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Conditions for maximal regularity of solutions to fourth-order
differential equations
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This article investigates a fourth-order differential equation defined in a Hilbert space, with an unbounded
intermediate coefficient and potential. The key distinction from previous research lies in the fact that the
intermediate term of the equation does not obey to the differential operator formed by its extreme terms.
The study establishes that the generalized solution to the equation is maximally regular, if the interme-
diate coefficient satisfies an additional condition of slow oscillation. A corresponding coercive estimate is
obtained, with the constant explicitly expressed in terms of the coefficients’ conditions. Fourth-order differ-
ential equations appear in various models describing transverse vibrations of homogeneous beams or plates,
viscous flows, bending waves, and etc. Boundary value problems for such equations have been addressed in
numerous works, and the results obtained have been extended to cases with smooth variable coefficients.
The smoothness conditions imposed on the coefficients in this study are necessary for the existence of the
adjoint operator. One notable feature of the results is that the constraints only apply to the coefficients
themselves; no conditions are placed on their derivatives. Secondly, the coefficient of the lowest order in
the equation may be zero, moreover, it may not be unbounded from below.
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1 Introduction. Formulation of the problem

Fourth-order differential equations describe various physical phenomena, such as transversal oscilla-
tions of homogeneous beams or plates, viscoelastic and inelastic flows, bending waves, and other [1, 2].
The issues of existence and uniqueness of solutions to boundary value problems posed for linear and
nonlinear fourth-order differential equations have been studied extensively in the literature [3–5]. In
the case of an infinite domain, the Cauchy problem for a fourth-order waves equation is considered
in [6]. However, in these works, the coefficients of the equations are either constant or assumed to be
bounded functions. Additionally, when investigating nonlinear equations, excessively strict restrictions
are imposed on the coefficients to ensure the uniqueness of solutions [3–5]. In light of both theoretical
and practical needs, there is a growing relevance in studying the solvability of fourth-order differential
equations with variable coefficients and relaxing constraints on these coefficients. This concern is
particularly pertinent to differential equations with independently growing coefficients that are given
in an infinite domain.

Consider the following fourth-order differential equation defined on the real line:

L0y = y(4) + p (x) y(3) + q (x) y = F (x) , (1)

where x∈R = (−∞,∞) , p (x) > 0, p (x)∈C(3)
loc (R), q (x) is a continuous function, and F (x)∈L2 (R).
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Let L denote the closure in the L2 (R) norm of the operator

L0y = y(4) + p (x) y(3) + q (x) y

defined on the set C(4)
0 (R) of continuously differentiable up to the fourth order functions with compact

support. A solution to equation (1) is an element y∈D (L) satisfying the equality Ly = F .
Our goal is to establish conditions sufficient for the fulfillment of the inequality∥∥∥y(4)

∥∥∥
2

+
∥∥∥py(3)

∥∥∥
2

+ ‖(1 + |q|)y‖2≤C (‖F‖2 + ‖y‖2) , (2)

for a solution y, where ‖·‖2 denotes the norm of the L2 (R) space. Inequality (2) is referred to as a
coercive estimate or an estimate of maximal regularity of the solution.

The equation (1) has been primarily studied in the case of p = 0 [7]. In addition, if q≥δ > 0,
then (1) is a unique solvable. And if the oscillation of q satisfies certain additional conditions, then
the inequality (2) is satisfied for a solution of (1). However, when p(x) is a non-zero, rapidly growing
function, the method of [7] is inapplicable. This is because the operator p d3

dx3 may not obey d4

dx4 +q (x)E
(E is the identity operator). For the sake of completeness, we provide statements about the existence
and uniqueness of solutions with proofs.

The aforementioned problem of unique and coercive solvability has been addressed in [8, 9] for
second-order differential equations with rapidly growing intermediate coefficients, and in [10] for third-
order differential equations. In [11], the authors developed an effective method for investigating the
spectrum of a degenerate symmetric fourth-order differential operator. We build upon the ideas of the
last four works. Unique and coercive solvability of various types of singular differential equations with
intermediate coefficients is studied in [12–15].

