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Bounded on the semi-axis multiperiodic solution of a linear
finite-hereditarity integro-differential equation of parabolic type

The question of the existence of a solution of linear integro-differential systems of parabolic type limited on
the semiaxis in a spatial variable and multiperiodic in time variables was considered. Sufficient conditions
of multiperiodic oscillations in time variables in a linear homogeneous equation with a boundary condition
and in a linear inhomogeneous equation were established. A linear homogeneous and inhomogeneous finite-
hereditarity integro-differential equation of convective-diffusion type were investigated.
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Problem statement

It is known [1,2] that many hereditary phenomena in biology and mechanics are described by various
types of integro-differential equations. If the state of a phenomenon at the moment 7 is determined by
the set of states at the moments of the interval (7 — e, 7], then such a phenomenon is called hereditary
with a finite hereditary period € > 0.

In the case of ¢ = 400, the state of the phenomenon at the moment 7 depends on its states at
moments in the interval (—oo, 7]. The hereditary of the phenomenon can also be related to the interval
(70, 7], where 79 is some constant.

When the heredity of the phenomenon is bounded by the period € > 0, then a linear phenomenon
with bounded hereditarity can be described by an integro-differential equation of the form

du(T)
dr

= A(T)u(r) + / K(7,s)u(s)ds + f(7). (1)

In the case of a quasilinear phenomenon of the heredity of the period € > 0 we obtain the equation

:A(T)u(T)+/K(T,s)u(s)ds—i-f T,U(T),/K(T,s)u(s)ds

In the linear (1) and quasi-linear equations the functions A(7), K(7,s) and f(7,u,7) are known.
Such equations, along with biological phenomena, describe the processes of elastic deformations,
electromagnetism, and other sections of the general dynamics related to the hereditary propagation of
thermal, magnetic, light, sound and other waves along the = axis. Propagations of this kind type can
also be of a diffusion nature. Propagations of this kind may have a diffusive character also. Then the
equation describing this phenomenon takes a form [3,4]:

u(z,7) o2 0u(x,7)

ST 22T — a(a, Tule, )+
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T

+ / b(x, T, s)u(x, s)ds + f (x,7,u(x, 7)) . (2)

T—E

In the case of multi-frequency waves and fluctuations, to study the processes, following [5-19], it
will be necessary to introduce a variable ¢t = (¢y, ..., t,,), varying on the vector field % = ¢ and one has
to consider the equation

O*u(z,t,
Pl t7)

D.u(z,t,T) 922
x

= a(z,t,7)u(x,t, 7)+

.
+ / b(x,t,7,t —cT + cs,s)u(x,t —cr + ¢s,s)ds + f (x,t, 7, u(z,t,7)) (3)
T—E

with differentiation operator

0 “ 0
D.= a + Z Cjaftj
j=1
in the direction of the vector ¢ = (ci, ..., ¢y,) With constant coordinates ¢; > 0, j = 1,m, and all the
input data of this equation are assumed to be periodic in time variables (¢,7) = (t1,...,tm,t0), to = T
period-vector (w, ) = (w1, ..., wm,wp), with incommensurable components wy = 6, w;, j =1, m.
Obviously, [5-16] along the ¢t = ¢(7 — 79) characteristics vector field operator D, of the equation
(3) turns into the equation (2), and its (w, )-periodic on (¢,7) € R™ x R solutions turn into almost
periodic 7 solutions of the latter at x € R.
Thus, the investigation of multiperiodic by (¢, 7) solutions of equation (3) of period (w,0) at x € R4
is of great importance in applied problems of the theory of fluctuations and oscillations.
Note that problem studies in such a formulation are not found in the scientific literature. The
research is carried out in the inductive order from the particular to general. In this connection, the
problem was studied for various linear cases of equations (3).

It is clear [17,18] that the problem under consideration and its methods of investigation are closely
related to some applied aspects of equations of mathematical physics of parabolic type and analytical
problems of the theory of multi-frequency oscillations.

