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On quasi-identities of finite modular lattices. II

The existence of a finite identity basis for any finite lattice was established by R. McKenzie in 1970, but the
analogous statement for quasi-identities is incorrect. So, there is a finite lattice that does not have a finite
quasi-identity basis and, V.A. Gorbunov and D.M. Smirnov asked which finite lattices have finite quasi-
identity bases. In 1984 V.I. Tumanov conjectured that a proper quasivariety generated by a finite modular
lattice is not finitely based. He also found two conditions for quasivarieties which provide this conjecture.
We construct a finite modular lattice that does not satisfy Tumanov’s conditions but quasivariety generated
by this lattice is not finitely based.

Keywords: lattice, finite lattice, modular lattice, quasivariety, variety, quasi-identity, identity, finite basis of
quasi-identities, Tumanov’s conditions.

Introduction

In 1970 R. McKenzie [1] proved that any finite lattice has a finite basis of identities. However
the similar result for quasi-identities is not true. That is, there is a finite lattice that has no finite
basis of quasi-identities (V.P. Belkin [2]). The problem "Which finite lattices have finite basis of quasi-
identities?" was suggested by V.A. Gorbunov and D.M. Smirnov in [3]. V.I. Tumanov [4] found a
sufficient condition consisting of two parts under which a locally finite quasivariety of lattices has no
finite (independent) basis of quasi-identities. He also conjectured that a finite (modular) lattice has a
finite (independent) basis of quasi-identities if and only if a quasivariety generated by this lattice is
a variety. In general, the conjecture is not true. W. Dziobiak [5] found a finite lattice that generates
finitely axiomatizable proper quasivariety. We also would like to point out that Tumanov’s problem is
still unsolved for modular lattices.

The main goal of the paper is to present a finite modular lattice that has no finite basis of quasi-
identities and does not satisfy conditions of Tumanov’s theorem.

1 Basic concepts and preliminaries

We recall some basic definitions and results for quasivarieties that we will refer to. For more
information on the basic notions of universal algebra and lattice theory introduced below and used
throughout this paper, we refer to [6] and [7].

A quasivariety is a class of algebras that is closed with respect to subalgebras, direct products, and
ultraproducts. Equivalently, a quasivariety is the same thing as a class of algebras axiomatized by a
set of quasi-identities. A quasi-identity means a universal Horn sentence with the non-empty positive
part, that is of the form

(∀x̄)[p1(x̄) ≈ q1(x̄) ∧ · · · ∧ pn(x̄) ≈ qn(x̄)→ p(x̄) ≈ q(x̄)],
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where p, q, p1, q1, . . . , pn, qn are terms. A variety is a quasivariety which is closed under homomorphisms.
According to Birkhoff’s theorem [8], a variety is a class of similar algebras axiomatized by a set of
identities, where by an identity we mean a sentence of the form (∀x̄)[s(x̄) ≈ t(x̄)] for some terms s(x̄)
and t(x̄).

By Q(K) (V(K)) we denote the smallest quasivariety (variety) containing a class K. If K is a
finite family of finite algebras then Q(K) is called finitely generated. In case when K = {A} we write
Q(A) instead of Q({A}). By Maltsev-Vaught theorem [9], Q(K) = SPPu(K), where S, P and Pu are
operators of taking subalgebras, direct products and ultraproducts, respectively.

Let K be a quasivariety. A congruence α on an algebra A is called a K-congruence or relative
congruence provided A/α ∈ K. The set ConKA of all K-congruences of A forms an algebraic lattice
with respect to inclusion ⊆ which is called a relative congruence lattice.

For a quasivarietyK, an algebra A ∈ K is said to be subdirectly K-irreducible if the least congruence
0A is completely meet irreducible in ConKA. By Birkhoff’s theorem for a quasivariety, every algebra of
a quasivariety K is a subdirect product of subdirectly K-irreducible algebras ([7,8]). By KSI we denote
the class of all subdirectly K-irreducible algebras in K. Since Q(K) = SPPu(K) = PsSPu(K), where
Ps is operator of taking subdirect products, we have KSI ⊆ SPu(K). Thus, for finitely generated
quasivariety Q(A), every subdirectly Q(A)-irreducible algebra is isomorphic to some subalgebra of A.

The least K-congruence θK(a, b) on an algebra A ∈ K containing pair (a, b) ∈ A × A is called
a principal K-congruence or a relative principal congruence. In case when K is a variety, relative
congruence θK(a, b) is a usual principal congruence that we denote by θ(a, b).

