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Some non-standard quasivarieties of lattices

The questions of the standardness of quasivarieties have been investigated by many authors. The problem
"Which finite lattices generate a standard topological prevariety?" was suggested by D.M. Clark, B.A. Davey,
M.G. Jackson and J.G. Pitkethly in 2008. We continue to study the standardness problem for one specific
finite modular lattice which does not satisfy all Tumanov’s conditions. We investigate the topological
quasivariety generated by this lattice and we prove that the researched quasivariety is not standard, as
well as is not finitely axiomatizable. We also show that there is an infinite number of lattices similar to the
lattice mentioned above.

Keywords: lattice, quasivariety, basis of quasi-identities, profinite algebra, topological quasivariety, profinite
quasivariety.

Introduction

The problems concerning finite axiomatizability and standardness of (quasi)varieties of algebras
are among the most researched and relevant topics in universal algebra.

According to R. McKenzie [1], each finite lattice has a finite identity basis. The analogous statement
for quasi-identities is incorrect. V.P. Belkin in [2] proved that there is a finite lattice which has no finite
quasi-identity basis. In this regard, the problem "Which finite lattices have finite quasi-identity bases"
was proposed by V.A. Gorbunov and D.M. Smirnov [3]|. A sufficient two-part condition under which a
locally finite quasivariety of lattices does not have a finite (independent) quasi-identity basis was found
by V.I. Tumanov [4].

In [5] the concept of a standard (topological) quasivariety was introduced, and the basic properties
were investigated and many examples of standard and non-standard quasivarieties were provided. The
standardness of algebras was further studied by D.M. Clark, B.A. Davey, R.S. Freese and M.G. Jackson
in [6], who established a general condition guaranteeing the standardness of a set of finite algebras.
In [7] sufficient conditions were found under which a quasivariety contains a continuum of non-standard
subquasivarieties. In [6] it was proved that any finite lattice generates a standard variety. However,
in [8] it was established that Belkin’s lattice generates non-standard quasivariety. These naturally arose
the problem "Which finite lattices generate standard topological quasivarieties?" that was suggested
by D.M. Clark, B.A. Davey, M.G. Jackson and J.G. Pitkethly in [8].

In [9,10] one specific lattice was studied and it was proved that this lattice has no finite basis of
quasi-identities [9] and generates non-standard quasivariety [10], respectively. The special feature of
this lattice is that it does not satisfy one of the two-part Tumanov’s condition (see Theorem 2).

In this paper we continue to study the standardness problem for one specific finite modular lattice.
This lattice does not satisfy all Tumanov’s conditions [4] and the quasivariety generated by this lattice
is not standard, as well as is not finitely based (Theorem 3). At the end we show that there is an
infinite number of lattices similar to this lattice (Theorem 4).
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1 Basic concepts and preliminaries

We recall some basic definitions and results for quasivarieties that we will refer to. For more
information on the basic notions of general algebra and topology introduced below and used throughout
this paper, we refer to [11-13].

We assume that all classes of algebras the same fixed finite signature ¢ and abstract, unless we
specify otherwise. Also an algebra (A; o) and its carrier (its basic set) A will be identified and denoted
by the same way, namely A.

A class of algebras which is closed with respect to subalgebras, direct products (including the direct
product of an empty family), and ultraproducts is a quasivariety. In other words, a class of algebras
axiomatized by a set of quasi-identities is a quasivariety. A quasi-identity is a universal Horn sentence
with the non-empty positive part

(VZ)[p1(Z) = q1(Z) A+ A (@) = qu(T) — p(T) = q(7)],

where p,q, p1,q1,-..,Pn,qn are terms. A quasivariety closed with respect to homomorphisms is a
variety. In other words, a variety is a class of similar algebras axiomatized by a set of identities,
according to Birkhoff theorem [14]. An identity is a sentence of the form (Vz)[s(Z) =~ t(z)] for some
terms s(Z) and t(Z). A quasivariety K has a finite basis of quasi-identities (finitely axiomatizable) if
there is a finite set ¥ of quasi-identities such as K = Mod(X). Otherwise K has no finite basis of
quasi-identities.

By Q(K) (V(K)) we denote the smallest quasivariety (variety) containing a class K. Q(K) is called
finitely generated if K is a finite family of finite algebras. In case when K = { A} we write Q(A) instead
of Q({A}). By Maltsev-Vaught theorem [15], Q(K) = SPP,(K), where S, P and P,, are operators of
taking subalgebras, direct products and ultraproducts, respectively.

