...,m) in (6), we get the following multivariable generalization of the Cesaro polynomials
gﬁf) () in (2):

G )= Y (;”)%ﬁ g

it rm=n
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Figure. Surfaces of the generalized Cesaro polynomials gﬁf)()\l, A2, 1, T2) in two variables for the

parameter values s =4, \; = 1/10, A\ =1/20 and n = 3,4,5,6

In the study of special functions, a theoretical relationship to the unification of generating functions
is critical. Several researchers have made strides in this approach [12-14].

The following theorems present two generating function relations for the multivariable-multiparameter
Cesaro polynomials in (6).

Theorem 1. The multivariable-multiparameter generalized Cesaro polynomials in (6) are generated
by the following function:

o m
S g A, w) = (=) ] - 2, (9)
n=0 j=1
where [t| < min {|x1|_1 T 1} and m € N.
Proof. Let L1 be the left member of (9).
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Replacing the g,(f)()\l, e Ami T, ..., Ty) With (6) and (8), we get

B E R RO

n=0 r1=0ro.=0 rm=0 (10)
s, O,
(=s =n)s, 5 (75)!

Employing the case p =1 of (4) in the first double sums in (10) gives

(e} o0 n n—rg n—rog——"rm-1 S+n4r
2030 3D SRR DI A
r1=0 n=0 ro=0 r3=0 rm=0 1 (11)
.
(_n B r1)5m s ()\j)’"j mjj T

(=s—n—m1)s, i (r)!

X

Applying the same procedure as in getting (11) to the 2nd and 3rd double sums (11), and repeating
the similar process, we find

s+n+6n\ (=n—20bm)s, m(X)zj;j §
ZZ Z< n+ om >(—S—n—5,i)5m H j(rjﬂ grtom, (12)

n=017r;1=0 Tm= 7=1

where 0y, is given in (7).
Consider the following easily-derivable identity:

m—+ p)!
(om = (-1 R e ). (13)
Employing (13) in (12) offers
L= (e S S I
n=0 r1=0 rm=0j5=1 (14)
" (A)ry (z1)" = (Am)r, (@mt)™
— 1) — MUm AP m
IEINAD'S o >
n=0 r1=0 rm=0
Using the generalized binomial theorem
I 2"
(1-2) ZZ(a)ng (lz] <1, a € C)
n=0 ’

in each sum of the 2nd equality in (14), we arrive at the right member of (9).

Remark 1. The case m = 1 of the generating function relation (9) reduces to the generating function
relation (3).

Theorem 2. The multivariable-multiparameter generalized Cesaro polynomials in (6) are generated
by the following generating function:

oo n+k s N ek
Z( > T(llk(M,...,)\m;a:l,...,xm)t = (1—t) k1

0 n
T (1-1) (1—1) 15)
(s) Il — Tm —
I | zit) N Alyey Ams
e ] gk < 1, ) SNy 1—$1t I ’ 1—.’17mt >7
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where m € N, k € Ny, and |t| < min{]a:1|_1 s \xm|_1,1} )

Proof. Replacing t by t + u in (9) gives

m
Zgn A Ams 1, ) ()" = (1=t —u) [ = 2t — 2ju) ™,
j=1
which, upon using binomial theorem, yields
" /n
Zg )\1,... m,xl,...,l'm)kz_o<k>tn—kuk:(1_t)—s—1
w \ L ziu \ M (16)
1-— 1—at)™N(1- 2 .
(o) Howo (-72)
7=1
Using (9) on the right member of (16), with the aid of the case p =1 of (4), offers
n—+k
ZZ( > n+k()\1,...,)\m;ml,...,mm)t”uk
n=0 k=0
m
= (1—-1t)” H 1 —xjt)
k
x1(1—1) Tm(l —1) u
A,

ng (1’ Ami T et ) T2

which, upon equating the coefficients of u* on both sides, yields the desired identity (15).
Theorem 3. The following identity holds true:
g + o A+ s T @)
(17)

—Zg(sl) A1, as A m,xl,...,xm)g,(:Q)(m,...,um;ml,...,:L“m).
Proof. From (9), we find
oo
Zgﬁlsﬁ”“)()\l—l—,ul,...,)\m—i—um;:l:h...,xm)t"
n=0
m

=(1—¢)r22 H(1 — gty N

—Zg (O T W T t”Zg(S2) Ly Py @1y - - T ) EE
—ZZQ My A T, e o )9 (2)(,u1,...7,um;x1,...,1‘m)t”.

n=0 k=0

Matching the coefficients of the first and last members yields the desired identity (17).
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Theorem 4. The following differential-recurrence relation holds true:

9 (s)
[/AEL O, TN VS T .
oy, Sr1 ' ) (18)

= )\Jog,(L)()\l, - 7)‘]'0 + 17>\j0+1>)\m;x17 - ,xm),

where 1 < jp < m.