In what follows, by C we will denote positive constants, which may have, in general, different values
in the different places.

2 On an auxiliary binomial differential equation

Let us consider the operator l0y = y(4) + p (x) y(3), D (l0) = C
(4)
0 (R). We denote its closure in

L2 (R) by l.

Lemma 1. Suppose the function p (x)∈C(3)
loc (R) such that

p (x)≥ε > 0. (3)

Then, for any y∈C(4)
0 (R), the following estimate holds∥∥∥√py(3)

∥∥∥
2
≤
∥∥∥∥ l0y√p

∥∥∥∥
2

. (4)

Proof. Let y∈C(4)
0 (R). We concider the scalar product A =

(
l0y, y

(3)
)
. Since y is a function with

compact support, the following equalities hold:

A =

∫ ∞
−∞

y(4)(x)y(3)(x)dx +

∫ ∞
−∞

p (x)
[
y(3)(x)

]2
dx =

∫ ∞
−∞

p (x)
[
y(3)(x)

]2
dx . (5)

On the other hand, using condition (3) and the Holder inequality, we obtain:

A≤
(∫ ∞
−∞
|l0y|2

1

p (x)
dx

) 1
2
(∫ ∞
−∞

p (x)
∣∣∣y(3)

∣∣∣2 dx) 1
2

.

From this and (5), inequality (4) follows. The right-hand side of (4) is bounded under the condition (3).

150 Bulletin of the Karaganda University



Conditions for maximal ...

Let ρ (t) and v (t) 6= 0 be given continuous functions, and k is a natural number. We introduce the
following notations:

αρ,v,k = sup
x>0

(∫ x

0
ρ2(t)dt

) 1
2
(∫ ∞

x
t2(k−1)2v−2 (t) dt

) 1
2

,

βρ,v,k = sup
x<0

(∫ 0

x
ρ2(s)ds

) 1
2
(∫ x

−∞
s2(k−1)v−2 (s) ds

) 1
2

,

γρ,v,k = max (αρ,v,k, βρ,v,k) .

Lemma 2. [11] If functions ρ (t) and v (t) satisfy the relation

γρ,v,k <∞ (k∈N) ,

then for each f∈C(k)
0 (R) the following inequality holds:

‖ρf ‖2≤
2

(k − 1)!
γρ,v,k

∥∥∥vf (k)
∥∥∥

2
.

Lemma 3. Suppose the function p (x) satisfies condition (3) and γ1,
√
p,3 <∞. Then the operator l

is invertible, and for each y∈D (l) , the inequality holds

‖y‖2 +
∥∥∥√py(3)

∥∥∥
2
≤C ‖ly‖2 . (6)

Proof. Let y∈C(3)
0 (R). According to the condition γ1,

√
p,3 < ∞, Lemma 2, and estimate (4), we

obtain the following inequalities:

‖y‖2≤C
∥∥∥√py(3)

∥∥∥
2
≤C

∥∥∥∥ l0y√p
∥∥∥∥

2

.

By (3), we have ∥∥∥√py(3)
∥∥∥

2
≤
√
ε ‖l0y‖2 (7)

and
‖y‖2≤C

√
ε ‖l0y‖2 . (8)

Since D (l0) = C
(3)
0 (R) and l is the closure of the operator l0, from (7) and (8), the inequalities∥∥∥√py(3)

∥∥∥
2
≤
√
ε ‖ly‖2

and
‖y‖2≤C

√
ε ‖ly‖2

follow for each y∈D (l), respectively. Combining them yields (6).

Consider the equation
ly = y(4) + p (x) y(3) = f (x) . (9)

An element y∈D (l) satisfying ly = f is called a solution to (9).

Lemma 4. Suppose that the conditions of Lemma 3 hold for p (x). Then the solution to equation
(9) is unique.
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Proof. If y and z are two solutions to equation (9), then by definition, y, z∈D (l) and ly = f ,
lz = f . For v = y − z, we have lv = 0. Then, by inequality (6), ‖v‖ = 0, i.e., y = z.