Let K be a quasivariety. A congruence « on algebra A is called a K-congruence provided A/« € K.
The set Conk A of all K-congruences of A forms an algebraic lattice with respect to inclusion C. An
algebra A € K is subdirectly K-irreducible if an intersection of any number of nontrivial K-congruences
is nontrivial. Since for any class R we have Q(R) = SPP,(R) = P;SP,(R), where P, is operator
of taking subdirect products, then for finitely generated quasivariety Q(A), every subdirectly Q(A)-
irreducible algebra is isomorphic to some subalgebra of A.

A finite algebra A with discrete topology generates a topological quasivariety consisting of all
topologically closed subalgebras of non-zero direct powers of A endowed with the product topology.
An algebra A is profinite with respect to quasivariety R if A is an inverse limit of finite algebras from R.
A topological quasivariety Q. (A) is standard if every Boolean topological algebra (compact, Hausdorf
and totally disconnected) with the algebraic reduct in Q(A) is profinite with respect to Q(A). In this
case, we say that algebra A generates a standard topological quasivariety. For more information on the
topological quasivarieties we refer to [6] and [8].

We say that X is pointwise non-separable with respect to quasivariety R if the following condition
holds: There exist a,b € X, a # b, such that, for each n € N, each finite structure M € R and each
homomorphism ¢ : X;,, — M, we have p(a) = ¢(b).

The following theorem provides non-standardness of quasivariety.

Theorem 1.(Second inverse limit technique [8])

Let X = M{Xn | n € N} be a surjective inverse limit of finite structures, and let K be a
quasivariety. Assume that X € K is pointwise non-separable with respect to K and each substructure
of X,, that is generated by at most n elements belongs to K for all n € N. Then K is non-standard,
as well as is not finitely axiomatizable.

To formulate our main result (Theorem 3) we need some special preliminaries.
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Let (a] ={z € L |x <a} (Ja) ={z € L | x > a}) be a principal ideal (coideal) of a lattice L. A
pair (a,b) € L x L is called splitting (semi-splitting) if L = (a] U [b) and (a] N [b) = @ (L = (a] U [b)
and (a] N[b) # ).

For any semi-splitting pair (a,b) of a lattice M we define a lattice
Ma—p = ({(,0), (y,1) € M x 2|z € (a],y € [D)};V,A) <s M X 2,

where 2 = ({0,1}; V, A) is a two element lattice.

Theorem 2. (Tumanov’s theorem [4])

Let a locally finite quasivarieties of lattices M and N C M satisfy the following two conditions:

a) in any finitely subdirectly M-irreducible lattice M € M\N there is a semi-splitting pair (a,b)
such that M,_; € N;

b) there is a finite simple lattice P € N that is not a proper homomorphic image of any subdirectly
N-irreducible lattice.

Then the quasivariety N has no coverings in the lattice of subquasivarieties of M. In particular, N
has no finite (independent) basis of quasi-identities provided M is finitely axiomatizable.

A quasivariety is called proper if it is not variety. A subalgebra B of an algebra A is called proper
if B is not one-element (trivial) and B 2 A. For an algebra A and elements a,b € A, by 0(a,b) we
denote the least congruence on A containing pair (a,b).

2  Main result

Let A’ and A are the modular lattices displayed in Figure 1. And let Q(A) and V(A) are quasivariety
and variety generated by A, respectively. Since every subdirectly Q(A)-irreducible lattice is a sublattice
of A, and A’ is simple and a homomorphic image of A, and A’ is not a sublattice, then A’ € V(A)\Q(A),
that is Q(A) is a proper quasivariety. One can check that A’ has no semi-splitting pair. Thus, the
condition a) of Tumanov’s theorem does not hold on the quasivariety Q(A). It is easy to see that M3
is unique non-distributive simple lattice in Q(A)sr and it is a homomorphic image of A. Hence, the
condition b) of Tumanov’s theorem is not hold on quasivarieties Q(A) and V(A).

Al

Figure 1: Lattices A’ and A
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The main result of the paper is

Theorem 8. The topological quasivariety generated by the lattice A is not standard, as well as is
not finitely axiomatizable.

Proof of Theorem 3.

To prove the theorem we use Theorem 1. According to this theorem we will construct L = @{Ln |
n € N} a surjective inverse limit of the finite lattices such that every n-generated sublattice of L,
belongs to Q(A) and L is pointwise non-separable with respect to Q(A).

Let S be a non-empty subset of a lattice L. Denote by (S) the sublattice of L generated by S.