Proof. We will prove, when jo = 1. By symmetry, it will be easy to interpret the result into the
general 1 < jp < m.
Differentiating both sides of (9) with respect to x1, we have

Zi Al,...,)\m;:pl,...,mm)t”_l
18

=M@=t (=) M A =)
j=2

which, upon using (9), yields

Zax gn+1 )\1,...,)\m;$1,...,$m)tn

(19)
= )\197(1)()\1 +1 AQ,...,Am;xl,...,xm)tn.
Equating the coefficients of t" on both sides of (19) leads to the identity (18) when jo = 1.
Integrating both sides of (6) with respect to each of the variables z; (j = 1, ..., m) from 0 to 1

gives the result in the following theorem.

Theorem 5. Let m e Nyn € Ng; s e C\No; A\; € C (=1, ..., m). Then

/ / )\1,... A 1y v ey X)) Ay -+ - ATy

B s+n\ (—n)s. 14 N
N Z _ < n >(—s—n)5 H(rj+1)!’

where 0y, is the same as in (7).

The following theorem provides an integral representation of the multivariable-multiparameter gen-
eralized Cesaro polynomials.

Theorem 6. Let m € N; n € No; s € C\No; A\j, z; € C (j =1,..., m). Alsolet R(s+1) >0,
R(Aj)>0(=1,...,m). Then

(5)()\1,...,)\m;x1, ey X))

o0

o0
— / / (utur+-+um)
n!T'(s+1) )0

]:

X <u+Zujx]) usu%l Loudm Y duduy - - - dugy,.
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Proof. Recall that the well-known identity as

1 i —ctyv—1
F(”o/ 7ldt (R(e) > 0, R (v) > 0). (21)

Using (21) in each factor of the right member of (9), under the restrictions in Theorem 1, we obtain

Zg )\1,... m,.ﬁl’,'l,...,.%'m)tn
o o]
8+1 /6 (1-t)u sdu /6 (1- xlt)ul >\1 ldul
0 0
1 o
—(1—zmt)um,,Am—1
X - e U du
e
m) J
T I +1)F / / R
s
Oo(u—i-um + ot U )"
XZ 171 p M duduy - - - g, t.
n=0 ’

Equating the coefficients of ¢" on the first and last members of the last resulting identity yields the
desired integral representation (20).

2 Miscellaneous generating function relations

Now, we obtain new substantial families of bilinear and bilateral generating function relations for
the multivariable-multiparameter generalized Cesaro polynomials in (6).
Throughout this section, let m, p, ¢, 7 € N; 1 € No; p, v € C; ax, € C\ {0} (k € Np). Also let

Q,:C"— C\ {0}
be a bounded function.

Theorem 7. Let
o
Aty yeim) =Y aruok(yr, - )

k=0
and
Onn ALy Ay T1, o T Y1 -5 Y3 §)
[n/p]
= Zakgn pk )\1,...,)\m,xl,...,xm)QM+Vk(y1,...,yT)§k.
Then

o0
Il . il
> Onp ()\1,...,/\m,xl,...,:pm,yl,...,yr,—)

m (22)
= (1—¢)! 1;[1(1 —2it) M A (Y1, Y ).
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Proof. Let L5 be the left member of (22). Then we have

oo [n/p]
= Z Z akgfi)pk Ao A @1 ) Qg (Y1, - - ,yr)nkt"_pk.
n=0 k=0

Using (4), we obtain

(o clNe o]
Ly = ZZakgT(f) Ay Ay @1y e oy ) Qo (Y1, - - )"

n=0 k=0
o
— Zg ALy ey Ay @1y e e ey Ty ) T Zakﬁuﬂ,k(g/l, ... ,yr)nk
k=0
— s 1H T—a2t) M Auu(yt, -y m),
which is the right member of (22).
Theorem 8. Let
[n/d] l+n
N#:lz:q(yla ces Yrs Z) = Z <7’L _ qk> akQM'f‘pk(yl? ceey yT)Zk (23)
k=0
Also let
A“’p ALy s Ay Ty e e s T3 Yy - - s Y
= Zangl+qn Aoy A Ty oo ) Qg (Y1, -+ yr) T
Then
Zan D D W, xm)Nﬁfq(yl, ce Yy 2
= (1—t)s 1 H(1 —zit)™N (24)
j=1

1—t)  am(l—1) Lo
AP A, A, T L, om ()|
X lq |: 1, s Ay 1—1711(5’ ) 1—$mt YY1, yYri 2 1_¢

