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Well-posedness criteria for one family of boundary value problems

This paper considers a family of linear two-point boundary value problems for systems of ordinary differential
equations. The questions of existence of its solutions are investigated and methods of finding approximate
solutions are proposed. Sufficient conditions for the existence of a family of linear two-point boundary value
problems for systems of ordinary differential equations are established. The uniqueness of the solution
of the problem under consideration is proved. Algorithms for finding an approximate solution based on
modified of the algorithms of the D.S. Dzhumabaev parameterization method are proposed and their
convergence is proved. According to the scheme of the parameterization method, the problem is transformed
into an equivalent family of multipoint boundary value problems for systems of differential equations. By
introducing new unknown functions we reduce the problem under study to an equivalent problem, a Volterra
integral equation of the second kind. Sufficient conditions of feasibility and convergence of the proposed
algorithm are established, which also ensure the existence of a unique solution of the family of boundary
value problems with parameters. Necessary and sufficient conditions for the well-posedness of the family of
linear boundary value problems for the system of ordinary differential equations are obtained.

Keywords: Family of linear boundary value problems, multipoint boundary value problem, existence of
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Introduction
Problem statement and research methods

This paper is devoted to the study of a family of linear boundary value problems for differential
equations

WA ot S, (0 e ] < (0.7) o
Bi(z)v(z,0) + Ba(x)v(z,T) = d(x), z € [0,w], (2)
where (n x n)-matrix A(x,t) e n-vector-function f(x,t) are continuous on [0,w] x [0,T], B1(z), Ba(z)

and n-vector-function d(x) are continuous on [0,w]|, x is a parameter of the family (z € [0,w]);
[A(z, D)l < ao, [lv(z, t)]| = max [Jvi(z, D).

,n
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In the present paper problem (1), (2) is investigated by the parameterization method [1].

The originallity of the parameterization method lies in the simple idea of introducing parameters at
some points of the set on which the boundary value problem is considered, which subsequently allows
us to construct an algorithm for finding a solution, obtain sufficient solvability conditions, establish
solvability criteria for linear and nonlinear two-point boundary value problems, multipoint boundary
value problems, boundary value problems with impulse influence, singular boundary value problems,
nonlocal boundary value problems for differential equations, loaded differential equations, integro-
differential Fredholm equations, differential equations with delayed argument, partial differential equa-
tions and others. These results are presented in the works of Dzhumabaev and his students (Assanova
[2], Temesheva [3-7|, Orumbayeva [8-10|, Uteshova |11, 12], Iskakova [13, 14|, Imanchiyev [15, 16],
Bakirova [17], Kadirbayeva [18], Tleulessova [19], Abildayeva [20], Abdimanapova [21]).

Dzhumabaev and Assanova [22] studied a nonlocal boundary value problem for systems of linear
hyperbolic equations with mixed derivative. A special substitution allowed to reduce this problem to
an equivalent boundary value problem, which can be considered as a family of two-point boundary
value problems for systems of ordinary differential equations, where the spatial variable servers as a
parameter of the family.

This approach can also be used to study the linear nonlocal boundary value problem for a system
of partial differential equations (m =1,2,...)

oty o"Mu n
8758:67” —A(xat)axim—i_f(xat)a UER ’ (x7t)€ [07(")] X(OvT)7
oFu 0%
%xzo_wk‘(t)? tE[O,T], k_oala"'7m_17 @_07
0" u(x,t) 0"Mu(z,t) B
B (x) g |, + By(z) dom | d(x).

This fact motivated us to investigate problem (1), (2).

In this paper problem (1), (2) is investigated by the parameterization method with a modified
algorithm. Sufficient conditions for the existence of a unique solution are obtained. The well-posedness
criteria for problem (1), (2) are established.

Notation

e N is a natural number;

e U is a natural number;

e Q. =[0,w] X [(r—1)h,rh), h=T/N, r =1, N;

e C([0,w],R™) is the space of continuous functions d : [0,w] — R™ with the norm ||d|jo =

max ld()]];
z€[0,w
. C([O w] x [0 T] R™) is the space of continuous functions v : [0,w] x [0, 7] — R™ with the norm
[olly = oz, t)]|;
(0)e[0 X [0,7]
o the index r takes on the values 1,2,...,N;

o the index s takes on the values 1,2,..., N + 1;

o C([0,w]x[0,T], ., R™) is the space of systems of functions v(z, [t]) = (vi(z, 1), v2(z, 1), ... ,v5(z,1))

with the norm |jv|]s = max sup |lv.(z,t)|, where the function v, : Q, — R"™ is continuous
r=1,N (z,t)eQ,
and has a finite limit at ¢t — rh — 0 uniformly with respect to x € [0, w] for all r;
o C([0, w], RMN*1) is the space of functions A(z) = (A\1(x), Aa(x), ..., An11(z)) with the norm

