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On a method for constructing the Green function of the Dirichlet
problem for the Laplace equation
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The study of boundary value problems for elliptic equations is of both theoretical and applied interest. A
thorough study of model physical and spectral problems requires an explicit and effective representation of
the problem solution. Integral representations of solutions of problems of differential equations are one of the
main tools of mathematical physics. Currently, the integral representation of the Green function of classical
problems for the Laplace equation for an arbitrary domain is obtained only in a two-dimensional domain
by the Riemann conformal mapping method. Starting from the three-dimensional case, these classical
problems are solved only for spherical sectors and for the regions lying between the faces of the hyperplane.
The problem of constructing integral representations of general boundary value problems and studying their
spectral problems remains relevant. In this work, using the boundary condition of the Newtonian (volume)
potential and the spectral property of the potential of a simple layer, the Green function of the Dirichlet
problem for the Laplace equation was constructed.

Keywords: Laplace equation, Green function, Dirichlet problem, simple layer potential.

2020 Mathematics Subject Classification: 35C15, 35J05, 35J08.

Introduction

Let 2 C R™ is a bounded domain with a smooth boundary 0.
The Dirichlet problem. Find in € the solution u(z) of the Laplace equation

—Ayu= f(z), x€q,

satisfying the boundary condition
u‘zEBQ =0.

The function G(x,y),z,y € Q is called the Green function of the Dirichlet problem if
_ALEG(x,y) = 0> T € Q7 G(ZL‘, y)|xeaﬂ,yEQ = 0.

The solution of the Dirichlet problem using the Green’s function G(z, y) is representable in the following
integral form

u(x) = / G ) f(y)dy.
[9]

In the two-dimensional case, the method of conformal mapping of the analytical function is used
to construct the Green’s function. Starting from the three-dimensional case, the construction of the
Green function is carried out by the method of Fredholm integral equations of the second kind, or by
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the method of maps, which are ineffective. Therefore, in multidimensional cases, G(x,y) is constructed
only for spherical sectors and for half-spaces.

In this paper, we present a method for constructing the Green function, which essentially uses the
boundary properties of the Newtonian potential (volume potential) and the spectral properties of the
trace of the potential of a simple layer.

By u = L;,l f we shall call the Newtonian potential (volumetric potential)

u(w) = L3\ = [ el s )y, (1)
Q
where e(z,y) is the fundamental solution of the Laplace equation
- Atcg(xa y) - (5(.’E, y)v (2)
the function e(z,y) in (2) has the following form
—njz—y|, n=2,
ca,y) = { G ; )
wn (n=2)[z—y["=2° n>z

Next, we will use the following statement from the work of T.Sh. Kal’'menov, D. Suragan [1].
Theorem 1. The Newtonian potential u(x) € W(Q) at = € (2 satisfies the Laplace equation

—Ayu = f(x) (4)

and the boundary condition

- “(;) +/ (;;(x —y)uly) —e(z —y) 8;725)) dSy =0, =€ (5)
o0

Inversely, if u € W3 () satisfies equation (3) and boundary condition (4), then u(z) coincides with
the Newtonian potential (1).

Note that in the work of the Saito [2] it is also established that u(z) = Ly'f(z) satisfies the
boundary condition (4). In contrast to the work of the Saito, in our work it was found that if the
solution satisfies equation (3) and boundary condition (4), it coincides with the Newton potential
u(w) = Ly f(x).

It follows from Theorem 1 that the Green function of problem (3)-(4) in an arbitrary domain is the
fundamental solution &(z,y).

Similarly, the lateral boundary conditions of the wave and heat potentials are found in [3-6].

Let —A be the closure in L () of the differential operator —A on subset of functions u € C?T(Q),
ulon = g—mag =0, and —Aj is its adjoint operator in Ly(€2).

The operator L is called a correct restriction if

L C —(Ag)*, L™ is invertible on all Ly ().
Correct restriction L of the operator —(Ap)* we call a regular boundary extension if
—Ap C L, ||L_1||L2(Q)—>L2(Q) < 00.