We define a modular lattice L,, by induction:

n = 0. LO = M3,3 and LO = <{a0, bg, Co, ao, bO, CO}> (Flg 2)

n = 1. Ly is a modular lattice generated by LoU{a1, b1, c1,al, bt, ¢t} such that ({a1, b1, c1,al, bt ct})
M3 3, and ¢ = a', a® ANB® = co Vbl = ¢cq V ¢ (Fig. 3).

n > 1. L, is a modular lattice generated by the set L,_1 U {an,bn,cy,a™ b" "} such that
{an, by, Cnya™ b, e}y =2 M3 3, and ¢, 1 = a”, a® Ab° = co V" = cq V ¢, (Fig. 4).

12

Ms3

M3 3 M3_3

)

Figure 2: Lattices M3, M3 3 and M3_3

Let L, be a sublattice of L, generated by the set {a;, b;, c;,a’,b',¢' | 0 < i < n}. One can see that
L, = L,/0(ag,bo) and L, <, M3 4. Hence, L, € Q(A).

Claim 1. Every proper sublattice of L,, belongs to Q(A).

Proof of Claim 1.

It is enough to prove the claim for arbitrary maximal proper sublattices of L,,. Since L,, is generated
by the set of double irreducible elements S = {ag, by, b°, c°, ¢, }U{b;,b* | 0 < i < n} then every maximal
proper sublattices L of L,, generated by S — {z} for some = € S, that is L = (S — {z}).

Suppose that = € {ag, bo, b°, c"}. Then the lattice ({ag, bo, b°, °}\{x})/0(co, a° Ab°) be a homomorphic
image of L with the kernel a = (a1, ¢,,) and belongs to Q(A).

One can see that for 8 = 0(ag, bo) if z € {b°,c°} and B = 6(b°, °) if = € {ap,bo}, L/B is isomorphic
to a sublattice of L, x 2 and belongs to Q(A). Thus, o and 3 are Q(A)-congruences. One can check
that N g =0. Hence L <; L/a x L/f3. Therefore, L € Q(A).

Suppose that z € {b;,b' | 0 < i < n} U {c,}. Without loss of generality, assume that x =
by. Let a = 0(cp,cp—1). Then L/« is isomorphic to the sublattice S of L; generated by the set
{ag, by, °, %, a1, by, b'}. Since the lattice P = ({ag, bo, b°, ¥, b', c'}) is a sublattice of A and S <, P x 22
we get S € Q(A). On the other hand, L/0(ag,bo) is a sublattice of L, . Since L, € Q(A) then
L/8(ap,bo) € Q(A). One can see that a N B(ag, bp) = 0. Hence, L is a subdirect product of two lattices
from Q(A). Therefore, L € Q(A).
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Figure 3: Lattice L

Let ¢pn—1 be a homomorphism from L,, to L,_; such that ker ¢, ,—1 = 6(a",b,), and ¢, , an
identity map for all » > 1 and m < n. And let ¢, = @mt1,m © - - © Pppn—1. It can be seen that
{Ln; Ynm, N} forms inverse family, where N is the linear ordered set of positive integers.

We denote L = lim{Ly, | n € N'} and show that L € Q(A).

Claim 2. The lattice L belongs to Q(A).

Proof of Claim 2.

Let a be a quasi-identity of the following form

&i<rpi(zo, ..., Tn—1) = ¢i(x0, ..., Tn—1) = p(T0, .-, Tn-1) = q(T0, ..., Tn_1).
Assume that « is valid on Q(A) and
L = pi(ag, ... an—1) = qi(ag,...,an—1) forall i<r,
for some ag,...,a,_1 € L. From the definition of inverse limit we have that L <g Hiel L;. Therefore
Ls E pi(ao(s), ... an—1(8)) = qi(ap(s),...,an—1(s)) forall i <r.

Each at most n generated subalgebra of Lg belongs to Q(A) for all s > n, by Claim 1. Hence « is true
in L for all s > n. And this in turn entails

Ls = plao(s),...,an—1(s)) = q(ao(s),...,an—1(s)).
Since a;(m) = @sm(ai(s)) for all 0 <i < n and m < s, we get
Ly, = plag(m),...,an—1(m)) = q(ap(m),...,an—1(m)) for all m < s.

So
L= p(ag,...,an—1) = q(ag,-..,an—1).
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Figure 4: Lattice L,, n > 2

Hence L = «, for every « that is valid on Q(A). This proves that L € Q(A).

Claim 3. The lattice L is point-wise separable with respect to Q(A).

Proof of Claim 3.

