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Solution of heat equation by a novel implicit scheme using block
hybrid preconditioning of the conjugate gradient method

The main goal of the study is the approximation of the solution to the Dirichlet boundary value problem
(DBVP) of the heat equation on a rectangle by developing a new difference method on a grid system
of hexagons. It is proved that the given special scheme is unconditionally stable and converges to the
exact solution on the grids with fourth order accuracy in space variables and second order accuracy in
time variable. Secondly, an incomplete block factorization is given for symmetric positive definite block
tridiagonal (SPD-BT) matrices utilizing a conservative iterative method that approximates the inverse of
the pivoting diagonal blocks by preserving the symmetric positive definite property. Subsequently, by using
this factorization block hybrid preconditioning of the conjugate gradient (BHP-CG) method is applied to
solve the obtained algebraic system of equations at each time level.

Keywords: Heat equation, implicit scheme, hexagonal grid, stability analysis, symmetric positive definite
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Introduction

For many mathematical models, especially partial differential equations (PDEs), their analytical
solutions are not available. Therefore, for computing the approximate solutions economical and stable
numerical algorithms based on effective theoretical results are getting more important as more advanced
computers are designed.

Among some numerical methods for approximating the solutions of PDEs, the finite difference
method is a widely used approach and the construction of stable and time efficient schemes are essential.
Recent advances in finite difference methods for solving PDEs include [1-7].

More then a half century ago, in 1967, the approximation of the pure diffusion equation

ou_ oo
ot 0x? 023

on regular hexagonal grids was analyzed by giving two implicit difference schemes, defined on three
layers with 21-point and on two layers with 14-point both with fourth order accuracy in space and
second order accuracy in time [8].

Since then, the applicability of the hexagonal grids in many branches of science has been investigated.
Among them is the research on eligibility of the icosahedral-hexagonal grids in meteorological applications.
Finite difference schemes on a spherical geodesic grid were given to integrate the barotropic vorticity
equation [9,10]. Further, the hexagonal grid was extended to the integration of the primitive equations
of fluid dynamics [11-13|. Later, an integration scheme of the primitive equation model by using on
icosahedral-hexagonal grid system with an application to the shallow water equation was given [14].
Additionally, for the simulations of oscillations in shallow circular basins, finite difference techniques
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on the irregular grids were analyzed [15]. Furthermore, hexagonal grids were used for the simulation
of atmospheric processes [16].

Nowadays, the investigation of triangular and hexagonal system of grids has gained more interest
in engineering, applied sciences, computer science, natural sciences and in environmental sciences.
Such as the numerical solution of boundary value problems of PDEs using finite difference method
in convection diffusion equation [17], in the Laplace equation [18], and in the heat equation [5], and
derivatives of the solution to the heat equation [6,7|. Additionally, hexagonal grids were also used in
finite volume method [19]. For digital image processing and graph processing, some examples include
[20] where digitized rotations of 12 neighbors on the triangular grid were given by considering more
general setting especially the midpoint, the corner points and the edge midpoints as rotation centers.
Also, in [21] the bijectivity of the digitized rotations for the closest neighbors in rectangular, triangular
and hexagonal grids were compared. In addition, the firefighter problem, which is an iterative graph
process, was studied on hexagonal grids in [22]|. For hydrologic modelling, we mention the study by
[23] in which a watershed delineation model using the hexagonal grid spatial discretization method
was developed.

The contributions of this work can be summarised as: the DBVP of the heat equation

2 2
?;;:w(g;% ((?);g)—bu+f(x1,xg,t), (1)
given on a rectangle D where w > 0, b > 0 are constants is considered. A new difference method of order
of convergence O (h4 + 72) with 14-point on two layers constructed on hexagonal grids is proposed.

Here, the increments in the variables x1 and zo are denoted by A and @h accordingly and 7 denotes
the increment in time. Further, the unconditional stability of the given scheme is shown. Furthermore,
for SPD-BT matrices an incomplete block matrix factorization algorithm is developed. At each stage of
the recursion for approximating the pivoting diagonal block matrix inverses, the constructed algorithm
uses a two step iterative method with very high rate of convergence (order 33 see [24]). It is proven that
at each iteration the pivoting diagonal block matrix and its approximate inverse are symmetric positive
definite (SPD) matrices. Subsequently this factorization and the pivoting block approximate inverses
are used to precondition the conjugate gradient method [25], which we call block hybrid preconditioning
of the conjugate gradient (BHP-CG) method.

1 DBYVP of the heat equation and discretization

We take the rectangle D = {x = (z1,22) : 0 < 21 < a1,0 < 2 < az}. We denote its sides by vj,

4 —
j =1,2,3,4 and its boundary by S = |J vj, so that D = DUS is the closure of D. Let Q7 = Dx(0,T),
j=1
and indicate the lateral surface by Sy = {(z,t),z € S,t € [0,7]} and the closure of Q7 by Qp. We
consider the DBVP of heat equation in (1)

ou 0*u  O%*u

Fn = w((?ﬁ_'—(?a;%) —bu+f($1,$2,t) on Qr, (2)
w(zy,22,0) = @ (21,22) on D, (3)
u(zy1,z2,t) = ¢ (x1,22,t) on Sy, (4)

where w > 0 and b > 0 are constant. In this study, further investigations are given with the assumption

that DBVP in (2)—(4) has the unique solution u from the Holder space CS;Q’H% (Qr),.0<a<l.
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1.1 Implicit scheme on rectangular grids

First we consider the classical rectangular grid approximation of the problem (2)—(4) when the
a az

value of the constant b = 0 in Equation (2). We take the step sizes h; = oA and hy = i where, M;
and Mo are positive integers. Further, the set of rectangular grids on D is defined as

D"t = {p = (21,29) € D i 2y = Lihy, 1; = 1,2,..M; — 1,i = 1,2}.