The researchers’ interest in the problems for integro-differential equations, started at the end of the
XIX century, has not weakened to this day [19,20]. From various points of view, where the hereditary
terms of the equations are described by integrals of Volterra or Fredholm types, and the dynamics of
phenomena are characterized by ordinary or partial derivatives of unknowns, developing their theory
from equations to inclusions.

1 Multiperiodic zeros of the differentiation operator in the multiperiodic boundary condition
Applying the differentiation operator V. = D, — a286—;2 of the variables x € Ry = (0,400),
T=ty)€ R, t=(t1,...,tm) € R™ to the function v(z,t,7) we introduce the equation

Veu(z,t,7) =0. (4)

m
Here D, the differentiation operator for time variables (¢,7) of the form D, = % + > cjé%, co=1;
j=0
a = conts > 0; V. is the differentiation operator by (x,¢,7). The equation with one-dimensional time
28211]'
a =
0z2

t; of the form cj% — 0 has solution v;, depending on ~;,/c;r + ’yjza%j running waves with
J

110 Bulletin of the Karaganda University



Bounded on the semi-axis multiperiodic ...

parameter ;, then the solution of equation (4) with multidimensional time (¢,7) can be represented
by the relations

3

2.2
O(ijﬂ%h**Vja tj) (5)
with arbitrary differentiable functions ¢, 5 and v;, j = 0, m vector variable t —cr = (t; — 17, ...,y —
emT), ¢ = (€1, ey Cm)-
Consequently, relation (5) represents zeros of the operator V. at x € R4, (t,7) € R™ X R.
In what follows we will deal with bounded zeros of the operator V.. Then by setting = to zero from
(5) we obtain the limit function

v(z,t,7) = a+ pe’

a? in: 'y]ztj 0
0(z,t,7)|g=0 = a4 fe =0T =vi(t,7) (6)
and for x — 400, in the case of Rey; < 0, we have
(2, t,7) | omtoo = @ =0T (£, 7). (7)

To ensure that the solution (5) for ¢; > 0, by virtue of (6) and (7), the functions «, S, 7; and along
with the condition Revy; < 0, the conditions Im~y; > Rev;, j = 0, m must be bounded.

The main problem is related to the establishment of sufficient conditions for the existence of (w, 0)-
periodic on (¢, 7) real-analytic at ¢t; € II, = {tj : i—’;ﬁmtj] < p}, j=0,m,wp =06, w=(w1,.., W),
p = const > 0, solutions of the equations in question. Therefore in this case we assume that the
boundary condition (6) is defined by the function

Ot +w,m+0) =0t 7) € AZY (7 x 1L,) . (8)

Here A;‘ff (HZ““ x II,) is a class of (w, #)-periodic rea-analytic at (t,7) € 17" x 11, and continuous on
closures ﬁzl X ﬁp functions, with wg = 0, w1, ..., w,, are rationally incommensurable positive constants,
p being the bandwidth II, of the interval 0 < p < 1.

From the condition (8) we have a Fourier series representation of the function v°(¢, 7):

27 fj kvt
WO(t,7) = Z vpe 170 Y J, (9)

kezmtl

where k = (ko, k1, ...,km), v = (V0, V1, ... Um), V5 = wj_l, j=0,m; 1)2 - are Fourier coefficients having

the properties 52 =Y . and satisfying the estimate

[of] < [[°lle" (10)
m
with the norm [[0°]| = sup [0°(t,7)| and |k| = > |k;].
7 <11, 7=0

Due to rational incommensurability of frequencies v; = w;l, j = 0,m parameters «, 3, v; become
constant, for the function depending on the difference ¢; — 7 to be w; and 6 = wy - periodic as by t;
and so by 7 it is necessary and sufficient. Assuming (8) with respect to (6) we find the solution (4),
(6) in the form of series

2 42t
v(x,t,T) = Z ve?=0 (11)
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with constant coefficients vj, and indicators ~;z, 7 = 0,m, k € AR
Obviously, (11) is a generalization of the function (5) to an infinite series, which represents the

solution of the equation (4) in general form.