We obtain ¢y, m(ao) = ap and ¢y, m(bo) = by, by definition of ¢, ,—1. And a = (ao,...,a0,...),
b= (bg,...,bp,...) € L, by definition of inverse limit. Let o : L — M be a homomorphism, M € Q(A)
and M finite. There is n > 2 and homomorphism ¥,; : L, — M such that a = ¢, o s for some
surjective homomorphism ¢, : L — L,, (by universal property of inverse limit). It is not difficult to
see that any non-trivial homomorphic image of L,, is isomorphic to L,,, m < n, or contains M3 3 as a
sublattice. Since Ly,, M3 3 ¢ Q(A) and ¥p(Ly) < M € Q(A), then we obtain that ¢ (Ly,) is trivial.
That is () = const for all x € L,,. So we get a(a) = a(b).

Thus, the Claims 1-3 state that the conditions of Theorem 1 holds on Q(A). Therefore, the
quasivariety Q(A) generated by A is not standard, as well as not finitely axiomatizable.

Remark. In the paper [16] it has been proved that the quasivariety generated by the lattice A is
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not finitely based. We would like to point out that we presented the proof of the Claim 1 for the sake
of completeness of the proof of the main result. We also note that Claims 2 and 3 were proved by
arguments of [17].

We note that there is an infinite number of lattices similar to the lattice A. This is the context of
the following.

Theorem 4. Let L be a finite lattice such that Mz3 £ L, A < L and L, £ L for all n > 1.
Then the topological quasivariety generated by the lattice L is not standard, as well as is not finitely
axiomatizable.
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Keitbip cTanmapTThl eMec TopJiapAbIH KBa3WKeIIoeliHeaepi

Ksazukenbeiinesnep/ i cTaHIapTTHLIBIK, Maceseepin kenreren aropJiap 3eprreai. 1. M. Knapk, B.A. JIsii-
Bu, M.I'. JI>xekcon »xkone /Dx.I". Ilurkerin «Kanmgait cOHFBI TOpJap CTAHIAPTTHI TOIMOJOTHUSIJIBIK, ITPEIKOTII-
GeitaeHi TyabIpaabi?» jeren moceseri 2008 »KbLIbl YCBIHABL TyMaHOBTBIH 6apPJIBbIK KarIaillapblH KaHAFaT-
TaHIBIPMANTHIH Oip HAKTHI MOJIYJ/IBIIK TOP/IBIH CTAHIAPTTHLIBIK, MOCEIECIH 3epTTEY 2KaTracThipbutran. Ocbl
TOpJIaH IMaiiia 60JIFaH TOIOJIOTHUSIBIK, KBA3SUKOIIOEHe 3ePTTEJIIeH XKOHe 3ePTTEJIETIH KBAa3UKOIOeiiHe CTaH-
JapTTHl €MeC, COHBIMEH KAaTap OpHHE aKCHOMAaTH3alusaaHOaiThIHbl jpsrengenred. CoHpai-ak »KOrapblia
aTaJIFaH TOPFa YKCAC TOPJIAPIBIH, MIEKCI3 CaHbl 0ap €KeHi KOPCEeTLIreH.

Kiam coesdep: Top, KBazukenbeitHe, KBA3UCOMKECTIKTEPIH 6a3uci, TPOMUHUTTIK aJredpa, TOTOJIOTHSIIBIK,
KBa3uKenbeiHe, NIpopUHUTTIK KBAa3UKOIIOEHHE.
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! Cesepo-Kasaxcmanckut yrusepcumem umeny M. Koswéaesa, Ilemponasaosck, Kazaxcman;
2 Bepasutickuti nayuonaivruiti ynueepcumem umenu JIH. Dymunesa, Acmana, Kazazeman;
3 Hnemumym mamemamuru HAH KP, Buwxex, Kupewscman