Let SM-"2 be the set of rectangular grid points on S and Dhuhe = Dhuheyy §hhe Further let,

T
Yr = {tk:k"T, T:M, ijl,...,M/},

T
¥, = {tk:kT,T: k::(),...,M/}.

i
Also

DMhzy = phuhe oy — {(x,t) cx e D2t e ’yT} ,

spte = gty = {(a1) we S ten, )

The following unconditionally stable 14-point implicit method on rectangular grids is considered [26].
Rectangular Difference Problem (RDP)

Tup, = walAlu Liwd—oy) Aluh -+ wagAzukH +w(l—o09) AQUZ’T
+wh21+h2A1A2uhT + B on Dbz (5)
upr = @(z1,22),t=0o0n Dhlth, (6)
uny = ¢ (x1,22,t) on SH"2 (7)
where
1 h? 1 R
NS e T 1
Ty — u(zy, ot + 7 )—u(zl,xg,t)’
T
A = [u(x1 4 hi,22,t) — 2u (21, x2,t) + u (X1 — h1,T2,1)] /h%,
AguF = [u @y, w3 + hayt) — 2u (1,72, 1) + u (21,22 — ha, 1)] /B3,
5 — fk+2+h fP02+h%A fk+2,

1 ~ 4
and flli:_Q = f(z1,72,t + ). The scheme has the order of accuracy O (‘h‘ +7’2) . Here,
V/h? + h3 and we denote the system (5)—(7) by

K\ UM = KyU* + 7FF (8)

where K 1 I?Ng are real block tridiagonal matrices with 5 nonzero and 9 nonzero diagonals, respectively.
The vector F¥* is computed from the initial and boundary function values and the heat source function

3
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1.2 Nowel implicit scheme on hexagonal grids

Let Ny be a positive integer and h = a1 /Ny > 0. For the ease of explanation of the new scheme we
assume that ay is multiple of v/3. Using the step size h we assign a hexagonal grid on D and denote
this set by D" as

V3(p+q)

h
2 Y

Dl = {x—(xl,xQ)GD:xl—p;qh, To =
p=1,2,.., q=0+£1+2 1.

Further DP is the closure of D". In addition, Fp is the center and P;,i = 1, ..., 6 are the neighboring
points in the pattern Patt (Py) of the hexagon. The set of interior nodes are categorized as regular

and irregular hexagons. Those hexagons with Patt (Py) € D" are called regular and those with a
center Py that lies % units away from the boundary are called irregular hexagons. The set of irregular
hexagons with a left ghost point are denoted by D** and those with a right ghost point are presented
by D**. Also, D** = D*" U D*" and D" = D"\ D*". Table 1 presents the function values of u,
f and the second order pure derivatives of f. In this table, if Py € D**~. then the value of 5 = 0
and if Py € D*"™"~, then 5§ = a;. Besides k + 1,1 = 0, %, 1 denote the time levels t = (k+1)7 for
k = 0,1,..., M’ — 1. Furthermore, the numerical solution on hexagonal grid system is presented by
Up " p 1 = 0,...,6, and at boundary points by uiﬁ’lpA, when t = (k+1)7, for k = 0,1,.... M" — 1.
Figure 1 illustrates the irregular hexagons and the exact solution at the center and the neighbouring
points of the pattern at ¢ = k7 and (k + 1) 7 time levels.

Table 1
Notations used to denote the function values.
ul;gjl =u(x1,T2,t +7) ullitll = u(s, 2, t + 1)
u%z:u(xl—%,xg—kéh,t—kﬂ, f{{f :f(irl,xg,t—l—%)
upy = u(x1 — h,x2,t +7) fe, = f(Ez2,t+7)

k+1 ~ -
u’}jlzu(ml—%,xg—éh,t—i—ﬂ fp,’ = f(5,z2,t+ %)

upt =@+ 5w — Pht+1)  fE, = (5 32,1)

1
k+1 _ 2 ckt3 _ 9%f
Ups =ulz1 +h, 22, b +7) Oy fpy * = 927 |(21,20,t4+3)
J@o,t+ 3
1
k+1 _ h V3 2 cktg _ 8%f
P =u(@1+ 5,02+ Fht+7) 8I2fp0 T 093 (g mg 1+ T)
T2t g

kel
Uy

Figure 1. The illustration of the irregular hexagons and the solution for two time echelons.

Also on the hexagon system of grids we present the set of hexagonal grids on S by S" and the sets
Dh/}/T = DhX’yT:{(ﬁL',t)l'eDh, tE’}/T},

sh = thiT:{(:c,t):meSh, te@},
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present interior, and lateral surface nodes respectively. Let D*~, = D*" x v D"y, and D*"~, =
D*"™h x v, C D"y, and D*hy, = D*h~_ U D*y, also D%y, = D"~ \D*"v,. Figure 2 shows the
hexagonal grid covering of the rectangle D for three time levels t — 7,t and ¢t + 7, on which the ghost
points are denoted by red colour.

t+T

Figure 2. Hexagonal grid covering of the rectangle D for three time echelons t — 7,¢ and ¢ + 7.