Lemma 5. Suppose that the conditions of Lemma 3 hold for p (x). Then, for any f (x)∈L2 (R), a
solution to equation (9) exists.

Proof. According to Lemma 3, the operator l is invertible. It suffices to show that its range R(l)
coincides with the entire space L2(R). By Lemma 3, y(3)∈L2 (R), if y∈D (l). Let y(3) = z and
Θz = z

′
+ p (x) z. Then z∈L2 (R), and equation (9) takes the form:

Θz = z
′
+ pz = f∈L2 (R) .

The equality R (l) = R (Θ) holds. Indeed,

R (Θ) = {v∈L2 (R) : ∃z∈D (Θ) , Θz = v} =

= {v∈L2 (R) : ∃y∈D (l) , ly = v} = R (l) .

According to (6), R (Θ) is a closed set. It suffices to demonstrate that R (Θ) = L2 (R). Let us assume
the opposite. Suppose that R (Θ) 6=L2 (R). Then there exists a non-zero element w ∈ L2 (R), which
is orthogonal to the set R (Θ): (w,Θz) = 0, z∈D (Θ). Since (w,Θz) = (Θ∗w, z), and the set D (Θ) is
dense in L2 (R), the function w∈D (Θ∗) satisfies the following homogeneous equation:

Θ∗w = w − w′ = 0.

Therefore, as p (x) is continuous, it follows that w′∈L2,loc (R), then w∈W 1
2,loc (R). Consequently, the

function w (x) is continuous, and

|w (x)| = |c| e
∫ x
a p(t)dt , ∀x∈R.

Hence, |w (x)| ≥ |c| for x≥a, we obtain w/∈L2 (R). This leads to a contradiction, demonstrating that
R (Θ) = L2 (R).

3 Conditions for the separability of a binomial operator

Let λ∈R+ = [0,+∞). Consider the following differential operator Θ0λz = z
′

+ (p+ λ) z,
D (Θ0λ) = C

(1)
0 (R). Its closure in the space L2 (R) we denote by Θλ.

Definition 1. It is said that the operator Θλ is separable in the space L2 (R), if for any z∈D (Θλ),
the following inequality holds:∥∥z′∥∥

2
+ ‖pz‖2 + λ ‖z‖2≤C(‖Θλz‖2 + ‖z‖2). (10)

It is evident that the operator Θλ is separable in the space L2 (R), if and only if there exists µ∈R
such that the operator Θλ+µ = Θλ + µE is separable in this space.

Lemma 6. Let the coefficient p satisfy the conditions of Lemma 3 and the following relation:

sup
x,η∈R,|x−η|≤1

p (x)

p (η)
<∞. (11)

Then, the operator Θλ is separable in L2 (R).
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Proof. Let us observe that the conditions of Lemma 3 remain valid for the function p, and λ≥0.
According to Lemma 4 and Lemma 5, the inverse operator Θ−1

λ (λ≥0) exists and is continuous. We
will now demonstrate that the operator Θλ is separable for at least one λ≥0.

Let ∆j = [j, j + 1) , Ωj =
(
j − 1

2 , j + 3
2

)
(j∈Z). We choose the functions ϕj(x) (j ∈ Z) from

C∞0 (Ωj) (j∈Z), satisfying the following conditions:
a) 0≤ϕj(x)≤1, ϕj (x) = 1 ∀x∈∆j , sup

x∈Ωj

max
j∈Z

∣∣∣ϕ′j (x)
∣∣∣≤M.

Then
∆́j⊂Ωj⊂∆j−1∪∆j∪∆j+1,∆j∩∆k = ∅ (j 6=k) ,

Ωj∩Ωm = ∅ (|j −m| ≥2) ,
∞∑

j=−∞
ϕj (x)χ∆j (x) = 1.

Here χ∆j is a characteristic function of ∆j . Recall that the sequence {ϕj(x)}∞j=−∞, satisfying condi-
tions a), exists [7].