IAlls = max max |[As(x)|, where Ag : [0,w] — R™ are continuous for all s;
s=1,N+1 z€[0,w]
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C([0,T], R™) is the space of continuous functions v : [0,7] — R"™ with the norm |jv||s =

s o)

I is the identity matrix of size n;
O is the zero matrix of size n X n;
O is the first column of the matrix O.

1 Solvability of a family problems (1), (2)

Definition 1. v*(z,t) € C([0,w] x [0,T], R™), continuously differentiable with respect to t and
satisfying equation (1) and boundary conditions (2) for each fixed = € [0,w], is called a solution of the
problem (1), (2).

Problem (1), (2) is investigated by the parameterization method [1]. For a fixed N, we make the
partition [0,w] x [0,T) = U Q,.

According to the scheme of the parameterization method, the problem (1), (2) is transformed into
the equivalent family of multipoint boundary value problems with parameter for systems of differential
equations

v,

ot 5

= Az, 1)(0r + A (2)) + f(2,1), (3)
(2, (r = 1)h) =0, (4)
Bi(x)A(x) + Ba(2) An1a(2) = d(2), ()
(6)

() 4+ lim v.(x,t) — Apy1(z) =0, r =1, N, 6
t—rh—0

where (z,t) € Q,, x € [0,w], \r(z) = v(z,(r — 1)h), Ayyi(x) = t—ljfl’riov(x’t)’ Up(z,t) = v(x,t) —
A-(z), 7 =1, N. A solution of problem (3)—(6) is a pair (A\*(x),v*(z, [t])) ()\*(x) € C([0,w], RMN+1),

v*(w, [t]) € C([0,w] x[0,T7], ., RMV )) such that for each r is continuous and continuously differentiable
with respect to ¢ on Q, function v}(z,t) at A\.(z) = N\:(z) satisfies equation (3), condition (4), and
M(#), Mepy (), Xi(@). lim B (e1), satisly (5), (6).

If the family of pairs (/\*( ),v*(x,[t])) is a solution of the family of problems (3)—(6), then the
family of functions

(3, 1) = Ni(x) +0r(z,t) for (z,t) € Qr, r
L Ay (@) for ze€[0,w], t=

is a solution to the family of boundary value problems (1), (2

If the family of systems of functions v(z,[t]) = (vi(z,t),v2(x,t),...,Un(z,t)) is a solution to
problem (1)-(2), then the solution to problem (3)-(6) is the pair (A(x),v(x, [t])) with elements )\( )

(Al( ) >‘2( ) 'a/XN-i-l(x))? /):T(x) = i)}(l‘ (T - 1)h)7 r=1,N, /XN-I-l(x = t_lgjr_,rio’UN(w7t)7 [ ]
Uz, [t]) = @1 (2, 1), 0a(2, 1), . .., a(x, 1)), r = Op(z,t) — O(z, (r — 1)R), (2,8) € Qy, 7 =1, N.

In problem (3)—(6), the initial conditions (4) appeared for elements of the family of systems of
functions v(z, [t]). For a known A, (z), the Cauchy problem (3), (4) on €, is equivalent to the family

of Volterra integral equations of the second kind:

~—

)
)

t t t

B ) = / Az, 7)o, (2, 7)dr + / Az, 7)dr - M(x) + / f(@,7)dr. (7)

(r—=1)h (r—1)h (r—1)h
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In (7), replacing v, (x, 7) by the right hand side of (7) and repeating this process v times, we obtain
the following representation of the function v, (z,t):

Ur(z,t) = Dy p(z,t) - \e(x) + Fp(z,t) + Gy p(,t,0), (8)

where

t

1
D,/VT(JI,t) = / A(]I,Tl)dﬁ + / A(JZ,T1) / A(aﬁ,Tg)dTQdTl + ...+
(r—=1)h (r—1)h (r—1)h

T

/ Az, 1) / Az, 12) / A(z,1,)dTy ... drodTy,

(r=1)h (r—1)h (r—1)h

t T1

t
Fyp(i,1) = / f (@, m)dm + / Az, ) / f(2,72)dradrs + ...+
~1)