We propose the next difference problem on hexagon system of grids to approximate the solution of the
DBVP in (2)-(4).
Hexagonal Difference Problem (HDP)

or Tu];;tl = A1 u’;fb _+ 9t on D%y (9)
OF ultt = A} _uf .+ Epro+9? on Dy (10)
up, = @(x1,m2) ont=0, Dh, (11)
up, = ¢(x1,22,t) on Sk (12)

k=1,2,...M' — 1, where

k+3 kit k+3

o= i g (et (13)

1 h2 1 k+

2 _ k+1 k
vt o= 96Tw(f _fPA)_(G )fPA2+f 2
k+3 k+3
+Eh2 (agl fr, 2+ 02, fp, ) : (14)
6
3 2w 3 1 w b
1okl [ 20 2% 9 ket v b k+1 1
Oh.ru (47 TR >“P0 * (247 32 " 48> Z;UP ’ (15
6
3 2 3 1 w b
A ub == —-= —Zp)uk — - — K 16
hyrt (47 h? 8 )uP0+ 247 T 312 T 18 ;“P (16)
17 Tw 17 1 w b
2 k+1 _ W iy k+1 - = . t
Ohru <24r HETERPT >“Po * (247 32 48> (u(s +n,22,t 4 7)
3 3
+u(s, x2 + 7h,t +7) 4 u(s,ze — \Q[h,t + 7‘)) ,
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1 2w b V3 V3
= (o 2 S+ L2 8 a0 — L0t
Ehn ¢ < 67 + o2 72) <gz§(s, T + 5 hyt+7) + (5, z2 5 + T))

~ 3 > 3
3677' + 9? - 72) <¢(3,$2 + \é»}%t) + (ﬁ(S,.Z'Q - {h’t)>

- S 3 2o,
18 R 48wr | 36 192w> oS, 22t +7)
1 8w A% b R

( 1 8  h*% b h%b?
s, t
<18¢ on?  18wr 36 192w> 08,22, 1),

2k k
= — = ———b + |l —+ - — + —h,t
A ru <24T 3h? 48 ) Py (247 3h? 48) <u(s’x2 27 )
3
+u(s, xg — —fh,t) +u(s+ n,aa,t)) ,

and
if Py € D*™y,, then s=h, 5=0,n= %
ifPOGD*thYTa thens:al—h,gzal,nz—%-

2 Analysis of HDP (9)-(12)

First we analyze the approximation order of the special scheme in HDP (9)—(12).
Theorem 1. The scheme HDP (9)—(12) has the approximation order O (h* + 72).

Proof. Let (x1,x2,t + 7) and (21, z2,t) € D"y, be the centers (Pp) of the hexagons at time moment
(k+ 1) 7 and k7 respectively for k = 0,..., M’ — 1. From Equation (9) and using (13), (15) and (16)
for regular hexagonal grids the scheme is

k+1 k k+1 k
3Unrpy ~ Uhrky 1 3 Uh,r,p, ~ Yh,r P,
4 T 24 4 T
=1
w 6 w 6
_ k41 o k1
= 352 R T 302 > b rp, — 6ul . p,
=1 =1
6 6
_ﬁz K+l 3, k4l _ﬂzk _ 3
48 h,7,P; 8 h,7,Py 48 uh,‘nPi ) h,7,Py
=1 =1
kg Lo a0 ks | g2 ki3
+fp, 2+ Eh 03, fp, * + 03, [p, : (17)
For the irregular hexagons the following approximations are used for 1 = 2,5
g g g app )
2
k1 k h* k1 8 k41 okt L opi
W 7.p, T U, P, 970 U Pa T 3Uhr Py T Unrp T 3Uhr P
2
Y = I L8k ok
3 kTP 9o, h,7,Pa 3 h,7,Pa h,7,Po
1 1 h2b
k k k+1 k
“3Unr Py T gUhr P T (uh,T,pA T “h,r,PA)

h% g+l
—5Fpa + O (B + 122, (18)
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1 1

k+1 k Y k+1 Wk
Unrp; ~ Yhep T Ty T 3P T glhT P

8 uFH L o L

+3 hTPA+ hTP0+3 hTPz1+3h P
8 uF h?b (i
3 Up,r,py T T( Uhr, Py ~ )
(f’““ fh,) + 0O (bt +h?r). (19)

Hence, the scheme (10) is obtained by substituting (18) and (19) in (17). Consequently, the error
function €p, r = uy » — u satisfies the next difference problem

Ohsent = Ajgeh.+¥f on DMy (20)
Oh entt = AR el .+ U5 on Dy, (21)
ehr = Oont=0, Dh (22)
enr = 0on Sh, (23)
where
Vo= A ut -6 T (24)
Uh = A} —6) W+ By o+ 42 (25)

and ¢!, 9?2 are as given in (13), (14) respectively. Using Taylor’s expansion around the point (xl, X9, t + %)
we obtain W§ = O (h* + 72) and W5 = O (h* 4 72).

Next, we analyze the stability for the special scheme in HDP. At every time stage using standard
ordering the hexagon points in D"+, are labeled as E;,j=1,2,...,N . Thus, all hexagon centers have
the neighboring topology denoted by the following set

Sk = {(4,7) : if the grid E; € Patt (E;), i #j,1 <1, <N}, (26)

exhibiting the sparsity structure of Inc € RN*Y called the incidence matrix with entries

_ | 0if (4,5) ¢ Sk,
[InC]ij_{ 1if (4, )GS;J

Further, the scheme in HDP can be put in the subsequent matrix form

K\ UM = KUY + 7 FF (27)
where, K1, Ky € RN*N are given as
T

K = (51 n h2 YT s ) (Sl S ) (28)

bh?
S1 = Dl—l——lnc SQ—B‘F*C (29)

B = Dy— ,[ D —I
2 = 3ine, C = 3~|—48 ne. (30)

Also the computed values of f in (13), (14) and the values of ¢ and ¢ in HDP (9)—(12) are presented
by the vector F*" € RYN. Further, Dy, Do, D3 are diagonal matrices with entries

3 Oh
[Dl]J] { % if E] c D*h'%- y J 1a25"'7N7
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2 if Ej € D%y,
[D2l;; = { Tif Bj € D*hy,

_ le GDOh’YT .
[D3]]] _{ ﬁ le GD*h"YT , 7=12,..,N,

accordingly. The stiffness matrix K, at the (k 4 1)th time level and the coefficient matrix Ko at the
kth time level both have 7 nonzero diagonals. Next we analyze the properties of the derived matrices.