The description of correct boundary value problems for general elliptic operators by the method
of regular extensions of operators in Hilbert space is given by M.M. Vishik [7], and the description of
correct restrictions for maximal operators is given by M.O. Otelbaev [8].
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Next, we look for regular solutions of equation (3) in the form

u(z) = / £z, y) f(y)dy + / V(€)e(x, €)dSe, (6)
Q o0
where
() = / v(€)e(z, €)dSe (7)
o0

is the potential of a simple layer, and v(&) is the density of the potential of the simple layer (6).
Suppose first that v(z) € C(012) and for each z € 09, and v(z) is a linear continuous functional
of f(z) € La(), i.e. v(x) = v(x, f).
According to Riesz’s theorem, v(, f) is representable as

V(€)= v(E. ) = / 4(€.9) f(w)dy, (s)

Q

where § is continuous over £ € 9Q and (&, y) € La(f2) over variable y € €, i.e.,

12(& | Lo@)ncon) = V(€ leoa)-
Substituting the right part (7) into the formula (6), we get

w(z) = / () / 46, 9) f(y)dydSe =

o0 Q
_ / ) / (2, €)(E, y)dSedy = / i@, y) f(y)dy,
Q

o Q

dfavy) = [ (w6 v)dSe 9)
o0
Thus, the operator

w=LVf = / a(@9)fW)dy, =€
Q

converts an arbitrary function f € Ly (Q) to kerA}, i.e. —A, L7 f =0.
Now we will rewrite the integral operator (5) in the form

u(x) = L' f = / ez, ) + 9. 9)) F(v)dy.
Q

By construction —Awu = f(x). Therefore, the operator u = L;zlf is a correct restriction of the
maximal operator —A(, i.e. a invertible generalized solution of equation (3).

Remark. Tt is not difficult to establish that in the representation (8) we can consider g € Lo(992) N
Ly (Q).

According to the theory of correct restrictions generated by integral operators (T.Sh. Kal’'menov,
M. Otelbaev [9]), a correct restriction of LI,_%1 generates regular boundary operators if and only if adjoint
to (L}_%l) operator (L;%l)* is a correct restriction, i.e. the operator

(LRI)*QZ/5(y,$)9($)d$+/q(x,y)g(m)dw

Q Q
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is a correct restriction.
According to [8], this can only be the case when

—Ayq(z,y) =0,
i.e.

-4, | [ @ mlense| = - [ e, 006 pise =0 (10)
Q o0

The following statement takes place
Lemma 1. The trace of the potential operator of a simple layer on 92, given by the integral

(Dg'v)(z) = /e(as,ﬁ)y(f)ng, x € 082

o0

is a completely continuous self-adjoint operator in L2(€2) and its kernel e(x, £), z, £ € 0f is represented

as
00

em(x)e
5(3375) — Z m( ) m(g)’
|m|=1 m
where e,,(z) is a complete orthonormal system of eigenfunctions of the operator Dgl corresponding
to the eigenvalues of )%

Indeed, from e(z,§) = (&, x) and its weak divergence on 92 follows the validity of Lemma 1.
It is easy to check that

Dgtem(r) = , Dgem(x) = Amem(x), (11)

where Dg is inverse operator to D;l.
Using Fourier series expansions

e(z,€) = i em(”;)em(g) zed, €econ

|m|=1 m
and
> _A g m m
_Ay§(€7y) = - Z ( yg))\ (y)e (5)’ Y € aQa f € aQa
Im|=1 m

(-89 = [ (~B49(6 w)em(©)dSe
oN

From the equality (9) at € 9 it follows that (—A,G(y))m = 0, which is equivalent to —A, (&, y) = 0.
In particular,

[ewona€ s =0, zeq
00

Now we are looking for the Green function G(z,y) in the form

Gl y) = e(a,y) - / £(2,€) Dsi(€, y)dSe. (12)
o0
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Since G(z,y) = G(y, ), it follows from (11) that