(r=1)h (r=1)h (r~1)h
t Ty—2 Ty—1
+ / Az, 1) ... / Az, 1y-1) / f(z,7,)drydry,—1...dm,
(r=1)h (r=1)h (r=1)h
t Ty
Gyr(t,z,v) = / Az, 1) / A(z,,)0p(x, 7))dTy . . . dT1,
(r—=1)h (r—1)h

te[(r—1)h,rh),r=1,N.
Determining from (8) the limits

. 1i1%1 OﬂT(x,t) =Dy, (x,rh) - \(z) + Fp(z,7h) + Gy p(Th,z,0), x€[0,w], 7r=1,N,
—rh—

substituting them into (5), (6) and multiplying (5) by h > 0, we obtain the family of systems of linear
algebraic equations with respect to A.(z), x € [0,w]:

hBl (.%')/\1 (.T) + th(x))\N+1(a:) = hd(:b‘), (9)

(I + Dyy(z,mh)) A\ (z) — M1 (z) = —=Fyp(z,7h) — Gy (Th,z,0), r=1,N. (10)
We write system (9), (10) in the form:

Qu(h,2)A(x) = —F,(h,z) — Gy (h,2,7), A(z) € C([0,w], R*VFD),

where
hBi(z) O o ... 0 hBs(z)
I+ Dy1(z,h) I o .. 0 0
Qhay=| O Dl S0 7
0] 0] o ... —I 0]
0 0 O ... I+Dyn(x,Nh) —I
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F,(h,x) = (—hd(z), Fy1(h,z), Fy2(2h,x),...,F, N(Nh,z)),
Gy (h,z,0) = (00, G,y (h, 2,0), Gya(2h, 2,0), . .., Gy n(Nh, z,7)).

As can be seen, the process of finding a solution to problem (1), (2) is reduced to solving a family of
systems of linear algebraic equations (10) for some v(z, [t]) and solving the family of Cauchy problems
(3), (4) on Q, when \.(z), r =1, N is found.

Let us describe the algorithm for finding a solution to problem (3)—(6). Let the matrix @, (h,x) be
reversible for all z € [0, w].

Step 0. (a) The family of parameters AV (z) is found from the equation Q, (h, z)A(z) = —F, (h, z).

(b) We determine the components of the system of functions 9(9)(z, [t]) by solving the Cauchy
problems (3), (4) on Q, at A (z) = AV (z), r = T, V.

(c) On [0,w] x [0,T] we define the function

v(o)(x,t) _ { )\%23(3;) + ﬁﬁo)(x,t) for (z,t)€Q,, r=1,N,
AN () for ze€0,w], t=T.
Step 1. (a) The family of parameters A()(z) is found from the equation Q,, (h, z)A(x) = —F, (h,z) —
G, (h,z, o).
(b) We determine the components of the system of functions o(!)(z,[t]) by solving the Cauchy
problems (3), (4) on Q, at A\, (x) = )\fnl)(fv), r=1,(N+1).
(c) On [0,w] x [0,T] we define the function

Wy = { MW@ +T @) for @neo, r=TN
’ )\g\lfzrl(x) for ze€0,w], t=T.
At the k-th step, we find the pair (A\®)(z), %) (z, [t])), k = 0,1,2,.... On Q we define the piecewise
continuous function

g = { W@ @) for e, r=TN,
7 )\5\12_1(3:) for ze0,w], t=T.

Condition 1. For some h > 0: Nh =T, v and for any = € [0,w] the matrix Q, (h,z) : R*N+D
R™V+D s invertible and the following inequalities are satisfied:

1(Qu (B, 2) M| < Y (hy ) < 2 (h),

qy(h) _ ’}/y(h){eaoh o Z (CLO.}L)J'} 1 (11)

Jj=0

The following statement establishes sufficient conditions for the feasibility and convergence of the
proposed algorithm. It should be noted that this statement ensures the existence of a unique solution
of the family of boundary value problems with parameters (3)—(6).

Theorem 1. Let Condition 1 be met. Then the sequence of pairs (A*)(z), 7% (z, [t])) converges to
the unique solution (A*(x),v*(x, [t])) of problem (3)—(6) and the following estimates hold true:

s @) < @) e 19
A" = A ls < 7 W) A AV, (12)
55 (2, 1) = 5P (2, 8)|| < (e~ — 1) | A (2) — AP ()], (13)

where k =1,2,..., (z,t) € Q,, r=1,N.
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Proof. The continuity of the matrices A(x,t) and By (z), B2(x) on [0,w]x [0, T and [0, w], respectively,
implies the continuity of the matrix Q, (h,z) : R*N+D — R"(N‘H) on [(), w]. Let us fix 7, T € [0, w].
The matrix (Q,(h,z))~' : R*V+1) 5 RMN+D s continuous for all z € [0,w], since the inequality
1@ ) — (@, 2)) | < 22(0)Qu(h,2) — Qu(h, )| holds.