Let pj (x) (j∈Z) be the extension to the entire R of the restriction in Ωj (j∈Z) of the function p (x)
such that

1

2
inf
z∈Ωj

p(z) ≤ pj(x) ≤ 2 sup
z∈Ωj

p(z), x ∈ R. (12)

According to condition (11), such an extension exists [7]. Let

θ̃j,λz = z′ + (pj + λ) z, z∈C(1)
0 (R) .

Denote the closure of the operator θ̃j,λ in the space L2 (R) as θj,λ. By Lemma 3, for any z∈D (θj,λ) ,
we have ∥∥∥√pj + λz

∥∥∥
2
≤

∥∥∥∥∥
√

1

pj + λ
θj,λz

∥∥∥∥∥
2

.

Then,

‖z‖2≤
1

inf
x∈R

(pj (x) + λ)
‖θj,λz‖2 (j∈Z) . (13)

In particular, based on (3) and (12), we obtain

‖z‖2≤
2

ε+ 2λ
‖θj,λz‖2 (j ∈ Z). (14)

Therefore, the operator θj,λ is invertible. Due to Lemma 5, the operator θ−1
j,λ (j∈Z) is continuous. Let

f∈C(1)
0 (R). Consider the following operators Mλ and Bλ:

Mλf =
∑
j

ϕjθ
−1
j,λ

(
χ∆jf

)
, Bλf =

∑
j

ϕ′jθ
−1
j,λ

(
χ∆jf

)
.

Since f is a function with compact support, the number of terms in the sums on the right-hand
side of the last equalities is finite. By our choice, for z ∈ Ωj , the equality Θλz = θj,λz, z∈D (Θλ),
holds. Considering this and the properties of the function ϕj∈C∞0 (Ωj) , we can easily demonstrate the
equality

Θλ (Mλf) = (Bλ + E) f. (15)
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Note that the multiplicity of the intersection of intervals Ωj (j∈Z) is at most two. Therefore, the
following inequalities hold:

‖Bλf‖22 =
∞∑

j=−∞

∫
∆j

|Bλf |2 dx≤
∞∑

j=−∞

∫
∆j

 j+1∑
k=j−1

∣∣ϕ′k(x)
∣∣ ∣∣∣θ−1

k,λ (χ∆k
f)
∣∣∣
2

dx≤

≤3
∞∑

j=−∞

∫
∆j

j+1∑
k=j−1

∣∣∣ϕ′k (x)
∣∣∣2 ∣∣∣θ−1

k,λ (χ∆k
f)
∣∣∣2 dx≤3M2

∞∑
j=−∞

∫
∆j

j+1∑
k=j−1

∣∣∣θ−1
k,λ (χ∆k

f)
∣∣∣2 dx =

= 3M2
∞∑

j=−∞

∥∥∥θ−1
j,λ

(
χ∆jf

)∥∥∥2

2
.

According to inequality (14), we have

‖Bλf‖22 ≤ 3M2

(
2

ε+ 2λ

)2

‖f‖22.

Therefore, if we denote λ0 =
√

3Mθ−1 − 0, 5ε, then for λ≥λ0, we have

‖Bλ‖L2(R)→L2(R)≤µ (0 < µ < 1) ,

where ‖·‖ = ‖·‖L2(R)→L2(R) is the operator norm. By the well-known Banach theorem on small per-
turbations of a linear operator, for λ≥λ0, the operator E+Bλ is invertible, and its inverse (E +Bλ)−1

is bounded. The following inequalities are easily proven:

1

1 + µ
≤
∥∥∥(E +Bλ)−1

∥∥∥
L2(R)→L2(R)

≤ 1

1− µ
(λ≥λ0). (16)

By (15), we obtain the following operator equality

Θ−1
λ = Mλ (E +Bλ)−1 , λ≥λ0. (17)

Let us estimate the norm
∥∥(p+ λ)Θ−1

λ

∥∥
L2(R)→L2(R)

. By (16) and (17),

∥∥(p+ λ) Θ−1
λ

∥∥
L2(R)→L2(R)

≤ 1

1− µ
‖(p+ λ)Mλ‖L2(R)→L2(R) .