G(x,y) =e(z,y) — /6($7§)Dsfi(fay)d‘5’§ =
o0

()~ [ d(€.0)Dsey.€)ase =

o0

—e(z, y) — /q(g,m)Dse(y,ﬁ)dss-

o0

It follows that
q(& x) = e(z,€).
Therefore,
Gla.y) = sla,y) ~ [ elz,&)Dse(y.€)dse. (13)
[2)9]

From (12) it is easy to verify that

—AG=0(x—y),
- A, / e(w,€)Dse(y, )dSe = —A, / e(x,6)Dse(y, )dSe = 0, z € Q, y € Q. (14)
o0 o0
It takes place
Lemma 2. The following equality is true
— [ e ODser. s = (3. 9) = ~<(.p) (15)

€N, YeN

Proof. Let us set
o) = [ e Qen(@)dse, e,
o0

it is obvious that
_Ayé;;(y) = 07 (TS Q’

[e.9]

e, ) =D emyem(s). (16)

Im[=1

By construction
= em(y)em(§)
5(y7 £)|y€8§2 = Z .

Im|=1 "

Taking into account the formula (10), from (15) we obtain

Dse(y,6) = Y Amem@em(§), ye€Q

m|=1
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Based on (16) and the ratio

e(z,6) =Y em@eml) g,
Im|=1 m
from (14) at y € 2 we have
- [ <. Dsety s =

oN €N, yeN

_ Z Gm(w)em(€)7 Z )\mgm(y)em(g) _
|m|=1 m |m|=1 L2(69)

== ) em@en(y) = —c(y,x) = —c(z,y), ye, zco.

|m|=1

Using this, from (11) we will make sure that

Gz, 9),con =¢(7,y) - / (e, y) Dse(y, €)de, =
o0
=e(z,y) — 6($7y)’yeﬂ,x€89 =0.

Lemma 2 is proved.
Equality (13) and Lemma 2 follow
Theorem 2. The Green function G(zx,y) of the Dirichlet problem is given by the formula

Gl y) = e(z,y) - / £(2,€) Dse(y, €)dSk.
o0

where e(z,y) is the fundamental solution of the Laplace equation, and Dg is the operator defined by
the formula (10).
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Jlannac tengeyi ymiin lupuxiie ecebinif 'puH hyHKINSACHIHBIH,
MHTErPAJIIbIK KOPCETLIIIMiI TypaJibl

T.III. Kaigbmenos
Mamemamu%’(mbng HCOHE MATMEMATMUKAADLK MO()E/L’baey uHCcMmumymal, AﬂM(lm’bL, Kaamgcman

DJUINNITUKAJIBIK TEHIEyJIepre apHaJIFaH IIEeTKI eCeNTep/Ii 3epTTey TEOPUSLITBIK, 3KOHE KOIIAHOAIbI KBI3BIFYIIIbI-
JIBIK, TyAbIpaabl. Momenbiik (pu3uKaIbIK KOHE CIIEKTPJIK eCenTepal MyKHUST 3epTTey YIIiH eCeIITiH MentiMin
HaKThI JKOHE THIMII ycbIiHy KaxkeT. /luddepeHmanapik TeHaeyiep ecenTepiniy menriMaepiHiy nHTerpasi-
JIBIK, KOPCETLITIMI MaTeMaTUKAJIBIK-(PU3UKAHBIH HEri3ri KypaJsaapbiHbiy 6ipi. Kazipri yakpiTTa epKiH aiMax,
yuria Jlamrac TeHaeyi yImiH KIacCUKAJIBIK, ecenTepiis, ['puH OyHKIMSICHIHBIH, HHTErPAJI ALl KopceTiaimi Pu-
MAaHHBIH KOHMOPMIbI OeiiHesey oficiMeH TeK €Ki ormeMIl aifMakTa aJblHbl. YIII OJIMEM/l YKardaiTaH
bacrar, OyJI KJIACCHUKAJIBIK €CEIITEpP TEeK Iap CEeKTOpJaphl VIIH K9HE T'HMIEpP>Ka3bIKTBIKTBIH OeTTepi apa-
CBIHJIa OPHAJIACKAH aiiMakTap YIIiH memnrijieai. 2KaJmbl MeTKi ecenTepail NHTerpaJsiibl KOPCEeTTIMIH Kypy
2KOHE OJIADIBIH CIIEKTPJIK MOCeJeJIepiH 3epTTey Moceseci e3ekTi 6obin Kata 6epemni. 2KyMbIicTa HBIOTOH-
JBbIK (KOJIEeMIK) MOTeHIUAIbIH [IeKapaJIbIK [IaPTHIH XKOHe KapalaibiM KabaT IOTeHINAIBIHBIH CIEKTPJIK
KaCHeTTepiH maitajaana OTeIpHIN, Jlammac Teraeyi yirin Jlupuxie ecebinin ['puH OyHKIUSICH KYpacTHIPBLI-
FaH.