The solution of problem (3)-(6) is found by the algorithm. Solving the equation @, (h,z)\(x) =

F,(h,z), we find X9 (z). Since the matrix (Q,(h,z))"! and the vector F,(h,z) are continuous for
all z € [0,w], we have A (z) € C([0,w], R*N+1D) and

[y

v—

||)\(0)H3 < v, (h)h max {1,

}max{uduo,ufu }.

=0

.

For any r and = € [0,w], we find the function s )( ,t) from the Cauchy problem (3), (4) with

M) = 37 ()
vy
ot

= Az, )0, + Az, )N (z) + f(z,t), To(z,(r—1)h) =0, r=1,N.

Then for 7\ (x,t) we have the estimate
158 (&, )] < (eI — 1) A (@) | + (¢ = (r = Dh)e =TI ],

whence it follows that
[Ty < (e — 1)[]AO |3 + he (| £]]1.

Then, following the algorithm, we solve the equation Q, (h, z)\(z) = —F,(h,z) — G, (h,z,7®) and
find (M) (). We have

INY =XV 5 = || = (Qu(h,2) ™" - Gu(h, 2, 5O)|| < 3 (h) max |Gy (rh, 2, 5@} <
r=1,N
rh Tv—1 h)
~ aph)” |
<wmmac{ [ a0 [ ali®@n)ldn..dn} < () 2 00,
r=1,N v
(r—=1)h (r—1)h
We define the components of the system of functions o1 (z, [t]) = (’1751)(x,t),'17£1)(a:,t), ceey ﬁg)(x,t))
by solving the Cauchy problem (3), (4) with A\, (z) = )\511)(33):
v,

o = Al )5, + Az, )2V (2) + f(z,t), p(z,(r—1)h)=0, r=1,N.

The difference (5,(})(90, t) — 7 (x,t)) is estimated as follows:
1580 (2, ) = B (,1)|| < (=DM — 1) AP (@) = A ()]
We assume that the pair (A®=D (), 5+~ (z, [t])) is determined and for all (z,t) € Q, the following

inequalities hold:
A~ XDy < g, (B) A2 — AEI],
[ (@, 1) = 32 (@, )] < (eI — 1) IAFD (@) = AF2 ()] (14)

r

At the k-th step of the algorithm, solving the equation Q, (h, 2)\(z) = —F, (h, z) — G, (h, z,7~1),
we find A(®) (). Taking into account (14), we establish that

A — AE=D 13 < g, (R)IAFD — AE=D)50 k=23, (15)
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We define the components of the system of functions o) (z, [t]) = ('17§k) (x,t), 5§k) (x,t),..., 51(5) (x,t))

by solving the Cauchy problem (3), (4) with \,(z) = ) (z):
vy
ot

= Az, )0, + Az, )OAP (2) + f(2,t), Up(z,(r—1)h)=0, r=T1,N.

For all (z,t) € Q,, r=1,N (k=1,2,3,...) we estimate the difference (T)ﬁk) (x,t) — T)ﬁk_l)(az,t)):

189 (2, ) = 5D (@, )] < (eI —1)[|AF (@) = ALV (). (16)
By the condition of Theorem, g, (h) < 1, so it follows from (15), (16) that the pair (A®) (z), 7 (z, [t])),
k=0,1,2,..., converges to (\*(x),0"*(z,[t])), the solution of problem (3)-(6) in C([0,w], RMN+1) x
C([0,w] x [0,T],Q,, R™Y),
It is not difficult to establish the validity of the inequalities:

h+0) _ )y, < 2B m o)
A0~ Xy < B AR — D, a7)
1—g*(h) . (aoh), _
) _ 1-aq(h)
IA® = A0 < T2, () O O,
[55F0 (2,1) — 5 (2, 1)]| < (eE==DM) — 1) IAEFD (z) — AF) ()], (18)

55 (,) = 5 (@, 1) < (e20U=C=DR — 1) AP (2) — XD (a)]],

(v,t) € Q., 7 = 1,N, k = 1,2,.... In the inequalities (17), (18), letting £ — oo, we establish the
validity of the estimates (12), (13).