Let (a] = {x ∈ L | x ≤ a} ([a) = {x ∈ L | x ≥ a}) be a principal ideal (coideal) of a lattice L. A
pair (a, b) ∈ L×L is called dividing (semi-dividing) if L = (a]∪ [b) and (a]∩ [b) = ∅ (L = (a]∪ [b) and
(a] ∩ [b) 6= ∅).

For any semi-dividing pair (a, b) of a lattice M we define a lattice

Ma−b = 〈{(x, 0), (y, 1) ∈M × 2 | x ∈ (a], y ∈ [b)};∨,∧〉 ≤s M × 2,

where 2 = 〈{0, 1};∨,∧〉 is a two element lattice.
Theorem 1. (Tumanov’s theorem [4])
Let M, N (N ⊂M) be locally finite quasivarieties of lattices satisfying the following conditions:
a) in any finitely subdirectly M-irreducible lattice M ∈ M\N there is a semi-dividing pair (a, b)

such that Ma−b ∈ N;
b) there exists a finite simple lattice P ∈ N which is not a proper homomorphic image of any

subdirectly N-irreducible lattice.
Then the quasivariety N has no coverings in the lattice of subquasivarieties of M. In particular, N

has no finite (independent) basis of quasi-identities provided M is finitely axiomatizable.
A subalgebra B of an algebra A is called proper if B 6∼= A. We will use the following folklore criterion

of non-finite axiomatizability of quasivarieties (see [7]).
Lemma 1. A locally finite quasivariety K is not finitely axiomatizable if for any positive integer n

there is a finite algebra Ln such that Ln 6∈ K and every proper subalgebra of Ln belongs to K.

2 Main result

In this chapter we show that there are two locally finite quasivarieties of modular lattices N and
M, N ⊂M, that do not satisfy conditions a) and b) of Tumanov’s theorem, however, N is not finitely
axiomatizable. Note that in our example we do not need to require that M be finitely axiomatizable.
We also note that the first example of a finite lattice that does not satisfy the condition b) and has no
finite basis of quasi-identities was provided in [10].
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A′ A

Figure 1. Lattices A′ and A

Let A′ and A are the modular lattices displayed in Figure 1. And letQ(A) andV(A) are quasivariety
and variety generated by A, respectively. Since every subdirectly Q(A)-irreducible lattice is a sublattice
of A, and A′ is simple, a homomorphic image of A and is not a sublattice of A we have pA′ ∈
V(A)\Q(A), that is Q(A) is a proper quasivariety. One can check that A′ has no semi-dividing pair.
Thus, the condition a) of Tumanov’s theorem does not hold on the quasivariety Q(A). It is easy to see
thatM3 is a unique simple lattice in Q(A)SI and it is a homomorphic image of A. Hence, the condition
b) of Tumanov’s theorem is not valid for quasivarieties Q(A) and V(A). Thus, to establish our main
result we have to prove.

Theorem 2. Quasivariety Q(A) generated by the lattice A is not finitely based.
Proof. To prove the theorem we modify the proof of the second part of Theorem 3.4 from [11] (also

see [10]).
According to Lemma 1 we will construct an infinite set {Ln | n ≥ 0} of finite modular lattices such

that Ln ∈ V(A)\Q(A) and every n-generated subalgebra of Ln belongs to Q(A).
Let S be a non-empty subset of a lattice L. Denote by 〈S〉 the sublattice of L generated by S.
We define a modular lattice Ln by induction:
n = 0. L0

∼= M3−3 and L0 = 〈{a0, b0, c0, a0, b0, c0}〉 (see Fig. 2).
n = 1. L1 is a modular lattice generated by L0∪{a1, b1, c1, a1, b1, c1} such that 〈{a1, b1, c1, a1, b1, c1}〉 ∼=

M3−3, and c0 = a1, a0 ∧ b0 = c0 ∨ b1 = c0 ∨ c1 (see Fig. 3).
n > 1. Ln is a modular lattice generated by the set Ln−1 ∪ {an, bn, cn, an, bn, cn} such that

〈{an, bn, cn, an, bn, cn}〉 ∼= M3−3, and cn−1 = an, a0 ∧ b0 = c0 ∨ bn = c0 ∨ cn (see Fig. 4).
Claim 1. For any n > 0, the lattice Ln does not belong to Q(A).
Proof. We prove by induction on n > 0.
n = 1. Assume that L1 ∈ Q(A). At first we note that M3,3 is a sublattice of L1/θ(a1, b1) and

L1/θ(a1, a
1 ∧ b1). Hence, (a0, b0) ∈ θQ(A)(a1, b1) ∩ θQ(A)(a1, a

1 ∧ b1). One can also see that any non-
trivial congruence contains (a1, b1) or (a1, a