Kiam cesdep: Jlannac renzeyi, I'pun dyukuusicer, Tupuxiie ecebi, KapanaiibiM KabaT MOTEHIIUAJIBI.
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O6 uHTerpasibHOM npeacraBiienun pyukiuu 'puna 3amayan dupuxiie

112

3

Aas ypaBHeHus Jlamiaca

T.III. KaiabMmeHoB
HHcmumym MaAMEMaAMmUrKU U MAMTMEMAMUYLECKO20 Moﬁeﬂupoeamm, A./LM(lm’bL, Kasaxcman

W3yduenne kpaeBbIX 331849 Il JUIMITUIECKAX YPABHEHUA TPEICTABIISIET M TEOPETUIECKUA, U MPUKJIATHON
naTEepec. /I TIaTebHOr0 M3ydYeHusT MOMIETBHBIX (DU3NIECKUX U CIEKTPAIbHBIX 33/1ad TPeOyeTcs: siBHOE
u 3hdeKTUBHOE TIpe/ICTABIICHNE PellleHus 3aJadu. VIHTerpaabHble MpeJCTaBIeHNs PelleHui 3aaad aud-
(depeHInaTbHBIX YPABHEHUN SIBJISTFOTCS OJHUMU M3 OCHOBHBIX MHCTPYMEHTOB MaTeMaTHIeCcKoi dusuku. B
HACTOAIIEe BPEMsI HHTErPAIbHOE IpeACcTaBIeHne PYHKINY [ prHa KIIACCHYIECKUX 3314 /i ypaBHeHus Jla-
1aca Jijisi IPOU3BOJILHON 00JIACTH IOJIYyYEHO TOJIBKO B JIBYMEPHO# 06J1aCTH MEeTOI0M KOH(OPMHOro orobpa-
xenusi Pumana. Haunnast ¢ TpexMepHOro ciiydast, 9TU KJIACCUIECKUE 331a9K PEIIeHbl TOJBKO JJTsT IAPOBBIX
CEKTOPOB U JIJTs1 00JIaCTEH, JIeXKAIUX MEXKTy TPAHSIME TMIIEPILIIOCKOCTH. BOIIPOC MOCTpOEHNsT HHTErpaIbHBIX
[IpEeJICTABJIEHUI OOIINX KPAEBLIX 3aJad M M3yUeHUs] WX CIEKTPAJbHBIX IIPODJIEM OCTAeTCsl aKTYaJbHBIM. B
paboTe, IOJIb3ysiCh TPAHUIHBIM YCJIOBHEM HBIOTOHOBOIO (0OBEMHOI0) IOTEHIMANA U CIEKTPAJIBLHBIM CBOi-
CTBOM IIOTEHIIMAJIA TTPOCTOTO CJI0s1, TOCcTpoeHa (byukius ['puna 3agaun upuxie nisa ypasuenus Jlammaca.