Let us show the uniqueness of the solution of problem (3)—(6). Let v*(x,t) and v(z,t) be two
solutions of problem (1), (2). Then the pairs (A\*(x),v*(z, [t])) and (X(x) v(z, [t])) are solutions to the
boundary value problem (3)—(6), here

X (z) € C([0, w], RV A*(2) = v*(z, (s —1)h),s = 1, N + 1,
vy (2, [t]) € C([0,w] x [0,T], @, R™Y),

T (2,t) = v* (2, t) — v*(x, (r — Dh), (z,t) €Qn, r=1,N,
A@) € C([0, w], R*N ) X(2) =B(x, (s — 1)h), s=TL,N+1,
i, [f]) € C(0,0] x [0,7], 2, R™),
or(z,t) =0(z,t) — 0(x, (r — 1h), (2,4)€Q,, r=1N.

Under our assumptions, the following equations hold:

t ¢
Uy (x,t) / A(z, 7)oy (z, 7)dT + / A(z,7)dT - X3 () + / fx,7)dr,
(r—1)h (r—1)h (r—1)h
t t t
a(x,t) = / A(]),T)%T(JJ,T)dT + / Az, 7)dT - M\ () + / f(z, T)dT,
(r=1)h (r—=1)h (r—=1)h

Q;l(h,x))\*(x) = _(Fu(h>x) + Gu(hvxaa*))a

Mathematics series. No.4(112)/2023 11
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Q; M (h,2)A(x) = —(Fy(h, 2) + Gy (h, 2,7)).

Then the following inequalities are true
7% =¥l < (e = 1) - |3 = s, (19)

A" = Alls < @ (R) X" = Alls.
Hence, by virtue of inequality (11), A*(z) = A(z). Then from (19) we obtain that v*(z,t) = (x, t)
for (z,t) € [0,w] x [0,T]. Theorem 1 is proved.
Since problem (1), (2) and problem (3)—(6) are equivalent, the following statement holds true.

Corollary 1. Let Condition 1 be met. Then the sequence v¥)(z,t) (k= 0,1,2,...) converges to the
unique solution v*(x,t) of problem (1), (2) and the following estimates are true:

Vu(h)eaoh ) (CLOh)V ((eaoh 1

* _ 0, <
e S R

max  max |[v(z, (s — Dh)|| + h€a0h||f||1> -
s=1,N+12€[0,w]

2 Well-posedness criteria for the family of problems (1), (2)

Definition 2. The boundary value problem (1), (2) is called well-posed if for any f(z,t) € C(]0,w] x
[0,T],R™), d(z) € C(]0,w],R™) it has a unique solution v(z,t) and

lolly < & max { ], 111},

where K is a constant, independent of f(z,t) and d(z). The number K is called the well-posedness
constant of problem (1), (2).

Let us consider the equation

%Q*(h, 2)\(z) = —Fu(h, A, f.d,x),  Az) € C([0,w], R"N ),

1
where Q. (h,x) = le Qu(h,x), Fi(h, A, f,dx)= le EFV(h’ x).

Theorem 2. The boundary value problem (1), (2) is well-posed for all 2 € [0,w] if and only if there
exists hg € (0,7 such that for any h € (0,hg] : Nh = T there is a number v = v(h), such that the
matrix Q, (h,z) : RMN+1D — RN+ g invertible and the following inequalities hold:

1(Qu(hy )~ < 7 (h), (20)
() =rwmfent -3 0} <1 (21)
7=0

Proof. The sufficiency of the conditions of Theorem 2 for the well-posedness of problem (1), (2)
follows from Corollary 1.

Necessity. Let problem (1), (2) be well-posed with a constant K. Problem (1), (2) for every fixed
T € [0,w] is a linear two-point boundary value problem for the ordinary differential equation:

dv

== Ao+ f(t), te(0,T), DeR" (22)

~ ~

B15(0) + Boo(T) = d. (23)
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~

Here 0(t) = v(Z,t), A(t) = A(Z,1), f(t) = f(@,t),B1 = B1(2), Bs = B(%), d = d(2).
Since for f(x,t) = f(t), ( ) = d we have:
= B < “(z,0)| < K d =K d, | ]
1074 = nas [o* (@, £)] (@eﬁgﬁm’ﬂ\lv (@,t)]| < K max{||d|jo, fll1} = K max{]|d|[, || f[l},

then the correct solvability of problem (1), (2) follows from the correct solvability of problem (22), (23)
with constant K for every fixed = € [0,w].
For any € > 0 there is hg € (0,71, satisfying the inequality