Lemma 1. a) Sy in (29) and the matrices B and C' in (30) are SPD matrices. b) K7 in (28) and So
n (29) are SPD matrices.

Proof. a) Using (26) if E; € Patt(E;) for ¢ # j, 1 < 4,5, < N this implies that E; € Patt (E;)
giving Inc’ = Inc. Thus, Si, B, and C are real symmetric matrices hence the eigenvalues of Sy, B
and C' are real. Hexagonal grid is connected grid in the rectangle D thus, by using (30) it can be easily
shown that the matrix B has positive diagonal entries, i.e. b;; > 0, ¢ = 1..., N and it is irreducibly
diagonally dominant matrix. Further, the matrices S1, and C' also have positive diagonal entries and
are strictly diagonally dominant matrices [27] therefore, S, B and C' are SPD matrices. b) From (29),
since the sum of two SPD matrices is also an SPD matrix, S5 and K7 are SPD matrices.

»J=12,.,N,

Theorem 2. The constructed scheme HDP on hexagon system of grids is stable for any h > 0 and
7 > 0 and the approximate solution uy, » converges to the exact solution u with O (h4 + 7'2) of accuracy
on the hexagonal grids.

Proof. From Lemma 1, the matrix S7 is an SPD matrix hence invertible. The linear system (27)
can be written as

(I s (S1)” Sz) Ukt = (I 2 ~(51)7! 52) Uk +7(5)" FY, (31)

where I € RV*N is the identity matrix. On the other hand using (28)—(30) we can express the matrices
S1,C and Sy as linear combination of the identity matrix I and the matrix B as:

1 1 1 1 bh? 1 bh?
Sl_I—gB, C’_§I—EB, Sy = 2[+<1—) B. (32)

Because (Sl)_l So commutes and S; and S are symmetric implies that (Sl)_l S9 is also a symmetric
matrix. Since the product of two SPD matrices that commute is also an SPD matrix [27, 28| gives

s ((51)*1 52) > 0.Let A = (1 + 97 (5! 52) obviously A is an SPD matrix. Let A = (1 — ez (s~ 52) .

(A—lﬁ)T — AAl = (1—7(51) 152) (I+—(Sl) 152)_1

h? 2
- det <I+LZ;(51)_152> ( _%(Sl)_ S2> Adj (I+ﬁ(51) 1S2>
_ <I+ 72 (S1)” 1Sz>’1 1= det <[+ °,§1(51)—152> (I+ % ()71 Sz)

wT -1 : wT 1
<h (Sl) SQ) Adj <I + (51) 52>:|

- (1+ A 52> (I -5 T (s 52) — A4, (33)
Thus A~ *4 is a symmetric matrix, then there exists an orthogonal matrix P and a diagonal matrix D
with diagonal entries of eigenvalues A4 ((51)71 Sg) so that

(1+ (S0 152) - (I+ﬁD>]3
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and

(1+ (s 52)_1 = pT <1+ %f)f P.

Thus,

(1+%5 (50 L) (1Y LS s) =B (1+95D) PP (1~ “TD) P,

~ ~1
that is, the matrix A=1A4 is similar to (I + “’TD> (I -5 ) Hence, from (33)

" [(I+°}g5)‘1 (1_3;5)”

0 157 52)

|aa], = o(a7A) = max

wT
< . mm o ((S)*ls)) <1f0rﬁ>0 (34)
h2 N s 1 2
and from Gerchgorin’s circle theorem we have
0< A (B) < 4. (35)

From (32) and (35) and on the basis of Lemma 1 that Ky = 51 + $7.52 is an SPD matrix we have

1 1 wr  br
K, = <1+Tb>j+<_8+i12_16>3

A (K1) = A (51+h25)

1 1 wr  br
( +2Tb)+( 8+h2 16)/\5( )

—1 -1 -1 1
= < —
p((Kl) ) <<Sl+h25) <S1+h25) ,
where s = min {1 + %Tb, % + %bT + 4‘”} then
K —1H < <2 36
H( 1) 2 < ( )
Next using (34) and (36) by induction results,
o], = flaal floe], + ~fleo ], |7
2 2 2 2
k *
< [|U°]], +2 HF’f H . 37
< 23 o, @)

The error function e, » satisfying (20)-(23) can also be given in the matrix form (31) as

(1+ 55 (571 8) il = (12

= (ST Sa) (5N (38)

h

where €11 ¢ and ¥ € RY and U*" involves the truncation errors given in (24), (25). Thus, on the

basis of Theorem 1 and using (24), (25) and (37), (38) we obtain
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Here, ¢ is a positive constant independent of h and 7. The matrix A~'A4 is a normal matrix since it
is also a symmetric real matrix. The inequality in (34) is sufficient as well as necessary for stability
from the Von Neuman condition for stability [29]. Therefore, the unconditional stability of the implicit

k+1
scheme (9), (10) follows from (37). Let ’8}:7__

_ k1| _ || k+1 :
= max ’5 ‘ = |le , then by using
C Divnfi=(einyry | T [l

(39) and norm concordance we get

H k1] <

Eh,T

ekHH < (h4 + 7'2) .

C 2

Therefore, the order of accuracy of the approximate solution uy, , to the exact solution u is O (h4 + 7'2).