Substituting (11) and (9) into the boundary conditions (6) formally we obtain v, = vY, yjzk(LQ =

2mikvj, 5 =0,m, k; = ZO, Zg_ is the set of non-negative integers.

Since we are interested in the solution bounded by x in R, we have
wvik; wvik;
fyjk_—<\/a]]+i\/a] ]>,j_0,m, kj:Z-Ot,- (12)

In the case of negative k; = —|k;| < 0 we have the equation 'kaa2 = 2milkjlv;, j=0,m, kj = Z_
to determine the indicators vj;. Hence we find vj, = £v/—1 27r|k 2mlkjlv; Vo= YT %V]lk 1\;%1 =
+ (_\/TW +Z~\/7er|kj>

a a

Hence, to ensure that the solution is bounded by x € R, we take the roots with a plus sign:

\/7T1/j|k‘j| ‘\/7Tl/j|k‘j|

L= | = k:=27_. 13
YVik a +1 a > J 07m7 9 ( )

Hence v, = £—"— at k; € Z_OF is the set of positive integers.

Thus, the roots (12) and (13) are mutually conjugate. Hence, combining these formulas we have

Vv |kl ezl

Yk 0 S1GNK; 0 y J , My, Ry 5 ( )

where this formula includes the case k; = 0, at which sign 0 = 0.
Substituting (14) into (11) we obtain the solution

v(z,t,7) = v8+

m

N/ Tvici| ks

+ Z v,gexp —Zja]' ]’x—l—i
0#£kczm+1 Jj=0

m
fivacilks
signk; E LM:L‘+27rkjyjtj . (15)
a
—

Obviously, the series (15) converges absolutely and uniformly at + € R, and (t,7) € R™ x R,
differentiable by z (a finite number of times), analyticity at (¢,7) is preserved. In support of this

m 1/2
claim, we use the evaluation (10) and Y |k;|'/2 < vm +1 (Z;ﬂ:l |k:j|> , which follows from the
§=0

Bunyakovskii-Schwartz inequality.
The solution (15) is multiperiodic at (t,7), bounded at (x,t,7) € Ry x ﬁ;n x II, and unique in the
class of bounded functions.

Theorem 1. The Problem (4), (6) under the condition (8) has at (x,t,7) € Ry x ﬁ'pn x II, the only
real-analytic (w, §)-periodic on (¢, 7) solution v(z,t,7) of the form (15) satisfying the

oz, t,7)| < /07, @ € By, (t,7) € Ty x T, (16)

with an arbitrary constant & from the interval 0 < § < p < 1, where ¥ = (m)is a constant,
independent of § and v°.
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The proof of all the positions of the theorem is given above. To complete it, it is necessary to verify
the validity of the estimate (16).
Indeed, from (15) we have the series

27 Z kjvit;
v(z,t,7) = Z vg(z)e =0 (17)

kezmtl

with coefficients

o Srviclk
vp(z) = viexp | — Z ijacM (14 isignk;) x| , (18)
j=0

which satisfy the inequalities

lon(2)| < g, ke 2™ (19)

The case of absence of ¢ is considered in [17; 201-202]. Then, by virtue of (10), from (19) it follows
that

[ow ()] < [[°]|e#H. (20)

Consequently, according to the properties of the Fourier coefficients of analytic functions [18; 108,
the function (17) with coefficients (18) satisfying the evaluation (20) is analytic and obeys the constraint
(16).