1 €
T (e0h0 1 aghg) <
aoho (e aoho) < (2+e)(1+e)

Then, by Theorem 3 [1; p. 42|, we obtain the following estimate for all h € (0, ho] : Nh =T

(14+¢e)K

@)1 < =

In view of the arbitrariness of Z € [0, w], we obtain

1Qu () < TR v o,

Let us choose vq such that:

2(1 +5)K{ea0h < (aoh)j} -
h 4! ‘
7=0

For any v, we have there is the inequality

1Qu(hy2) = Qu(ha)ll < S (agh) _{ Z

i
j:y+]_ '7 ] =0

)

Then it follows from the theorem on small perturbations of boundedly invertible operators that for all
v > vy the matrix Q, (h,z) : R*V+1) — RN+ g invertible and

o 1(Q.(h.2) | 21 + 0K
1@ () S T @) - Q) — )]~ k-
2(1+¢e)K

Thus, for all v > vy, h € (0,hy] : Nh =T and z € [0,w], taking 7, (h) =
that the inequalities (20), (21). Theorem 2 is proved.

, we obtain
h

Theorem 3. The boundary value problem (1), (2) is well-posed if and only if for any v there exists
h = h(v) : Nh = T, such that the matrix Q,(h,z) : R*N+D — R™N+1 i invertible for all z € [0, w]
and the inequalities (20), (21) are true.

Proof. Sufficiency. The well-posedness of problem (1), (2) under the conditions of Theorem follows
from Corollary 1.

Necessity. Let the problem (1), (2) be well-posed with constant K. Reasoning as in the proof of
Theorem 2, for a given € > 0 we find hy = ho(e) such that for all h € (0,ho] : Nh =T and z € [0, w]
the matrix Q. (h,z) : R™N+D — R*NV+1) g invertible and

1(Qu(h 1 < LEEE
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We choose hy € (0, ho] such that the relation is satisfied:

2 +e)K {eaom N ZV: (a0hn)? } <1 (24)

h
1 =

Since [[(Q«(h, z)) 7| - [|Q«(h, z) — Qu(h, )| < 0.5, then, by virtue of (24), by the small perturbation
theorem of boundedly reversible operators, for all h € (0,h;] : Nh = T and z € [0,w] the inequality

21l+¢)K
holds /(@ (h,2)) 1| < 2L
2(1 K
Taking 7, (h) = i, by virtue of choosing h € (0, hi] : Nh =T, we obtain the fulfillment of

inequalities (20) and (21). Theorem 3 is proved.

Theorem 4. Let for some v there exist hg = hg(v) such that for all h € (0,hg] : Nh = T and
z € [0,w] the matrix Q, (h, z) : R*W+1) — RMN+1) ig invertible and

- g
1@Qu(h @)l < 5,
where 7 is a constant, independent of h and z. Then problem (1), (2) is well-posed with constant
K =n.

Proof. For any £ > 0 there is hg € (0,T] satisfying the inequality
€

7(ea0ho N aOhO) < m

aphg

We choose hy € (0, hg] : Nhy = T such that the following inequality is satisfied:

v

hll{eaom B Z (aohl)j} <1

1
=0

Then ¢, (h) < q,(h1) < 1 for all h € (0,h;1] : Nh =T and, by Corollary 1, the problem (1), (2) has a
unique solution v*(z,t) and

h)” el —1
*(z,1)]| < aoh(( v (aoh)” 1)
(m,t)eI[{)l,i?x[O,T] o™ (@, 8)ll < e 1—qy(h) V! h )X
v—1 ;
(aoh)J g (aoh)y aoh aoh
x vmaX{Lj;) Ty et maslldlo 1} + e
Letting h — 0 in the above inequality, we obtain that
max }Hv*(w,t)\l < ymax{||dljo, [ f]l1}-

(z,t)€[0,w]x[0,T
Theorem 4 is proved.