3 Incomplete block matriz factorization and preconditioning of an SPD-BT matrix

In this section, for a real block matrix K € RN*N of block size n x n, the inequality K >, 0 defines
that K is symmetric positive semi-definite (SPSD) matrix and K >4 0 denotes that K is a symmetric
positive definite (SPD) matrix. Analogously, A =5 B (A >4 B) denotes A — B =50 (A — B =5 0).
Further, for a symmetric matrix K, A\; (K) denotes the kth eigenvalue of K ordered in increasing order
and Apin and Apge are the minimum and maximum eigenvalues respectively.

3.1 Block incomplete decomposition algorithm and analysis

We consider symmetric positive definite block tridiagonal (SPD-BT) matrix

Kii Kip - 0
o K-271 Koo Ko3 , (40)
: . . Kn—l,n
0 te Kn,nfl Kn,n

of n x n, block size. Additionally, the nonzero blocks may be dense and K, is of size n, x ng (1 <
np, g < n) which includes the case where all or some K, , are scalar entries of K and main diagonal
blocks K, , are square matrices. We consider approximate factorization of K = LU — (@) in block matrix
form of a lower block triangular matrix L and an upper block triangular matrix U. We repartition the
matrix K into 2 x 2 block form and initially for s = 1, take K1) = K

)l
K6 = [ Bt Rie (41)
K2f1 K;Q

(s)

i

(

J

where K fsl) is the current pivot and Ki(;) is of order n %) for 1,7 = 1,2 and ngs) >> ngs)
(s)

ny’ =nsfors=1,2..n.

Xn , also

For M —matrices the two-step iterative method for approximating the pivoting diagonal block
inverses with rate of convergence 33 was given in [24]. Algorithm 1 approximates the inverse of the
pivoting diagonal block matrix of a block tridiagonal matrix K >4 0, analogous to the two-step iterative
method in [24] however, is modified in the choice of the initial approximate inverse Z(()S) at every stage
s. Further, Algorithm 2 gives incomplete block factorization of a SPD-BT matrix K, (see also [27] for

incomplete block decomposition techniques of matrices with special structure).

Algorithm 1. Modified two-step iterative method (MTSIM) for approximate matrix inversion.
Require: The predescribed accuracy € > 0.
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Ensure: [ is the identity matrix and ms; = 0, 1, ..., is the iteration at stage s. Also,

R —

ms

- K7 and QRY)) = RE) + (R,(;*LZ)Q :
w(r) = (RE) -+ (RE) and r(r) = ()"

1. Initial step

B = A (Kﬁ) (Kfl))T>

()"
my = 0 Z(s>:(K1 ) and RS = 1 — K% Z§”
S ; 0 s ) 0 1,10 -

2. Prediction and correction steps:

While ‘ R,({Z <e<l1ldo
Step2(P)
29 = 20 [T+ RG]
CR)
RS1+% = I- Kfffzgz+%,
Step2(C)
(s) _ 7 (s) (s) (s)
2. = 29, [z 1o <Rms+é> [z T+ <Rms+%> [z T <Rm+)]” ,
R$1+1 = I—- Kf?ZSEH, increase mg by one.
End while.
3. Terminating step: Z(*) denotes the matrix Zfi% obtained for performing m} iterations.

Algorithm 2. Incomplete block matrix factorization of K > 0.
Require: s =1 and KM = K.
1. Partition K(®) as in (41).
2. While s <n do
find the approximate inverse Z() of K {81) using the Algorithm 1.

Ensure: K©®) is an approximation of K(®) factored as
~ (s) (s)
RE _ 1o — [ r0 ] [ Ky Ky ] ,

where, K+ = k(%) — k{8 70 g5).
4. End while.
5. The matrix L in the final approximate factorization of K is block lower triangular matrix with
diagonal blocks being identity matrix and the sth column of its lower triangular part is formed by
K(S) 7(s)

2,1 :
6. The matrix U is block upper triangular with block diagonal matrix {Kill), Kﬁ), v K{ﬁ)} and the

sth row of its upper triangular part is formed by K fSQ)
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Lemma 2. Let K be an SPD-BT matrix and Kfl) be the pivoting diagonal block at stage s of the
Algorithm 2. If K\*) =, 0, then R';)

S

=s 0 for every ms = 0,1, ..., and
p (R((]s)) < 1,
R - ()T

where p (R(()s)) is the spectral radius of R(()s) =1- KSI)Z(()S).

T
Proof. For m, = 0 we have RS = I — K{\ 2" = 1 LK) (K{)) " andif K{*) -, 0, it follows

that R(()S) is symmetric matrix and

a(RE) = - by <K§;> (k

which gives p (R((]s)) <1 and R((]s) s 0. Further, from Step2(P) we get

2
RY | = 1-K¥)z [I+R£,i> + (R;?) }
ms+§ ) S S S
3
- ()" (42)
Also from the Step2(C) in Algorithm 1 using (42) we get
ar® ) = &9 1 (rY ) = (7)) + (r)" (43)
ms+% o ms+% ms+% o Ms Ms ’
2 4
® - (g® © ) — (g’ 4 (r)"
\I](Rms+%) B (Rms+é> i (Rms+%) - (R”“) + (Rms) ’ (44)
4 12
(s) _ (s) _ (p®
F(Rms-&-%) - (Rms+§) <Rm) (45)

Using (42)—(45) at the Step2(C) for the residual error RSL)SJA we obtain

RY ., = I-K¥z%

B () (s (s) (s) (s)

- e ron() oo () o (2]
33 33m5+1

= () =)

Thus, R7(72+1 >=s 0 because R(()S) =s 0.