2 Multiperiodic solution of a linear diffusion equation with a multi-frequency oscillating source

Consider the equation

2PUELT) ot (21)

Here a = const > 0, the function f(z,t,7) is represented as a series

Veu(z,t,7) = Dou(z,t,7) —a

—Yx+2mi i kv t;
flx,t,7) Z fre = (22)

kezm+tl

with constants of v, > 0, fi, k = (ko, k1, ..., km) € Z™TL; v; = w;l, j =0, m with

[fil < 11 £[le=?H, (23)

where |[f|| = sup [f(z,t,7)].
R+><1'[ x1I,

The multiperiodic solution of the equation (21) will be sought in the form

u(,t,7) = Wi(t,7)e ™. (24)

kezm+l
Substituting (22) and (24) in (21) we obtain
27 in: kjl/jtj

Z [DWi(t, 7) — a®yiWi(t, 7)] e " = Z fre 770 e kT,
kezm+1 kEZ'm+1
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211 fl: k:jujtj
Hence we have equations D Wi (t,7) — a>viWy(t,7) = fre 9= , k € Z™! which have (w, 0)-
periodic by (t,7) solutions

7 2mi Y kjus(tj—c;T4css)+ayE(t—s)
Wi(t,T) = / fre 770 ds =
+oo
fk 27 Z kjvt; 1 2mi Z kjvjt;
= e =0 = ———fre 70 , (25)
ay, + by,

m
—a?y} +2mi Y kjvjc;
j=0

m
since conditions Ap = ag + ibg # 0, where ap = —a2*y£, by =21 Y kjvjcj, k € Z™+! are satisfied. By
j=0

substituting (25) into (24) we obtain solution

m
211 E kjl/jtj — VT
=0

u*(x,t,7) = Z #f e

: 26
ke gmaL ay, + by, F ( )

To ensure the convergence of the series (26), we assume that the strong incommensurability
condition is fulfilled v; = v;c;, j = 0, m of the form

bl =2 | Y k| = AR kI = ) lkgl >0 (27)
j=0 j=0

with constants A > 0 and [ > m+1, or the sequence a;, satisfies the condition of boundedness condition
of the form

lag| > 7, ke zm! (28)

with constant r > 0.
If one of the conditions (27) and (28), together with estimation (23) is satisfied, the series (26) will

converge absolutely and uniformly.
m

Thus we distinguish two kinds of running waves vx(z,t,7) = 27 Y. kjvt; — v, k € Z™FL for
§=0

which a) Ay = aj +ibg = 0 and b) Ap = ay +ib, # 0, k € Z™F L. In the case a) uy, = eVr(@T) will
turn out to be zeros of the operator V., and in the case b) V. uy # 0.

Note that a similar result can be obtained when the real function f(x,t,7) is defined for complex
values v = ay + 8k, Bx # 0.

So equation (21) under the conditions (22), (23) and under one of the conditions (27) and (28)
admit only (w, #)-periodic on (¢,7) solution (26) with values Ay = ay + iby # 0, k € Z™+1L,

In general, equation (21) has an infinite set of (w, #)-periodic solutions u(z,t,7) by (¢, 7), consisting
of the sum of the solutions v(z,t,7) of the homogeneous equations (4) with Ay = 0, k € Z™! and
the solution u*(x,t,7) of the nonhomogeneous equation (21) with Ay # 0, k € Z™H1L:

u(z,t,7) =v(x,t,7) +u(z,t,7), (29)

where v(z,t,7) is defined by the problem (4), (6), and u*(z,t,7) by the relation (26) and satisfies the
boundary condition
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u(0,t,7) = v(0,t,7) + u*(0,¢,7). (30)
The solution (29) of the boundary value problem (21), (30) is singular.

Theorem 2. Under the conditions (22), (23) and (27) or (28) the equations (21) has (w, )-periodic
solutions represented in the form (29) with terms (15) and (26).