But

‖(p+ λ)Mλf‖22 =

∞∑
j=−∞

∫
∆j

(p (x) + λ)2

∣∣∣∣∣∣
j+1∑

k=j−1

ϕk (x) θ−1
k,λ (χ∆k

f)

∣∣∣∣∣∣
2

dx≤

≤ 3
∞∑

j=−∞

∫
∆j

(p(x) + λ)2

[∣∣∣ϕj−1θ
−1
j−1,λχ∆j−1f(x)

∣∣∣2 +
∣∣∣ϕjθ−1

j,λχ∆jf(x)
∣∣∣2] dx+

+3

∞∑
j=−∞

∫
∆j

(p(x) + λ)2
∣∣∣ϕj+1θ

−1
j+1,λ

(
χ∆j+1f

)∣∣∣2 dx ≤
≤3

(
sup
x∈Ωj

p (x) + λ

)2 ∞∑
j=−∞

∫
R

∣∣∣ϕj (x) θ−1
j,λ

(
χ∆jf

)∣∣∣2 dx .
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According to inequality (13), property a) of the sequence {ϕj(x)}∞j=−∞ and condition (11), we
obtain

‖(p+ λ)Mλf‖22≤3

(
sup
x∈Ωj

p (x) + λ

)2 ∞∑
j=−∞

∫
R

∣∣∣θ−1
j,λ

(
χ∆jf

)∣∣∣2 dx≤
≤3

(
sup
x∈Ωj

p (x) + λ

)2
1(

inf
x∈R

pj (x) + λ

)2

∞∑
j=−∞

∫
R

∣∣(χ∆jf
)∣∣2 dx≤

≤12

 sup
t∈Ωj

p (t) + λ

sup
t∈Ωj

p (t) + λ


2 ∫

R

 ∞∑
j=−∞

χ2
∆j

 f2 (x) dx≤12

(
sup
x∈Ωj

p (x)

p (t)
+ 1

)2

‖f‖22 .

So

‖(p+ λ)Mλf‖22≤12(K + 1)2 ‖f‖22 (λ≥λ0) , K = sup
x∈Ωj

p (x)

p (t)
. (18)

For z∈D (Θλ) , Θλz = f, λ≥λ0, we have z = Θ−1
λ f . Therefore, according to (17), (18) and (16),

‖(p+ λ) z‖2 =
∥∥∥(p+ λ)Mλ (E +Bλ)−1 f

∥∥∥
2
≤

≤2
√

3 (K + 1)
∥∥∥(E +Bλ)−1 f

∥∥∥
2
≤2
√

3 (K + 1)
1

1− µ
‖f‖2 .

Furthermore ∥∥z′∥∥
2

= ‖f − (p+ λ) z‖2≤
[
2
√

3 (K + 1)
1

1− µ
+ 1

]
‖f‖2 .

Consequently, ∥∥z′∥∥
2

+ ‖pz‖2 + ‖λz‖2≤(6
√

3(K + 1)
1

1− µ
+ 1) ‖f‖2 .

So, we have proven the inequality (10), and lemma.

From this lemma, taking into account the notation (l + λE) y = y(4) + (p+ λ) y(3), y(3) = z, and
Lemma 3, we come to the following conclusion.

Lemma 7. Let the function p satisfy the conditions of Lemma 3 and the relation (11). Then, the
operator l+λE( λ≥0) is boundedly invertible in L2 (R). Moreover, for any y∈D(l+λE), the following
inequality holds: ∥∥∥y(4)

∥∥∥
2

+
∥∥∥(p+ λ)y(3)

∥∥∥
2

+ ‖y‖2≤C ‖(l + λE ) y‖2 .