Theorem 3. Let K be an SPD-BT matrix and K(*) be the matrix obtained at stage s of the
Algorithm 2. If Kfl) =5 0 then

KNz =27 K and K20 = 200 K, (46)

’ ms+§
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and ZS)+1 ~s 0, and 7 )+1 = 0 satisfying

~1
(Kffl)) s Z$2+1 s Z7(72+l s Z;ﬁgz > 0, (47)

2

(s) (s)

for every ms = 0,1,..., where Z ! and Z (s ) 41 are the approximate inverse of K’ 11 obtained by

s

Step2(P) and Step2(C) in Algorithm 1.
Proof. The proof of (46) follows from induction. Using Algorithm 1 for ms = 0 and from Step1(I)
gives Z(g = 1 (K (s)> . Since K fl) is a symmetric matrix we get

=3
S S S 1 S T 1 S T S S S
K2 = 6k (14) = ok (i) K = 280K

Assume that the proposition is true for m that is Kfsf Z,g,fz = Zr(;fz Kfsl) then for ms+ 1 at the Step2(P)
gives

2
KA., = s [+ ()]
2
= 2 |1+ R+ (R AL
= ZS2+%K{f1). (48)
Also using (42)—(45) and (48) at the Step2(C) gives the second equation in (46).
The proof of (47) also can be given using induction. For mgs = 0 from Stepl(I) gives Z(gs) =

T
ﬁ <K {sl) ) and from the assumption K f 1) > 0 implies that Z(()S) =5 0. Assume that the proposition

is true for mg that is Z;{fz s 0 then from Lemma 2 using that Rﬁii =5 0 at the Step2(P) and using
(46) gives

[ (m)] (#2)"

2
= 2z [I+R§,§Z + (BS) ] =29 . (49)
sT3

/N\
3%
+
NI

N———

S
|

Next using (42)—(45) and (49) at the Step2(C) and from (46) results

T
(Zfi)H) = [I +Q (R(S) ) [I+ v (R(s) ) [I 4T (R(S .
s ms+ 2 ms+§ ms—+
_ 29 (50)

From (49) and (50) we conclude that Z(S)+ , and A )+1 are also symmetric for ms+1 and from Step2(P)

N
~_
—_
| I
| I
)ﬂ
/&\
3=
+
S~

and Step2(C) we get Zf:.Z—i-% =5 0 and Z(S)+1 >s 0. Further from (46) Z ﬁ,szﬁ,il and Zy({fz (R,&Z) are

symmetric matrices. Thus, yields ZTS»SLQR,(S)S s 0 and Zy({fz (Rgl) =5 0. From the Step2(P) results

2
(20, -20) = o (zmg+ 2 (r2))
ms+3 s s s s s

M (Z8IRE) + M <z;;g (R )2> >0

Y
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giving ZS)+1 = Z,(sz Analogously, using (42)-(45) at the Step2(C) results z )+1 = Z(S)+:l . Denoting
5T Mst3
the error by E(Sz = (Kﬁ) — éf) at sth stage from K£ 1) ~s 0 we get (Kf 1))7 >s 0 and using that

Zés) =5 0 (for ms = 0) we get E(() ) is symmetric matrix. Further, it follows that

A <E(()s)) _ Ks (s )) > Mnin <<K§31)>1> + Ak (—Z(()S))
1 F
FON

= /3O

Thus E(gs) =5 0. Assume that for mg the proposition Equz =5 0 is true then using K {81) Eq({:z = Rg{il we
obtain

_ () (s) (s) (s)
= 29, 1o <Rm8+;) [I+\If (Rmﬁé) [Hr <Rm>m ,

From Lemma 2, R,(;iz =5 0 and from (46)

B RY) = RYEL),

T T T
pnl) ()" = mm) () (£42)
— i R R G = (B EGRS),
that is Ef{fz Rﬁii is normal. Thus from Theorem 3 in [30]

s . o) 32
E7(nZ+1 = E7(n2 <R£n)5> = 0. (51)

Theorem 4. Let K be an SPD-BT matrix. If Algorithm 2 is used then K =, 0 and the inequality
(47) holds at every stage s of the recursion.

Proof. The proof follows by induction. Assume that K >, 0 and is block tridiagonal matrix and

Algorithm 2 is used. From the assumption K(!) = K is an SPD matrix and particularly K%l) =5 0,
hence Theorem 3 implies that the inequalities in (47) holds true for s = 1. Assume that K (%) >, 0 then

it follows that K Z-(j) =5 0 for : = 1,2 and are regular and,

S(s) (S) K(J) <K(5)) K(s) =1,2,1 ?é Js (52)

27, ]z”

exist and Si(s) =5 0,7=1,2. Since K& =, 0s0 is (K(S))_l. Further, from Theorem 3 the approximate
-1
inverse Z(®) of Kﬁ) satisfies <K{51)) =5 Z() and Z(®) =, 0 and from Algorithm 2

(100" = (83 2ORE) = xee e

Using (52) and (53) follows K+1) =, 0, and (47) hold true for s + 1.
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Theorem 5. Let K be an SPD-BT matrix of n x n block size. If Kﬁ), s = 1,2,...,n are the

)

diagonal pivoting blocks of K(®) at stage s = 1,2, ..., n obtained by the Algorithm 2, then the sequences

-1
{ZSZH}, obtained by Algorithm 1 converge to (Kﬁ) , s = 1,2,...,n, respectively in Euclidean
matrix norm ||-||, when m, — oo with 33 order of convergence and the inequality
33ms+l T
-1 HR(()S) 2 (KESD
H (k)" = 2 2
1,1 ms+1|| = (s) ’
1T
2

holds true at the sth stage.

T
Proof. By taking the initial approximate inverse Z(()S) =& (K fsl) ) the proof is analogous to the
proof of Theorem 4 in [24].

3.2 Block hybrid preconditioning of the Conjugate Gradient method

We consider the linear system Ku = b where, K >4 0 is a block tridiagonal matrix of the form
(40).