Karoueswie caosa: ypasaenue Jlamraca, dyuknus I'puna, 3agada lupuxiie, moTeHIpaa IpocToro Cosl.

References

Kal’'menov, T.Sh., & Suragan, D. (2009). To spectral problems for the volume potential. Doklady
Mathematics, 80(2), 646-649. https://doi.org/10.1134/S1064562409050032

Saito, N. (2008). Data analysis and representation on a general domain using eigenfunctions of
Laplacian. Applied and Computational Harmonic Analysis, 25 (1), 68-97. https://doi.org/10.1016/
j.acha.2007.09.005

Kakharman, N., & Kal’'menov, T. (2022). Mixed Cauchy problem with lateral boundary condition
for noncharacteristic degenerate hyperbolic equations. Boundary Value Problems, 2022(1), 35.
https://doi.org/10.1186/s13661-022-01616-y

Kal'menov, T.S., & Arepova, G.D. (2018). A criterion for the existence of soliton solutions of
telegraph equation. Bulletin of Karaganda Univ. Math. Ser. Spec. Issue, 3(91), 45-52.
https://doi.org/10.31489/2018M3/45-52

Kalmenov, T.S., Rogovoy, A.V., & Kabanikhin, S.I. (2022). Hadamard’s example and solvability
of the mixed Cauchy problem for the multidimensional Gellerstedt equation. Journal of Inverse
and Ill-posed Problems, 30(6), 891-904. https://doi.org/10.1515/jiip-2022-0023

Kalmenov, T.S., Kabanikhin, S.I. & Les, A. (2021). The Sommerfeld problem and inverse problem
for the Helmholtz equation. Jouwrnal of Inverse and Ill-posed Problems, 29(1) 49-64.
https://doi.org/10.1515 /jiip-2020-0033

Vishik, M.I. (1952). On general boundary value problems for elliptic differential equations. Trudy
Matem. Islands, 1 187—-246.

Kokebaev, B.K., Otelbaev, M., & Shynybekov, A.N. (1982). K teorii suzheniia i rasshireniia
operatorov. I [On the theory of restriction and extension of operators. I|. lzvestiia Akademii
nauk Kazakhskoi SSR. Seriia fiziko-matematicheskaia — News of the Academy of Sciences of
the Kazakh SSR. Physics and mathematics series, 6(2), 815-819. https://dspace.enu.kz/jspui/
bitstream/data/9495/1 /k-teorii.pdf [in Russian].

Kal'menov, T.Sh., & Otelbaev, M. (2016). Boundary criterion for integral operators. Doklady
Mathematics, 93(4) 58-61. https://doi.org/10.1134/S1064562416010208

Bulletin of the Karaganda University


https://doi.org/10.1134/S1064562409050032
https://doi.org/10.1016/j.acha.2007.09.005
https://doi.org/10.1016/j.acha.2007.09.005
https://doi.org/10.1186/s13661-022-01616-y
https://doi.org/10.31489/2018M3/45-52
https://doi.org/10.1515/jiip-2020-0033
https://dspace.enu.kz/jspui/bitstream/data/9495/1/k-teorii.pdf
https://dspace.enu.kz/jspui/bitstream/data/9495/1/k-teorii.pdf
https://doi.org/10.1134/S1064562416010208

On a method for constructing...

Author Information™

Tynysbek Sharipovich Kalmenov — Academician of the National Academy of Sciences of
the Republic of Kazakhstan, Doctor of physical and mathematical sciences, Professor, Head of the
Department of Differential Operators, Institute of Mathematics and Mathematical Modeling, 125
Pushkin street, Almaty, 050010, Kazakhstan; e-mail: kalmenov.t@mail.ru; https: / /orcid.org/0000-0002-
1821-2015

*The author’s name is presented in the order: First, Middle and Last Names.

Mathematics Series. No.2(114),/2024 113