Theorem 5. Let problem (1), (2) be well-posed with constant K. Then for any v and £ > 0 there
exists hg = ho(v,e) such that for all b € (0,ho] : Nh = T and x € [0,w] the matrix Q,(h,z) :
RMNHD 5 RN+ s invertible and

(1 +€)K‘

1@ (k)7 < =
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Proof. For a given € > 0, find hg = ho(e) such that for all h € (0,hg] : Nh =T and z € [0,w] the
matrix Q,(h,x) : RMN+D s R™N+1) ig invertible and the following estimate holds true:

. 2+e)K
1(Qx ()M < e

Let us choose hy € (0, hg] satisfying the inequality:

(2 + s)K{eaohl B Z”: (aohl)j} L€

.' .
h1 = 7 1+e¢

1
Since ||(Q«(h,2)) 7| - |Q«(h,2) — Qu(h,2)| < 5 % then, the theorem on small perturbations of

boundedly invertible operators, for all h € (0,h;] : Nh =T and x € [0, w] the following estimate holds

1(Qu(h, )71 < (1+h€)K = 7,(h) and, based on (24),

v

g (h) = %(h){e“oh = (ao,h)j} <<l

= 4! 24¢

Then, according Corollary 1, there exists a unique solution v*(x,t) of problem (1), (2) and the
following estimate holds:

a 1+e)K (agh)” e®h -1
oo ] < oot (DS 0 EE 2L 1)1k oy
(

max
(z,t)€[0,w] x[0,T]

v—1
a h J 1+¢ aph)” , a
xmax{l,z 0 }+ JK (aoh)” o) max{ o, If]11} + eI .

_ |
= 1—qy(h) V!

Letting h — 0, we obtain the estimate max lv*(z, )] < (1 +¢e)K max{||d|o, || f]]1}
(z,t)€[0,w] x[0,T)

Theorem 5 is proved.

Conclusion

The paper proposes a modified algorithm of the parameterization method: an additional parameter
is introduced and at the last point of the segment on which the boundary value problem is considered.
This is the difference between the proposed modified algorithm and the classical algorithm of the
parameterization method. This modification allows us to simplify the structure of the linear operator
equation with respect to the introduced parameters. Sufficient conditions for the existence of a single
solution of the problem (1),(2) and criteria of correct solvability of the family of linear boundary
value problems for the system of ordinary differential equations are obtained. Note that the idea of
the methodology used in this paper has wide prospects of development for the study of problems of
solutions of linear and nonlinear boundary value problems.
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I1.B. Agmuvananosal, C.M. Tememnena?

L Aamamor mexnonozuasy yrusepcumemi, Aamamaos, Kazaxcman;
204 Papabu amundaete Kasax yammok yrusepcumemi;
Mamemamura stcone mamemamurasy modeavdey urncmumymat, Aamamo, Kasaxcman

IIleTrTik ecenTin Oip yiipiHiH KUCHIHIbI IHENTiM/IIJTiK
KpUTepHitjaepi TypaJibl

Maxkanana auddepeHnuaaabk TeHIeyIep XKyiiegepl VIMH CBHI3BIKTBIK, €Ki HYKTEJ IIeTTIK ecenTep yii-
ipi kapacreipburran. OHbIH, 1entiMiepinin 6ap 60y cypakTapbl 3epTTein, XKybIK, mentiMi taby sicrepi
yebiabLaran. 2Koi muddepeHuaiablK TeHaey ep Kyieci YIMH ChI3bIKTHIK, €Ki HYKTeJIi MeTTiK ecenrep Yii-
ipiHiH »KeTKIJTIKTI mapTTapbl aHbIKTAJIFaH. KapacThIPbLIFaAH €CENTIiH MEeNTiMiHiH KAJIFbI3AbIFbI [MOJIEIICHTI.
I.C. 2KymabaeBTbiH, mapaMerpJiey 9iciHin ajropurMiepinig, 6ip Moaudukanuscyl HerisiHie 3eprreserin
€CeIITiH, XKYBIK IIeNMiH Tady aJropuTMIepi OeplIreH >KoHe OJIap/IblH YKUHAKTBLIBIFGI JoJiesaeHres. [la-
paMeTrpJiey oiciHiH cxemachl GoUbIHINA ecen auddepEeHINAIbIK, TEHIEYIED XKyiieaepi YIIiH KOm HYKTEl
MIETTIK ecenTepiHiH SKBUBAJIEHTTI yifipine Typsengipinren. 2Kana 6esriciz pyHKIUsAIapabl eHrizy apKbi-
JIBI 0i3 3epTTesIeTiH ecenTi 6asaMaJibl ecellke, eKiHmIi TeKTi BosibTeppa MHTErpaablk TeHIeyiHe KeaTipemis.
[Tapamerpmerpti mreTTik ecenTep yitipiHiH XKaJFBI3 MIEITiMiHIH 6ap GOJIyBIH KAMTAMACHI3 €TETIH YCHIHBIIFAH
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AJITOPUTMHIH, OPBIHBLIBIFBI MEH *KUHAKTBIIBIFBIHBIH, *KETKLTIKT] mapTTapbl aHbIKTa b 2Koi nuddepen-
MUAJIBIK TeHJIEeyJIep YKYHecl YIIiH ChI3bIKTBIK, IETTIK ecenTep YHipiHiH KUCBIH/IbI MM/ TN HIH, KayKeTTi
JKOHE KETKIJIIKTI MapTTapbl aJIbIH/IbI.