If for some k% = (K3, kY, ..., kO,) we have Ay, = ay, + ibk, = 0, then we exclude the corresponding
k%-subject from relation (26) and introduce a function

aoT + oty + ...+ apt 2mi 32 KJvitj—y0n
uo(m,t,T) — 0 1 MM froe 370 ! (31)
oo + a1c1 + ...+ oy

with an arbitrary constant vector o = (v, vy, ..., ) satisfying equation
27 in: kQVjtj—’ykox
Vel (z,t,7) = froe =0 . (32)
Then, based on (31) and (32), the solution (26) can be represented in the form

m
f 27 Yy kjvit;—yrT
k =0

—— ¢
ay, + ibg,

Ut ) =0zt )+ Y

kO£kezZm+1

(33)

Theorem 3. If ago + ibgo = 0 and ay + ib, # 0 at k # k°, then under the conditions of Theorem 2,
equation (21) has a solution u(x,t,7) = v(z,t,7)+u*(x,t,7), where v(z,t,7) is defined by the formula
(6), and u*(z,t,7) by relation (33).

3 Multiperiodic solutions of a linear homogeneous integro-differential parabolic equations with finite
hereditarity

Consider (w, 8)-periodic by (¢,7) equation

0?u(x,t,7)
— 2 » Uy
ch(x,t,'r) = Dcu<l‘,t,7') —a T =

-
= a(x,t,7)u(z, t,7) + / b(x,t,7,t —cT + cs, s)u(x,t — et + cs, s)ds.
T—E€
This equation describes a multi-frequency phenomenon propagating along the semi-axis R 1) diffusion
with constant a? # 0, 2) linearly hereditary with finite period ¢ > 0 and kernel b = b(z,t,7,0,s), 3) at

each point = € R it is linearly related to the external environment by the coefficient a = a(z, ¢, 7) and
4) flows with speed D.u(z,t,7) defined by differentiation along the direction of vector field of operator
Do=2 4£5m ;-0
c or Jj=1"J0t;"
An important special case of the process is when its heredity and coupling to the external world
do not depend on x € R, . In this regard, we introduce into consideration the equation

Veu(z,t,7) = a(t, 7)u(z, t,7) + / b(t, 7,0, s)u(x,o,s)ds, (34)

T—E

where the matrices a(t,7) and b(t, 7,0, s) are real-analytic functions.
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m
Consider the null operator V., depending on m+ 1 running waves ) (v;x + 2mit;v;k;) of the form
7=0

op(z,t,7) = be2mi 2= tiviki T (35)
with constant coefficient b # 0 and parameter v; = v;(k;, v}, ¢j, a).

It’s obvious that vg(x,t,7) has the property

Vevp(x,t,7) =0,

vp(x,t — et 4+ ¢s,8) = b 1w (0, —er + es)vg(x, t, 7). (36)

Next, by replacing

U(JJ,t,T) = U(t,T)’Uk(l‘,t,T) (37)
equation (34) on the basis of (35), (36) is reduced to

D.U(t, 1) =a(t,7)U(t,T) + / b(t, T, 0,5)b " v,(0, 0, 5)U (0, s)ds.

T—E&

Under the conditions

a(t,7) € A7 (I x I0,), b(t,7,0,5) € A720 (17 x I, x II7 x II,) (38)

t,T t,7,0,8

it is possible to show the existence of a single solution Uy(t, T, 0,s) = Uk(t, 7,t — cT + cs, s), satisfying
the condition U(t, s,t,s) = E at 7 = s and Ug(t,7,0,5) € A‘;f;‘j;e (Hz1 x I, x TIj* % IT,).
Suppose that Uk (t, 7,0, s) satisfies the estimate

\Ui(t, 7.t — e + cs, s)| < Ae NT779) (39)

with constants A > 1 and A > 0 for any k € Z™*1. B
Then a solution of the form (37), which is bounded at z € Ry, ¢t € R™ and 7 > s and satisfies the
evaluation

lu(z, t,7)| < Ae T o (2,8, 7)| < ule” N T—8)Hnal (40)

with some constant u®, A > 0 and g > 0. Here g > 0 is defined on the estimation of the zero (35)
operator V..

Inequality (40) shows that under the condition (39) the homogeneous equation (34) has only a zero
bounded (w, #)-periodic solution on (¢, 7).

Theorem 4. Under the conditions (38) and (39), equation (34) has only zero (w, #)-periodic in (¢, 7)
solution.