Remark 1. The condition (3), which was used in the proofs of Lemmas 3, 6, and 7, can be replaced
with the condition p (x)≥1. Indeed, if we denote x = ε−1t ( t > 0) , ŷ (t) = y

(
ε−1t

)
and p̂ (t) =

p
(
ε−1t

)
. The operator ly = y(4) + p (x) y(3) is transformed into

ε4 l̂ŷ (t) = ŷ(4) (t) + ε−1p̂ (t) ŷ(3) (t) ,

where ε−1p̂ (t)≥1.
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4 Main result and its proof

Theorem 1. Assume that p (x) satisfies conditions (3), γ1,
√
p,3 < ∞ and γq,p,3 < ∞. Then for any

f∈L2 (R) there exists a solution to equation (1) and it is unique. If, in addition, the relation (11)
holds, then the solution y satisfies the following maximal regularity estimate∥∥∥y(4)

∥∥∥
2

+
∥∥∥py(3)

∥∥∥
2

+ ‖(1 + |q|)y‖2≤C ‖f‖2 . (19)

Proof. In equation (1), we introduce a new variable t using the formula x = t
a . Let us denote:

ỹ (t) = y
(
a−1t

)
, p̃ (t) = p

(
a−1t

)
, q̃ (t) = q

(
a−1t

)
, F̃ (t) = a−4F

(
a−1t

)
(t ∈ R).

Then, equation (1) takes the form:

L̃0aỹ = ỹ(4) (t) + a−1p̃ (t) ỹ(3) (t) + a−4q̃ (t) ỹ (t) = F̃ (t) . (20)

Let la be the closure of the differential operator

l0aỹ = ỹ(4) (t) + a−1p̃ (t) ỹ(3) (t) , ỹ∈C(4)
0 (R) ,

in the space L2 (R). It can be easily verified that γ
1,
√
a−1p̃,3

= a3γ1,
√
p,3 < ∞ . By Lemma 3, the

operator la is continuously invertible. Moreover, by Lemma 6, for each ỹ∈D(la), we have∥∥∥ỹ(4)(t)
∥∥∥

2
+
∥∥∥a−1 (p̃ (t) + λ) ỹ(3) (t)

∥∥∥
2

+ ‖ỹ‖2≤Ca ‖laỹ‖2 . (21)

Further, γa−4q̃,a−1p̃,3 = 1√
a
γq,p,3. Consequently, by Lemma 1, we obtain

∥∥a−4q̃ỹ
∥∥

2
≤ 2√

a
γq,p,3Ca ‖laỹ‖2.

If we choose the parameter a such that a≥max
(

4C2
a

ν2
γ2
q,p,3, 1

)
(0 < ν < 1), then the following

inequality holds: ∥∥a−4q̃ỹ
∥∥

2
≤ν ‖laỹ‖2 , 0 < ν < 1. (22)

Then, by the theorem on small perturbations, the closure L̃a in L2 (R) of the operator L̃0aỹ = laỹ +
a−4q̃ (t) ỹ (t) is invertible, and its inverse L̃−1

a is continuous. So, for each right-hand side F̃ (t)∈L2 (R),
the solution ỹ of the equation (20) exists and is unique. Furthermore, by (22),∥∥∥l̃aỹ∥∥∥

2
≤ 1

(1− ν)

∥∥∥L̃aỹ∥∥∥
2
.

In accordance with (21), we have∥∥∥ỹ(4)(t)
∥∥∥

2
+
∥∥∥a−1p̃ (t) ỹ(3) (t)

∥∥∥
2

+
∥∥a−4q̃ỹ

∥∥
2
≤
[
Ca +

1

1− ν

] ∥∥∥L̃aỹ∥∥∥
2
.

Returning by the substitution x = 1
a t to the variable x in this inequality, we obtain the estimate∥∥∥y(4)
∥∥∥

2
+
∥∥∥py(3)

∥∥∥
2

+ ‖qy‖2≤C ‖F‖2 .

From here, the inequality (19) easily follows.

Conclusion

The qualitative properties of a fourth-order differential equation with unlimited intermediate and
minor coefficients are studied in the work. For a wide class of coefficients the correctness of equation is
proved and a maximal regularity estimate of the solution in the norm of the Hilbert space is obtained.
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