1∧b1) or (a0, b0). Therefore, intersection of any two different
non-trivial Q(A)-congruences contains (a0, b0). It means that L1 is subdirectly Q(A)-irreducible. In
this event, L1 is a sublattice of A because Q(A)SI ⊆ S(A). One can check that L1 is not a sublattice
of A. Thus, L1 does not belong to Q(A). Also we have (a0, b0) ∈ θ for any non-trivial θ ∈ ConQ(A)L1.
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M3

M3,3 M3−3

Figure 2. Lattices M3, M3,3 and M3−3

n > 1. By induction, we have Ln−1 6∈ Q(A) and (a0, b0) ∈ θ for any non-trivial θ ∈ ConQ(A)Ln−1.
Assume that Ln ∈ Q(A). We note thatM3,3 is a sublattice of Ln/θ(ai, a

i∧bi), Ln−1 is a sublattice of
Ln/θ(ai, bi) ≤s Ln−1×2 and Ln/θ(ai, a

i) ∼= Ln−1, for all 0 < i ≤ n. Hence, (ai, a
i) ∈ θQ(A)(ai, a

i ∧ bi).
It means that any homomorphic image of Ln that belongs to Q(A) is a homomorphic image of Ln−1
or some S ≤s Ln−1 × 2 or L−n ∼= Ln/θ(a0, b0).

Let θ ∈ ConQ(A)Ln. If (ai, a
i) ∈ θ then θ/θ(ai, a

i) ∈ ConQ(A)Ln/θ(ai, a
i) ∼= ConQ(A)Ln−1.

By induction, (a0/θ(ai, a
i), b0/θ(ai, a

i)) ∈ θ/θ(ai, a
i). Since the congruence classes a0θ(ai, ai) and

b0θ(ai, a
i)) consist of one elements {a0} and {b0}, respectively, we get (a0, b0) ∈ θ.

If (ai, bi) ∈ θ then Ln/θ(ai, bi) ≤s Ln−1 × 2. Since Ln−1 ≤ Ln/θ(ai, bi) then Ln−1/(θ ∩ L2
n−1) ∈

Q(A). By induction, (a0/(θ ∩ L2
n−1), b0/(θ ∩ L2

n−1)) ∈ (θ ∩ L2
n−1). By argument above, (a0, b0) ∈ θ.

Thus, we have that (a0, b0) ∈ θ for each non-trivial Q(A)-congruence θ. It means that Ln is relative
subdirectly irreducible. Hence, Ln ≤ A. Contradiction. Therefore, Ln 6∈ Q(A).

Let L−n be a sublattice of Ln generated by the set {ai, bi, ci, ai, bi, ci | 0 < i ≤ n}. One can see that
L−n
∼= Ln/θ(a0, b0) and L−n ≤s M

n
3−3. Hence, L−n ∈ Q(A).

Claim 2. Every proper sublattice of Ln belongs to Q(A).
Proof. It is enough to prove the claim for arbitrary maximal proper sublattices of Ln. Since Ln is

generated by the set of double irreducible elements S = {a0, b0, b0, c0, cn} ∪ {bi, bi | 0 < i ≤ n} then
every maximal proper sublattices L of Ln generated by S−{x} for some x ∈ S, that is L = 〈S−{x}〉.

Suppose that x ∈ {a0, b0, b0, c0}. Then the lattice 〈{a0, b0, c0, a0, b0, c0} − {x}〉/θ(c0, a0 ∧ b0) is a
homomorphic image of L with the kernel α = θ(a1, cn) and belongs to Q(A).

One can see that for β = θ(a0, b0) if x ∈ {b0, c0} and β = θ(b0, c0) if x ∈ {a0, b0}, L/β is isomorphic
to L−n or L−n × 2 and both these lattices belong to Q(A). Thus, α and β are Q(A)-congruences. One
can check that α ∩ β = 0. Hence L ≤s L/α× L/β. Therefore, L ∈ Q(A).

Suppose that x ∈ {bi, bi | 0 < i ≤ n} ∪ {cn}. For sake of brevity, we assume that x = bn. Let α =
θ(c0, cn−1). Then L/α is isomorphic to the sublattice S of L1 generated by the set {a0, b0, c0, a0, b0, c0,
a1, b1, b

1}. Since the lattice P = 〈{a0, b0, c0, a0, b0, c0, b1, c1}〉 is a sublattice of A and S ≤s P × 22

we get S ∈ Q(A). On the other hand, L/θ(a0, b0) is a sublattice of L−n . Since L−n ∈ Q(A) then
L/θ(a0, b0) ∈ Q(A). One can see that α∩ θ(a0, b0) = 0. Hence, L is a subdirect product of two lattices
from Q(A). Therefore, L ∈ Q(A).