Kiam ce30dep: CHI3BIKTBIK IIETTIK ecenTep Yiipi, KOMHYKTENI METTIK ecem, mentiMHig 6ap 60Iybl, KAJFbI3
IIeNTiM, KUCBIHABI MIETTiMIITIK, KaXKeTTi 2KOHe YKETKIIIKTI 1MapT.

I1.B. A6aumananosal, C.M. Tememmena?

L Anmamumcruti mezmonozuneckuti ynusepcumem, Aamamor, Kasazcman;
2 Kasaxcrutl Hauuonaisruill yuueepcumem umenu ano-Dapabu;
Hncmumym mamemamury u Mamemamuseckozo modeauposanus, Asmamol, Kaszaxcman

O kpuTepusax KOPpPEKTHOI pa3perinMOCTh OJHOTO ceMeiicTBa
KpaeBbIX 3a/1a4

B crarbe paccMoTpeHo ceMelcTBO JIMHEHHBIX JIBYXTOYEUHbIX KPAEBbIX 3324 JJis cucTeM JuddepeHImaiib-
HBIX ypaBHeHuii. VcciemoBalbl BOIPOCH CYIIIECTBOBAHUST €r0 PEIEHUN U MPeIjIoyKeHbl MEeTOIbI HAXOXKIe-
HUSI TPUOJINKEHHBIX PEIIEHUil. YCTAHOBJIEHBI IOCTATOYHBIE YCIOBUS CYIIECTBOBAHMS CEMENCTBA JIMHEWHBIX
JIByXTOYEYHBIX KPAEBbIX 33124 JJIsl CUCTEMbl OOBIKHOBEHHBIX juddepennuaibHbix ypaBHenunii. Jlokasana
€JIMHCTBEHHOCTD PEIEeHUs] PACCMaTPUBaeMoii 3a/1a4u. JlaHbl aJropuTMbl HAXOXKIEHUST TPUOIUKEHHOTO pe-
[TEHUsT UCCIIETyeMOl 3aJ1ar, OCHOBAHHBIE HA OTHON MOMM(PUKAIINN AJITOPUTMOB METOJA IMapaMEeTPU3AIUN
J.C. IxxymabaeBa, u Jjokazana ux cxoauMoctb. [lo cxeme Merosa napamerpusanuu 3ajada 6ymuer npeob-
pa3oBaHa B SKBUBAJIEHTHOE CEMENCTBO MHOIOTOYEYHBIX KPAEBBIX 3aJ1a4 JJjIsi CUCTeM TudbepeHnaaIbHbIX
ypaBHeHui. BBeqisi HOBbIe HeM3BeCTHBIE (DYHKIMM, CBEJIEM HCCIEAYEMYIO 3a/1a9y K SKBUBAJIEHTHON 3ajate,
MHTErpaJibHOMY ypaBHEHUIO BoJibreppa Broporo poja. YCTaHOBJIEHBI JOCTATOYHBIE YCIOBUS OCYIECTBAMO-
CTH, CXOJUMOCTH TPEJIOZKEHHOTO aJITOPUTMa, BMECTE C TeéM 00ECTIEINBAIOIINE CYIIECTBOBAHNE €TUHCTBEHHO-
rO pEIeHnsI CEMECTBa KPAeBhIX 3a/1a4 ¢ mapamerpamu. [lomydeHb HeoOXOAMMBbIE U TOCTATOYHBIE YCIOBHUST
KOPPEKTHOM Pa3pelmMOCTH CeMefCTBa JIMHEHHBIX KPaeBbIX 3aJad [IJisi CUCTeMbl OOBIKHOBEHHBIX Judde-
peHIMATBHBIX yPABHEHUI.

Kmouesvie caosa: ceMeiCTBO JIMHEMHBIX KPAEBBIX 3aJa4, MHOTOTOYEYHAS KpaeBas 3a/a4a, CyIIeCTBOBAHIE
pellenusi, e TUHCTBEHHOE PEITIeHIe, KOPPEKTHAs Pa3peIInMOCThb, HEOOXOAMMOE U JOCTATOIHOE YCJIOBUE.
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