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On quasi-identities of finite modular lattices. 11

The existence of a finite identity basis for any finite lattice was established by R. McKenzie in 1970, but the
analogous statement for quasi-identities is incorrect. So, there is a finite lattice that does not have a finite
quasi-identity basis and, V.A. Gorbunov and D.M. Smirnov asked which finite lattices have finite quasi-
identity bases. In 1984 V.I. Tumanov conjectured that a proper quasivariety generated by a finite modular
lattice is not finitely based. He also found two conditions for quasivarieties which provide this conjecture.
We construct a finite modular lattice that does not satisfy Tumanov’s conditions but quasivariety generated
by this lattice is not finitely based.
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Introduction

In 1970 R. McKenzie [1] proved that any finite lattice has a finite basis of identities. However
the similar result for quasi-identities is not true. That is, there is a finite lattice that has no finite
basis of quasi-identities (V.P. Belkin [2]). The problem "Which finite lattices have finite basis of quasi-
identities?" was suggested by V.A. Gorbunov and D.M. Smirnov in [3]. V.I. Tumanov [4] found a
sufficient condition consisting of two parts under which a locally finite quasivariety of lattices has no
finite (independent) basis of quasi-identities. He also conjectured that a finite (modular) lattice has a
finite (independent) basis of quasi-identities if and only if a quasivariety generated by this lattice is
a variety. In general, the conjecture is not true. W. Dziobiak [5| found a finite lattice that generates
finitely axiomatizable proper quasivariety. We also would like to point out that Tumanov’s problem is
still unsolved for modular lattices.

The main goal of the paper is to present a finite modular lattice that has no finite basis of quasi-
identities and does not satisfy conditions of Tumanov’s theorem.

1 Basic concepts and preliminaries

We recall some basic definitions and results for quasivarieties that we will refer to. For more
information on the basic notions of universal algebra and lattice theory introduced below and used
throughout this paper, we refer to [6] and [7].

A quasivariety is a class of algebras that is closed with respect to subalgebras, direct products, and
ultraproducts. Equivalently, a quasivariety is the same thing as a class of algebras axiomatized by a
set of quasi-identities. A quasi-identity means a universal Horn sentence with the non-empty positive
part, that is of the form

(V) [p1(Z) = qu(Z) A -+ Apn(T) ~ ¢n(Z) = p(2) = q(2)],
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where p, q, p1,q1, - . ., Pn, gn, are terms. A variety is a quasivariety which is closed under homomorphisms.
According to Birkhoff’s theorem [§8|, a variety is a class of similar algebras axiomatized by a set of
identities, where by an identity we mean a sentence of the form (Vz)[s(Z) ~ t(Z)] for some terms s(Z)
and ().

By Q(K) (V(K)) we denote the smallest quasivariety (variety) containing a class K. If K is a
finite family of finite algebras then Q(K) is called finitely generated. In case when K = {A} we write
Q(A) instead of Q({A}). By Maltsev-Vaught theorem [9], Q(K) = SPP,(K), where S, P and P, are
operators of taking subalgebras, direct products and ultraproducts, respectively.

Let K be a quasivariety. A congruence a on an algebra A is called a K-congruence or relative
congruence provided A/a € K. The set Conk A of all K-congruences of A forms an algebraic lattice
with respect to inclusion C which is called a relative congruence lattice.

For a quasivariety K, an algebra A € K is said to be subdirectly K-irreducible if the least congruence
04 is completely meet irreducible in Cong A. By Birkhoff’s theorem for a quasivariety, every algebra of
a quasivariety K is a subdirect product of subdirectly K-irreducible algebras (|7,8]). By Ksr we denote
the class of all subdirectly K-irreducible algebras in K. Since Q(K) = SPP,(K) = P,SP,(K), where
P, is operator of taking subdirect products, we have Kg; € SP,(K). Thus, for finitely generated
quasivariety Q(A), every subdirectly Q(A)-irreducible algebra is isomorphic to some subalgebra of A.

The least K-congruence 6k (a,b) on an algebra A € K containing pair (a,b) € A x A is called
a principal K-congruence or a relative principal congruence. In case when K is a variety, relative
congruence 6k (a,b) is a usual principal congruence that we denote by 6(a, b).

Let (a] ={z € L |z <a} ([a) ={x € L |2z > a}) be a principal ideal (coideal) of a lattice L. A
pair (a,b) € L x L is called dividing (semi-dividing) if L = (a]U[b) and (a]N[b) = @ (L = (a] U [b) and
(@ Nb) # 2).

For any semi-dividing pair (a,b) of a lattice M we define a lattice
Ma—p = ({(2,0),(y,1) € M x 2|z € (al,y € [D)};V,A) <s M x 2,

where 2 = ({0,1};V, A) is a two element lattice.