4 Multiperiodic solution of a complete linear inhomogeneous integro-differential equation of parabolic
type

Let’s introduce the equation

Veu(z,t,7) = a(t,)u(z,t,7) + / b(t,T,0,s)u(z,o,s)ds+
—€

T
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m

+f(t, T)exp Z [vjx + 2mikjvits) | . (41)
=0

Here vj(x,t;) = v;x + 2mik;jv;t; are the travelling waves defined by the equation

Veexplvj(z,t;)] =0, j=0,m (42)

with unknown parameters «; and constants, v; = w; L k; € Z with the condition that z — +oo follows

expvj(z,t;) — 0. (43)
The functions a(t, 7), b(t,7,0,s) and f(t,7) are (w,8)-periodic by (¢,7) and (o, s), belong to the
class AP0 (T x T, x TI7 x I1,).

t,7,0,8
From the conditions (42) and (43) we have a2'yj2 = £2mikjvjcj, j = 0,m and ¢p = 1 at ty = 7.

27k ¢ 14 27k lvici 174 . .
Hence we have v; = i%%ﬁﬂ ki > 0; v = i%%, k; < 0. To satisfy the condition
(43) we choose v; as

_vrlklses isignk;). (44)

J a

Thus, by virtue of the latter relationship, the function

m
v(z,t,7) = exp | Y vj(w,t5) (45)
§=0
has the property
Veu(z,t,7) =0, z € Ry, (t,7) € R™ x R. (46)
It can be shown that
m
v(x,t —cr +cs,s) = v(z,t,T)exp | —2mi Z kjvi(t —s)| . (47)
j=0
Next, enter the replacement
u(z,t,7) = U(t, 7)v(z,t,7) (48)

into the equation (41) and due to (47) we obtain

D.U(t, T)v(z, t,7) + U(t,7)Vev(z, t,7) = alt, T)U(t, T)v(z, t,7)+

+/b(t,7’,0‘,8)61}p —QFiijVjCj(T—S) U(o,s)v(z,t,7)ds + f(t,7)v(x,t,T).
T—¢ J=0

Then, given (46), reducing by v(x,t,7) # 0 we have the equation

T

DU (t,7) =a(t,7)U(t,T) + / b(t,r,0,s)exp | —2mi Z kivici(t —s)| U(o,s)ds+ f(t, 7).  (49)
j=0

T—E

The solution U(t, 7,0, s) of the homogeneous equation corresponding to equation (49) with initial
condition U(t, s, t, s) = E satisfies the evaluation (40).
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Then it is easy to show that the inhomogeneous equation (49) admits a single (w, 6)-periodic by
(t,7) solution

U*(t,T):/U(t,T,t—cr—i-csl,sl)f(t—c7-+csl,sl)dsl. (50)

Then by substituting (50) in (48), we obtain a single bounded on z € R, (w, #)-periodic on (t,7)
solution

u*(z,t,7) = U*(t, 7)v(z,t,T) (51)
of equations (41).
Theorem 5. Let the functions a,b and f belong to the class 422« (Hm x I, x T x 11 »). Then

tTJS
under conditions (43), (44) and (40) equation (41) has a unique bounded in = € R (w, )-periodic on
(t,7) solution of the form (51) with factors (50) and (45).

By the superposition method, the theorem can be generalised when the free term f(x,t, 7) equation
(41) can be represented as

m
flx, t,7) Z fe(t,T)exp Z Vi T+ 27rikj1/jtj] )
kezm+1 j=0

where v, is a constant from (44).
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2K.A. Caprabanos!, I'M. Aiitenosa?

b K. 2XKy6anos amumdaen Axkmebe enipaix yrusepcumemi, Axmebe, Kasaxcma;
2 M.Omewmicos amvindaen. Bamuic Kasaxeman ynusepcumemi, Opan, Kazaxcman