Proof. Let L3 be the left member of (24). Using (23), we have

oo [n/q]

S l+n n

L3 = E E gl(+)n()\1,...,)\m,xl,...,xm) (nqk>akﬂu+pk(y1,...,yr)zkt .
n=0 k=0

Employing (4), in view of the result in Theorem 2, we may write

oo 0o \ l+n+qk
£3 - Zzgl(-‘r)n—&—qk(Al?' . '7>\m;x1,.. . ,.’I}m)< >

n
n=0 k=0

XCLk;Q;H-pk (y17 s 7y7')zktn+qk
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= (1—¢t) 5! ﬁ(1 —qjt) N
j=1

x1(1—1) Tm(l—1)
XZakquk ()\17---7)\7717 1—x1t sy 1—$mt

Zkak

XQH+pk(y17 cee 7y7’)

m

= - e
j=1

1—t m(l—1 t \?
x AP {Al,...,)\m,xl( ), T );yl,...,yr;z<> },

1— a1t 1=zt 1—t

which is the right member of (24).

Theorem 9. Let

A”’p()\l—{—ﬁl,... A+ Bis T1y ooy T Yty e ooy Yr 2)
o (s1+s2+1) k
— Za’ gn —pk )‘ +B17"°7)‘m+ﬁmaxla-'ngm)Qp,—i—l/k‘(yla"'ayT)Z

Then, for n € Ny, we have

n [k/p]
ZZalgn w1, ..,)\m,ml,...,xm)g,(:_z;l(,é’l,...,Bm,xl,...,$m)
k=0 =0 (25)
X Qusni (Y1, -, yr) 2!
= AP+ B A+ B T T YL, - U 2)-

Proof. Let L4 be the left member of (25). Using (5) and then using addition formula (17) for the
multivariable-multiparameter generalized Cesaro polynomials, we get

[n/p] n—pl
£4: Z Zalg )‘17"'7Am7x17"'7xm>gl(§52)(/817'"7ﬂm7x17"'7xm)
=0 k=0
XQ,u—i—Vl(yla SRR yr)zl
[n/p]

1)
= ZagnSl;S2+ >\ +Bl7"")\m+ﬁmazla---7$m)Qu+Vl(y1>"'7yT)zl
— AZ:ﬁ()\l +ﬁla' . 'a>\m +ﬁm7$1)' s Tmy Y1y 7y7‘;z)7
which is the right member of (25).
8 Concluding remarks and examples

We proposed an extension of Cesaro polynomials to several variables and parameters. Then we
investigated several generating functions, an addition formula, a differential-recurrence relation, a
multiple integral formula for this extended Cesaro polynomial, as well as a multiple integral formula
kernel of which is this extended Cesaro polynomial. Also we explored several bilinear and bilateral
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generating functions for this extended Cesaro polynomial, two examples of which are demonstrated in
Examples 1 and 2.

Since the multivariable function €,4,k(y1,...,y,) is very general, we may deduce a number of
particular formulas from the results in Sections 1 and 2. We just use Theorem 7 to present the following
two examples.

Example 1. The Bessel function J, (x) are generated by (see, e.g., [15; p. 141])

(1 - 2;) o T ( w2 — 2xt ) Z Juin (@ 7._ (26)

If we take r =1, a, = %, v =1 and substitute the Bessel function for €2,;,, in Theorem 7, using
the relation (26), we can obtain the following result providing a class of bilateral generating function
relation for the multivariable generalized Cesaro polynomials and the Bessel functions:

oo [n/p]
Zzgn pk (AMyee oy Ay @1y oy Tn) Ju+k(y),'7ktn—pk:
n=0 k=0
277 _/*"/2 . L m N
=(1-3)  w(Emm)a-o [Jasan .

Example 2. Taking r = m, ap = 1, p = 0, v = 1 and substituting the multivariable-multiparameter
generalized Cesaro polynomials for €2, 4 in Theorem 7, and using the generating relation (9), we may
get the following class of bilinear generating functions for the multivariable-multiparameter generalized
Cesaro polynomials:

oo [n/p]
ZZ% ) e A1,y )
n=0 k=0
kyn—pk
ng (51,--.,ﬁm,y1,...,ym)nt
=[(1-¢)(1 511—[ 1— 2jt) ™ (1 — ym) %,

where each variable, each parameter, and each index can be suitably restricted so that this formula is
meaningful.

Obviously, many other particular cases of Theorem 7 can be provided. Further, the results in the

other theorems in Sections 1 and 2 can reduce to yield a variety of identities about the extended Cesaro
polynomials (6) and their simpler ones.
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