Theorem 1. (Tumanov’s theorem [4])

Let M, N (N C M) be locally finite quasivarieties of lattices satisfying the following conditions:

a) in any finitely subdirectly M-irreducible lattice M € M\N there is a semi-dividing pair (a, b)
such that M,_; € N;

b) there exists a finite simple lattice P € IN which is not a proper homomorphic image of any
subdirectly N-irreducible lattice.

Then the quasivariety N has no coverings in the lattice of subquasivarieties of M. In particular, N
has no finite (independent) basis of quasi-identities provided M is finitely axiomatizable.

A subalgebra B of an algebra A is called properif B 22 A. We will use the following folklore criterion
of non-finite axiomatizability of quasivarieties (see [7]).

Lemma 1. A locally finite quasivariety K is not finitely axiomatizable if for any positive integer n
there is a finite algebra L, such that L, ¢ K and every proper subalgebra of L, belongs to K.

2  Main result

In this chapter we show that there are two locally finite quasivarieties of modular lattices N and
M, N C M, that do not satisfy conditions a) and b) of Tumanov’s theorem, however, N is not finitely
axiomatizable. Note that in our example we do not need to require that M be finitely axiomatizable.
We also note that the first example of a finite lattice that does not satisfy the condition b) and has no
finite basis of quasi-identities was provided in [10].
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A/

Figure 1. Lattices A" and A

Let A" and A are the modular lattices displayed in Figure 1. And let Q(A) and V(A) are quasivariety
and variety generated by A, respectively. Since every subdirectly Q(A)-irreducible lattice is a sublattice
of A, and A’ is simple, a homomorphic image of A and is not a sublattice of A we have pA’ €
V(A)\Q(A), that is Q(A) is a proper quasivariety. One can check that A’ has no semi-dividing pair.
Thus, the condition a) of Tumanov’s theorem does not hold on the quasivariety Q(A). It is easy to see
that M3 is a unique simple lattice in Q(A)gs and it is a homomorphic image of A. Hence, the condition
b) of Tumanov’s theorem is not valid for quasivarieties Q(A) and V(A). Thus, to establish our main
result we have to prove.

Theorem 2. Quasivariety Q(A) generated by the lattice A is not finitely based.

Proof. To prove the theorem we modify the proof of the second part of Theorem 3.4 from [11] (also
see [10]).

According to Lemma 1 we will construct an infinite set {L,, | n > 0} of finite modular lattices such
that L, € V(A)\Q(A) and every n-generated subalgebra of L,, belongs to Q(A).

Let S be a non-empty subset of a lattice L. Denote by (S) the sublattice of L generated by S.

We define a modular lattice L,, by induction:

n=0. Lo = Ms_3 and Lo = ({ag, by, co,a’,b°,c"}) (see Fig. 2).

n = 1. Ly is a modular lattice generated by LoU{ay, b1, c1,al, bt, c¢'} such that ({ay, b1, c1,al,bt, ct})
M3 3, and cg = at, a® ABY = o Vbl = cq V c; (see Fig. 3).

n > 1. L, is a modular lattice generated by the set L,_1 U {an,bn,cy,a™ b" "} such that
{an, by, Cnya™, b, c"}Y) =2 Mz 3, and ¢, = a™, a® Ab° = co V" = ¢ V ¢, (see Fig. 4).

Claim 1. For any n > 0, the lattice L,, does not belong to Q(A).

Proof. We prove by induction on n > 0.

n = 1. Assume that L; € Q(A). At first we note that Ms3 is a sublattice of Ly/0(a1,b1) and
Ly/0(ay,a' ADBY). Hence, (ag,bo) € Oqay(ar,b1) Nbqeay(a1,a’ Ab'). One can also see that any non-
trivial congruence contains (a1, b1) or (a1, a' Ab') or (ag, by). Therefore, intersection of any two different
non-trivial Q(A)-congruences contains (ag, bp). It means that L; is subdirectly Q(A)-irreducible. In
this event, L; is a sublattice of A because Q(A)sr € S(A). One can check that L; is not a sublattice
of A. Thus, L does not belong to Q(A). Also we have (ag, by) € 6 for any non-trivial § € Conga)L1.
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M3 3 M;3_3

Figure 2. Lattices M3, M3 3 and M3_3

n > 1. By induction, we have L, 1 ¢ Q(A) and (ag, by) € 0 for any non-trivial § € Conga)Ln—1-

Assume that L,, € Q(A). We note that Ms 3 is a sublattice of L, /6(a;, a’ Ab*), L,,—1 is a sublattice of
Ln/0(ai,bi) <s Ln—1x 2 and Ly, /0(a;,a’) = Ly_1, for all 0 < i < n. Hence, (a;,a") € Oga)(as,a’ Ab").
It means that any homomorphic image of L,, that belongs to Q(A) is a homomorphic image of L,
or some S <g L,_1x2or L, = L,/0(ag,bp).