ITapabosablK TUOTI aKbIPJIbI-3PEeANTAPJIbI CHI3BIKThI
MHTEerpaJiabl-aud depeHnnanablK TeHAEYdiH >KapThLJIail ochTe
IIIEeKTeJIT€H KOIIIePUOAThI MIerriMi

ITapabosaiblK, TUITI CBI3BIKTHI MHTErPAJIIbI-Tud(MEPEHIINATIBIK, TEHIEYIED KYHEeCiHiH KEeHICTIK aifHbIMa-
JIBICHI OOMBIHIIA YKAPTHLIA OChTE MIEKTE/IT€H XKOHE YAKBIT affHBIMAJIBLIAPEI OOMBIHINE KOIIIIEPUOTHI IIIei-
MiHiH 6ap 6OJIybI XKOHIHJIE Cypak KapacTbipbliraH. [IlekapaJblK MAPTThI CHI3BIKTHI GIpTEKTI TEHJIEYIe K-
HE CBI3BIKTHI OIPTEKCI3 TEHIEY/Ie YaKbIT alfHBIMAJIBICHI OOMBIHINE, KOITEPUOATHI TEPOETICTEPIIH KETKITIKTI
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mapTTapbl aHbIKTaJ FaH. KOHBEKTUBTI-TuddY3UAIBI THIITI aKbIPJIbI-9PEIUTAPIBI HHTErPAJIIbI-1ud dhepeH-
[MAJIIBIK, ChI3BIKTHI OIPTEKTI YKoHE OIPTEKCi3 TEHJIey 3epTTeJIreH.

Kiam cesdep: narerpaab-auddepeHnnaaablK, aKbIPJIbl-9PeIuTapibl, KOHBEKTUBTI, 1uddy3usibl, mapa-
OosaJTbIK, TUIT, guddepeHnnaiabk, onepaTop, Pypbe KaTaphbl.

7K. A. Caprabanos!, I'. M. Ajirenosa?

L Axmiobuncruts pezuonanvnod yrusepcumem umenu K. XKybanosa, Axmobe, Kasaxeman;
2 .
3anadno-Kasaxcmanckul yrusepcumem umernu M. Ymemucosa, Ypaavck, Kazaxcman

OrpaHnmdeHHOE HA MOJIyOCH MHOTOINEPUOonIecKoe perlneHne JIMHEITHOTO
KOHEYHO-3pEeINTapHOTO UHTETpo-1ud pepeHImaapbHOoro ypaBHEeHUS
napaboJImiyecKoro TUura

Paccmorpen Bompoc o cylecTBOBaHHM OrPAHMYEHHOI'O HA IIOJIyOCH II0 IIPOCTPAHCTBEHHON NEPEMEHHOMN u
MHOTOTIEPUONIECKOTO TI0O BPEMEHHBIM TIEPEMEHHBIM PEeIleHUs JIMHEHHOM HHTerpo-auddepeHnuaabHOl Crc-
TeMbl TapabOINIEeCKOr0 THUIA. YCTAHOBJIEHBI JOCTATOYHBIE YCJIOBHUS MHOTOIEPHOANIECKUX KOJIEOAHMI 110
BPEMEHHBIM II€PDEMEHHBIM B JIMHEHHOM OJHODOJ/HOM YDaBHEHHHM C IDAHUYHBIM YCJIOBHEM U B JIMHEITHOM
HEO/HOPO/IHOM ypaBHeHHuH. VccienoBaHbl JIMHEHHOE OJHOPOIHOE W HEOIHOPOJHOE KOHEUYHO-IPEIUTAPHOE
nHTErpo-auddepeHnnaIbHOe YpaBHEHNT KOHBEKTUBHO-INMDPY3NOHHOTO THUIIA.

Karouesvie caosa: muTErpo-muddpepeHIimaibHoe, KOHEIHO-3PEIUTAPHOE, KOHBEKTUBHBIN, TUdY3UOHHBIIH,
mapabosimdeckuit Tut, quddepeHImaIbHbIN onepaTop, psam Pypbe.
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