HeKOTopre HeCTaHJapTHbIEe KBa3I/IMHOI‘OO6pa3I/IH pemeTokK

Bormpocsr cranmaprHOocTH KBasuMHOroob6pasuil nccienoBaanch MuornMu apropamu. IIpobinema «Kakwne ko-
HEUHBbIE DPEIIeTKH IIOPOXKIAIOT CTAHJAPTHOE TOIOJIOTMYeCKOoe IpeaMHoroobpasme?s Oblaa IIpemjioKeHa
.M. Kuapkom, B.A. Isitu, M.I. Txxexkconom u JIxk.I'. ITurkerau B 2008 roxy. Mbl mposgoszkaemM n3ydaThb
npobJeMy CTaHJIAPTHOCTHU JUJIsi OJHON KOHKPETHOW KOHEYHON MOJYJISIDHOW pelleTKd, KOTopasl He YJIOBJIe-
TBOpsieT BceM ycioBusiM TymanoBa. lcciremyem Tomostorntueckoe KBa3UMHOr0oOpasne, IOPOXKICHHOE STOM
PEIeTKOo, U JOKa3bIBAeM, UYTO KCCJIELyeMOe KBA3MMHOroOOpa3ue He SBJISeTCH CTAHAAPTHBIM U KOHEYHO
akcuoMaTn3upyeMbIiM. Kpome Toro, rmokasbiBaeM, YTO CyLIeCTBYyeT HECKOHEYHOE YHCJIO PEIIeTOK, [10I00HBIX
YHOMSAHYTOH BBIIIE.

Kamouesvie caosa: penerka, KBasUMHOrooOpasue, 6a3uc KBa3UTOXKIAECTB, NPOMUHUTHAS aaredpa, TOIOJI0-
rU9ecKoe KBa3UMHOT000pa3ue, MpOMUHUTHOE KBA3UMHOTO00Opasne.

Mathematics series. No.3(111)/2023 79



S.M.

Lutsak, A.O. Basheyeva et al.

References

1 McKenzie, R. (1970). Equational bases for lattice theories. Mathematica Scandinavica, 27, 24-38.

10

11
12
13
14
15
16

17

80

Belkin, V.P. (1979). Quasi-identities of finite rings and lattices. Algebra and Logic, 17, 171-179.
Gorbunov, V.A., & Smirnov, D.M. (1979). Finite algebras and the general theory of quasivarieties.
Collog. Mathem. Soc. Janos Bolyai. Finite Algebra and Multipli-valued Logic, 28, 325-332.
Tumanov, V.I. (1984). On finite lattices having no independent bases of quasi-identities. Math.
Notes, 36(4), 811-815. https://doi.org/10.1007/BF01139925

Clark, D.M., Davey, B.A., Haviar, M., Pitkethly, J.G., & Talukder, M.R. (2003). Standard
topological quasivarieties. Houston J. Math., 29, 859-887.

Clark, D.M., Davey, B.A., Freese, R.S., & Jackson, M.G. (2005). Standard topological algebras:
syntactic and principal congruences and profiniteness. Algebra Universalis, 52(2), 343-376.
https://doi.org/10.1007/s00012-004-1917-6

Kravchenko, A.V., Nurakunov, A.M., & Schwidefsky, M.V. (2021). Structure of quasivariety
lattices. IV. Nonstandard quasivarieties. Siberian Math. J., 62(5), 850-858.
https://doi.org/10.1134/S0037446621050074

Clark, D.M., Davey, B.A., Jackson, M.G., & Pitkethly, J.G. (2008). The axiomatizability of
topological prevarieties. Advances in Mathematics, 218(5), 1604-1653.
https://doi.org/10.1016/j.aim.2008.03.020

Lutsak, S.M., Voronina, O.A., & Nurakhmetova, G.K. (2022). On quasi-identities of finite modular
lattices. Journal of Mathematics, Mechanics and Computer Science, 115(3), 49-57.
https://doi.org/10.26577/IMMCS.2022.v115.i3.05

Lutsak, S.M., & Voronina, O.A. (2022). On some properties of quasivarieties generated by
specific finite modular lattices. Bulletin of L.N. Gumilyov ENU. Mathematics. Computer Science.
Mechanics series, 140(3), 6-14. https://doi.org/10.32523/2616-7182/bulmathenu.2022/3.1
Kelley, John L. (1975). General Topology. Springer-Verlag New York.

Burris, S., & Sankappanavar, H.P. (1980). A Course in Universal Algebra. Springer New York.
Gorbunov, V.A. (1998). Algebraic theory of quasivarieties. Consultants Bureau New York.
Birkhoff, G. (1944). Subdirect union in universal algebra. Bull. Amer. Math. Soc., 50, 764-768.
Maltsev, A.L. (1973). Algebraic systems. Springer-Verlag Berlin Heidelberg.

Basheyeva, A.O., & Lutsak, S.M. (2023). On quasi-identities of finite modular lattices. II. Bulletin
of the Karaganda University. Mathematics Series, 2(110), 45-52.
https://doi.org/10.31489/2023M2/45-52

Basheyeva, A.O., Mustafa, M., & Nurakunov, A.M. (2020). Properties not retained by pointed
enrichments of finite lattices. Algebra Universalis, 81:56(4), 1-11. https://doi.org/10.1007 /s00012-
020-00692-4

Bulletin of the Karaganda University