Let 0 € CongayLn. If (a;,a’) € 0 then 6/6(a;,a’) € CongayLn/0(ai,a’) = CongayLn-1.
By induction, (ag/0(ai,a"),by/0(a;,a’)) € 0/0(a;,a"). Since the congruence classes agf(a;,a’) and
bof(a;, a’)) consist of one elements {ag} and {bg}, respectively, we get (ag, by) € 6.

If (ai,bi) € 0 then Ln/ﬁ(ai,bi) <g L,—1 x 2. Since L, < Ln/G(ai,bi) then Ln—l/(9 N L%_l) S
Q(A). By induction, (ap/(@ N L2 _|),bo/(@N L2 _})) € (6N L2 ;). By argument above, (ag,by) € 6.

Thus, we have that (ag, by) € 6 for each non-trivial Q(A)-congruence 6. It means that L, is relative
subdirectly irreducible. Hence, L, < A. Contradiction. Therefore, L,, ¢ Q(A).

Let L, be a sublattice of L, generated by the set {a;, b;, c;,a’,b*,¢' | 0 < i < n}. One can see that
L. = L,/0(ap,bp) and L, <s M3 5. Hence, L,, € Q(A).

Claim 2. Every proper sublattice of L,, belongs to Q(A).

Proof. 1t is enough to prove the claim for arbitrary maximal proper sublattices of L,,. Since L, is
generated by the set of double irreducible elements S = {ag, by, b°, c’, c,} U {b;,b° | 0 < i < n} then
every maximal proper sublattices L of L,, generated by S — {x} for some z € S, that is L = (S — {z}).

Suppose that = € {ag,bo,b’,c’}. Then the lattice ({ao, bo, co,a®,b°, c°} — {x})/0(co,a® A B°) is a
homomorphic image of L with the kernel o = 0(ay, ¢;,) and belongs to Q(A).

One can see that for 8 = 0(ag, bg) if 7 € {bY, "} and B = 9(b°, ) if = € {ap, b}, L/p is isomorphic
to L, or L, x 2 and both these lattices belong to Q(A). Thus, « and 5 are Q(A)-congruences. One
can check that a« N = 0. Hence L <; L/a x L/B. Therefore, L € Q(A).

Suppose that = € {b;,b' | 0 < i < n} U {c,}. For sake of brevity, we assume that = = b,. Let a =
6(co, cn—1). Then L/« is isomorphic to the sublattice S of Li generated by the set {ag, bo, cg,a®, ", c°,
ai,bi,b'}. Since the lattice P = ({ag, bo, co,a’, b%,c%, b, c'}) is a sublattice of A and S <, P x 22
we get S € Q(A). On the other hand, L/0(ag,by) is a sublattice of L, . Since L, € Q(A) then
L/0(ap,bp) € Q(A). One can see that a N B(ag, bp) = 0. Hence, L is a subdirect product of two lattices
from Q(A). Therefore, L € Q(A).

Thus, we obtain that L, ¢ Q(A) and every its proper sublattice belongs to Q(A). By Lemma 1,
the quasivariety generated by the lattice A is not finitely based.

From the proof of Theorem 2 we have more general result:

Theorem 8. Suppose that K is a locally finite quasivariety and
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Figure 3. Lattice Ly

a) M33 ¢ K,

b) every proper sublattice of L,, belongs to K,

¢) L, K for all n > 0.

Then the quasivariety K is not finitely axiomatizable.

Corollary 1. There is an infinite number of finite lattices which do not satisfy conditions of
Tumanov’s theorem and have no finite basis of quasi-identities.

Indeed, the lattice A completed by n atoms ey, ..., e, such that e;Ve; = agVbo, ¢ # j < n, satisfies
the conditions of Theorem 2.

We note that the variety lattice of a variety V(A) is finite because it contains a finite number
of subdirectly irreducible lattices by Johnson’s Lemma [12]. G. Gratzer and H. Lasker [13] shown
that the quasivariety lattice of a variety V(M3 3) is continuum. Since M33 € V(A) we have that the
quasivariety lattice of V(A) is continuum.

We would like to point out that V.I. Tumanov also provided that in his theorem the quasivariety
N has no independent basis. Our proof does not allow to prove that Q(A) has no independent basis
of quasi-identities. On the other hand, our proof holds on K that is not necessarily included in the
finitely axiomatizable locally finite quasivariety.
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Figure 4. Lattice L, n > 2
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A.O. Bameesa!, C.M. Jlynak?