Theorem 6. Let K be an SPD-BT matrix of n x n block size. If K{SI), s = 1,2,...,n are the

)

diagonal pivoting blocks of K®) at stage s = 1,2,...,n obtained by the Algorithm 2, and Z) are
the corresponding approximate inverses obtained by Algorithm 1 by performing m? iterations, then
Z(S)Kfl) are SPD matrices and

s s 1+¢
r(29K) < 7 (54)

-1
where, K (Z(S)KSD = (Z(S)Kfl))
1 is the predescribed accuracy in Algorithm 1.
Proof. On the basis of Theorem 3, we have Kfl)Z(s) = Z(S)K{fl) for every s = 1,2,...,n and

Z) =, 0. Theorem 4 implies that K fsl) s 0 thus the product of two commuting symmetric positive

is the condition number of Z(S)Kfl) and 0 < e <

o
2 2

definite matrices is also symmetric positive definite we get Z(S)Kﬁ) >s 0. Next, since I — KSI)Z(S) is

symmetric matrix and Algorithm 1 gives HI - K fsl)Z (s)

< g, yielding
o

p(1-K020) = |1- k20| <|1-K120|| <e<1.
Therefore,
|22 | <=,
giving
1—e< HK{?}Z<S) ,S1+e (55)
Also . . )
H (29K17) - H (1-1-29K()) e (56)

so from (55) and (56) follows (54). (57)
Theorem 6 shows that Z() may be used as approximate inverse preconditioners for K {81) for s =

1,2, ...,n. Algorithm 3 gives the BHP-CG method for solving Ku = b based on the CG method in [25].
In this algorithm incomplete block factorization LU of K is used as implicit preconditioner while the

(

approximate inverses Z(®) are used as explicit preconditioners for K 151) for s=1,2,...,n.
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Algorithm 3. BHP-CG method.
Ensure: the construction of L and U by using the Algorithm 2.
Require: [ = 0 and ug as an initial guess, rg = b — Kuyg.
Require: p_1 arbitrary and o9 = 0.

1. While “‘fé""oo <n<1ldo
2. Solve the <éoystem LUz = r;. For the solution of the block lower triangular system Lw; = r; where

w; = Uz forward substitution works since the diagonal blocks of L are identity matrices. Then for the
solution of the block upper triangular system U z; = wy, the preconditioned CG method is used to solve

the block subsystems with the explicit preconditioners Z (5) for the matrices K fs)

.If 1 > 1 then compute o7 = (21, LU z) / (z1-1, LU z;_1).
. Else 09 = 0.
. End if.

.pr =z + o1 and ap = (2, LUz) [/ (pi, Kpr),

U = w + ogpp and Ty =1 — g Kpy.

. End while.

. Let I* be the iteration number performed, in 1-8 then %« is the approximate solution satisfying

I oo
. ="

© 00 ~J O Ut = W

‘ oo

4 Numerical investigation
We take D = {(xl,xg) 0<z1 <1,0< 22 < @}, for t € [0, 1] and the prediscribed accuracy ¢ in
Algorithm 1 is taken as 5 x 107°. Also in all tables C PUs stands for Central Processing Unit time in

seconds and ptl stands for per time level wherever they appear. Let in addition, the following notations
be used in this section where K is the matrix in (27) and K is as given in (8).

Mﬁ P Mﬁ p denote the newly developed HDP and classical RDP.

N (MEL), N7 (ME L) denote the size of the matrices K; and K.
Prehm (ML), Pret™(ME L) are the preconditioning time of K; and K.
Con™™(ME ), Con™™(ME ) are the condition number of K; and K.
CTMﬁP, CTM{ir denote the CPUs ptl for the method Mﬁp and Mﬁp.

TCTMﬁP,TCTMﬁP denote the total C PUs required by the method Mﬁp and Mﬁp for solving the
problem on ¢ € [0, 1].

neg means that C'PUs is less than one millisecond.

We present the function e, , defining the error on the grid points D"~y., by eM{ip(h7) obtained

ME (h,T)

from the application of the method Mﬁ p - Similarly we use € to show the error function ¢y, »

obtained by the method Mﬁ p on the grid points D".h2~ In addition, the convergence order of the
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methods Mﬁp and Mﬁp are

[EEEER

H
RMiip = logy 0 ,
HgMﬁP(Q*(u+1)727(A+2))H
o0
R stMﬁP(Z_“»Q_A)
RpMitp — logy oo

HgMﬁp(zme),zf(Mm) H ’
o0

respectively, where p, A are positive integers.

4.1 Test problem: Example 1

ou *u Q%

a, 7+7+f(x1,x2,t) on QT7
ot Ba:% 81'%
u(21,72,0) = 0.0728% 403257 + 1 on D,
u(zy,x2,t) = wv(x1,x2,t) on Sp,
f(z1,20,t) = (3 + %) 272 cos (t3+%> —et
—(6+a) (5+ ) (0.07217* + 0.3257)
v(z1,22,t) = 0.0725T 0325 4 sin(312) + e,

where v is the exact solution. Table 2 shows the CTMiir, CTMiir and the error norms HgMﬁp(huT)

H ME p(hr)

[e.9]

for h = 27# u = 4,5,6,7,8 when 7 = 272 X\ = 6,8,10,12,14 and the order of

o
convergence ?RMﬁP, RMiip for Example 1 when o = 0.8. Table 3 shows the same quantities by using

the methods Mﬁp and Mﬁp when o« = 0.01. These tables indicate that both methods have fourth
order convergence in spatial variables and second order convergence in time variable.