Thus, we obtain that Ln /∈ Q(A) and every its proper sublattice belongs to Q(A). By Lemma 1,
the quasivariety generated by the lattice A is not finitely based.

From the proof of Theorem 2 we have more general result:
Theorem 3. Suppose that K is a locally finite quasivariety and
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a0 b0 c0

a0 b0 c0 a1 b1 c1

a1 b1 c1

Figure 3. Lattice L1

a) M3,3 6∈ K,
b) every proper sublattice of Ln belongs to K,
c) Ln 6∈ K for all n > 0.
Then the quasivariety K is not finitely axiomatizable.
Corollary 1. There is an infinite number of finite lattices which do not satisfy conditions of

Tumanov’s theorem and have no finite basis of quasi-identities.
Indeed, the lattice A completed by n atoms e1, . . . , en such that ei∨ej = a0∨b0, i 6= j ≤ n, satisfies

the conditions of Theorem 2.
We note that the variety lattice of a variety V(A) is finite because it contains a finite number

of subdirectly irreducible lattices by Johnson’s Lemma [12]. G. Grätzer and H. Lasker [13] shown
that the quasivariety lattice of a variety V(M3,3) is continuum. Since M3,3 ∈ V(A) we have that the
quasivariety lattice of V(A) is continuum.

We would like to point out that V.I. Tumanov also provided that in his theorem the quasivariety
N has no independent basis. Our proof does not allow to prove that Q(A) has no independent basis
of quasi-identities. On the other hand, our proof holds on K that is not necessarily included in the
finitely axiomatizable locally finite quasivariety.
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Figure 4. Lattice Ln, n ≥ 2
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А.О. Башеева1, С.М. Луцак2

1Л.Н. Гумилев атындағы Еуразия ұлттық университетi, Астана, Қазақстан;
2М. Қозыбаев атындағы Солтүстiк Қазақстан университетi, Петропавл, Қазақстан

Соңғы модулярлық торлардың квазитепе-теңдiктерi туралы. II

1970 жылы Р. Маккензи кез келген шектi тордың ақырлы базистi тепе-теңдiктерi болатынын дәлел-
дедi. Дегенмен, квазитепе-теңдiктерге қатысты бұл мәлiмдеме дұрыс емес. Сонымен, ақырлы базисi
жоқ квазитепе-теңдiктерден шектi торлар бар. В.А. Горбунов пен Д.М. Смирнов келесi мәселенi қозға-
ды: «Ақырлы базисi бар квазитепе-теңдiктерден тұратын қандай шектi торлар бар?». 1984 жылы
В.И. Туманов шектi модулярлы тордан туындаған өздiк квазикөпбейненiң ақырлы базисi жоқ де-
ген болжам айтты. Ол сондай-ақ осы болжамды қамтамасыз ететiн квазикөпбейнелердiң екi шартын
тапты. Ал бiз Тумановтың шарттарын қанағаттандырмайтын шектi модулярлы торды құрастырдық,
бiрақ бұл тордан туындаған квазикөпбейненiң ақырлы базисi жоқ.

Кiлт сөздер: тор, соңғы тор, модулярлық тор, квазикөпбейне, көпбейне, квазитепе-теңдiк, тепе-
теңдiк, квазитепе-теңдiктiң соңғы базисi, Тумановтың шарттары.
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О квазитождествах конечных модулярных решеток. II

В 1970 г. Р. Маккензи доказал, что любая конечная решетка имеет конечный базис тождеств. Од-
нако аналогичное утверждение для квазитождеств неверно. Итак, существуют конечные решетки,
которые не имеют конечного базиса квазитождеств. В.А. Горбунов и Д.М. Смирнов озвучили сле-
дующую проблему: «Какие конечные решетки имеют конечный базис квазитождеств?» В 1984 г.
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В.И. Туманов предположил, что собственное квазимногообразие, порожденное конечной модулярной
решеткой, не является конечно базируемым. Он также нашел два условия для квазимногообразий,
которые подтверждают эту гипотезу. Мы же построили конечную модулярную решетку, которая не
удовлетворяет условиям Туманова, но квазимногообразие, порожденное этой решеткой, не является
конечно базируемым.

Ключевые слова: решетка, конечная решетка, модулярная решетка, квазимногообразие, многообра-
зие, квазитождество, тождество, конечный базис квазитождеств, условия Туманова.
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