LILH. Dymunes amovimdaess Eypasus yammu yrusepcumemi, Acmana, Kasaxemar;
2 . .
M. Koswvbaes amwvindazvs Coamycmir Kazaxcman ynwusepcumemsi, Ilemponasns, Kasarxcman

CoHFBI MOIYJISPJILIK, TOPJIAPALIH, KBa3uUTelle-TeHIIKTepi TypaJabl. 11

1970 xputel P. MakkeH3u Ke3 KeJITeH IMEKTI TOPALIH aKbIPJIbl HA3UCTI Tere-TeHJIKTePi GOTATHIHBIH T9JIe-
neni. Jlereamen, KBa3uTene-TeHIIKTEPre KATHICTHI Oy MastiMaeme mypbic emec. COHBIMEH, aKbIPJIbI 6a3uci
JKOK, KBa3UTeNe-TEHIIKTep IeH eKTi Topaap 6ap. B.A. T'opbynos nen JI.M. CMupHOB KeJjieci MocesieHi KO3Fa-
abl: «AKbIpsbl Gaszuci Gap KBasuTene-TEHIKTEPAEH TYyPaThiH KaHJal ImekTi Topjaap 6ap?». 1984 >KbLjibl
B.U. TymanoB miekTi MOAYISpJIbI TOPAAH TYBIH/IAFaH ©3/IK KBA3WKONOEHHEHIH aKBIPJIbI 0a3Wci KOK, fe-
ren 6osnkaM aiTThl. OJ1 COHIa-ak, 0Chl OOIKAMIBI KAMTAMACHI3 €TETIH KBA3UKOIOEHHEIeP/IiH €Ki MAapThIH
TanTbl. A 6i3 TyMaHOBTBIH IIAPTTAPBIH KAHAFATTAHIBIPMARTBIH MIEKTI MOJLYJISIPJIbI TOPIbI KYPaCThIPIBIK,
Gipak OyJI TOPZIaH TYBIHIAFAH KBAa3UKOIIOEHHEHIH aKbIPJIbl OA3UC] 2KOK.

Kiam cesdep: TOp, COHFBI TOp, MOIYJSIDJIBIK TOD, KBas3WKeNbeiiHe, KeIOeiiHe, KBa3WUTeIle-TEHIK, Tele-
TEHIK, KBa3UTEIle-TeH IIKTIH COHFBI 6a3uci, TyMaHOBTHIH IIAPTTAPHI.

A.O. Bameesa!, C.M. Jlynak?

1 o .
Espasutickuti Hayuorasvhoil yrusepcumem umenu JI.H. ymunsesa, Acmana, Kaszaxcman;
2 Cesepo-Kaszaxcmancruti yrueepcumem umenu M. Kozwbaesa, ITemponasaosck, Kaszaxcman

O kBa3uUTOXKIECTBAaX KOHEYHBIX MOIYJISPHBLIX perneTok. 11

B 1970 r. P. Makkensu mokaszaj, 9To Jirobasi KOHEUHAs PEIETKA WMeeT KOHEeUHBIH Gazuc ToxkmectB. Ogi-
HAaKO AHAJOTMYIHOE yTBEPXKJEHHE /I KBA3UTOXKJIECTB HeBepHO. VTak, CyIIeCTBYIOT KOHEYHBIE DEINeTKH,
KOTOpbIe HE MMEIOT KOHeYHOro Gaszmca kpasutoxkjaecTB. B.A. T'opbyrnos u JI.M. CMUDHOB O3BYYH/IU CJie-
ayrormiyo mpobieMy: «Kakme KOHEUHBIE DEIeTKN MMEIT KOHEUHBbIN Oasmc KBasuToxkaecTB?> B 1984 r.
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B.J. TymaHOB IPEIIIONOXKUI, YTO COOCTBEHHOE KBA3HMHOI00Opa3ue, OPOK IEHHOE KOHEYHON MOYIIsIPHOIT
PEIIeTKOil, He sIBjsieTcsl KoHedHO OasmpyeMbiM. OH Tak»ke HaIlles JBa YCJIOBHs I KBa3UMHOIo0Opas3nit,
KOTOpBIE MTOATBEPXKIAIOT 3Ty rurore3y. MBI »Ke IOCTpOM/IN KOHEIHYIO MOAYJISIDHYIO DENIeTKY, KOTopasl He
YJIOBJIETBODsieT ycjioBusAM TyMaHOBa, HO KBa3UMHOIrooOpa3ue, IIOPOXK/IEHHOE 9TOI PEIIeTKO, He sABJISAeTCs
KOHEYIHO 6a3MpyeMbIM.

Kmouesvie crosa: permeTka, KOHEIHAST PEIeTKa, MOIYJISPHAsT PelreTKa, KBa3uMHOroobpa3ne, MHOr00bpa-
31e, KBa3UTOXKJIECTBO, TOXKJIECTBO, KOHEYHBIN 0a31MC KBA3UTOXK/IECTB, ycJIoBus TyMaHOBA.
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