On the other hand the second and fifth columns of these tables show the computational time
CTMiir and CTMiir required for the method Mﬁ p and Mﬁ p respectively. By analyzing the values
of CTMiir and CTMiir we conclude that the proposed method is more economical in computational
time per time level when the BHP-CG method given in Algorithm 3 is applied to solve the derived
systems. This conclusion is also supported by the results given in Table 4 which demonstrates the
number of grid points in the stiffness matrices N7 (M) and N*7(ME ), the preconditioning times
Prehm (ML) and Pre™™(ME L), the condition numbers of the preconditioned matrices Con™™ (M1 ,)
and Con™T (M) and the total computational time required in seconds TCT Miip and TCTMiir of
the methods Mﬁ p and Mﬁ p respectively for Example 1 when oo = 0.8.

Further, when h = 276 and 7 = 2710 for o = 0.8, the grid function ‘EMﬁP(2_6’2_10)’ presenting the
errors in absolute values at four time stages ¢t = 0.25,0.5,0.75,1 by the method Mﬁp are shown in

9| at the same

Figure 3 for Example 1. Analogously, Figure 4 demonstrate the function ‘gMﬁP(TﬁQ

time levels and (h,7) pair and « value obtained by the method MF ,.
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Table 2
Results by the methods M{l, and M, for Example 1 when o = 0.8
(h,T) cTMiip HEMﬁP(h‘T) wpMiir  orMiip HEMﬁP(hv"') RMiip
272 neg 4T9389E — 5 neg 426584E — 5
(27°,27%)  0.047 2.62266F —6  3.9992  0.047 2.66787TE —6  3.9991
(27%,271%)  0.156 1.63922E —7  3.9999  0.234 L66749E —7  3.9999
(277,27"%)  0.641 1.02449E —8  4.0000 1.016 1.04224E —8  3.9999
(27%,271) 2,578 6.40304E — 10  4.0000 4.312 6.51384E — 10 4.0000
Table 3
Results by the methods M{l, and M%, for Example 1 when a = 0.01
(h,7) cTMiip HEMﬁP(h‘T) wpMiir  orMiip HEMﬁP(hv"') RMiip
2727 neg AT9389E — 5 neg 2.98695E — 5
(27°,27%)  0.047 2.62266F —6  3.9994  0.047 1.86757E — 6 3.9994
(27%,271%)  0.188 1.63922E —7  3.9999  0.219 L16726E —7  3.9999
(277,27"%)  0.64 1.02449E —8  4.0000 1.016 7.29597E —9  3.9999
(27%,27'") 25 6.40298E — 10  4.0000 4.25 4.56001E — 10  3.9999
Table 4

Computational efficiency comparison of MY, M, for Example 1 when o = 0.8

(h, T) (274’276) (275’278) (276’2710) (27772712) (278,2714)
N (M) 233 977 4001 16193 65153
NMT (M p) 225 961 3969 16129 65025
Pre™™ (Milp)  neg neg 0.063 0.36 2.797
Pre"™(Mfp)  neg neg 0.062 0.359 2.625
Con™™(M{ip)  0.99997 0.99993 0.99989 0.99986 0.99983
Con™™(M{ip)  0.99991 0.99988 0.99987 0.99985 0.99981
TCTMiiP 0.61 9.09 194.84 2659.03 42582.52
TOTMiir 0.70 11.83 272.91 4258.53 71073.79

‘gmzp(fﬁ-fm)

Figure 3. The grid function |eMiir2™*27")| when t = 0.25,0.5,0.75, 1 by M, for Example 1.
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“C“MSP(TE 27

t=0.25 100

‘gm@(rﬁrm)

Figure 4. The grid function eMiEp(27°27) when t = 0.25,0.5,0.75,1 by Mﬁp for Example 1.

4.2 Test problem: Example 2

ou 0*u 0%

EA X t
ot 8w% + a$% u+f(x17$25 ) on QTa
a7 37 _
u(zy,22,0) = 5:616 +zy +1on D,
u(z1,z2,t) = wv(x1,x2,t) On S,
/o ) 8725 (%) L1472 147
1,2 = — | —tizsin — =z — =z
b 12 72 1 36 2
1 37 37
+0.5 (53316 + x5 + cos <ti’;)> ,
37 37 37
v(xy,x9,t) = §:E16 + x5 + cos (tﬁ),

where, v is the exact solution. Table 5 demonstrates the CTMiip ) TCTMiir and the error norms for
h=2"pu=4,506,78 when 7 = 272 X\ = 6,8, 10, 12, 14 respectively, and the order of convergence

RM{ip for Example 2. Figure 5 shows the absolute error function ‘5M1511P(276727w) for time values

t =0.25,0.5,0.75, 1 obtained by the given method Mﬁp for Example 2.

Table 5

Results by the method M{l, for Example 2

(h,7) crMiir  pOTMiP HeMﬁPW) RMiir
(27527%)  neg 0.61 2.378442F — 5

(275, 2—82 0.047 9.907 1.543029F — 6 3.9462
(27%,271%)  0.172 207.547 1.015411E —7  3.9256
(277,27"%)  0.735 2904.99 6.623985E — 9  3.9382
(27%,27")  2.829 50743 4.251592E — 10 3.9616
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{5

Figure 5. The grid function eM{ip(27%27 | when t = 0.25,0.5,0.75,1 by Mﬁp for Example 2.

5  Conclusion

On a hexagonal system of grids, a novel implicit method is developed for approximating the solution
to the DBVP of the heat equation (2)—(4) on rectangle. Further, by using the modified two-step
iterative method, block hybrid preconditioning of the conjugate gradient method is given. The obtained
theoretical and numerical results demonstrate that the given implicit method is economical since it is
computationally time efficient. We remark that in Section 2, the given implicit scheme on hexagonal
grids was studied in the dissertation [31].
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C.K. Bypanait', H. Amasn?

HITvevie XKepopma menisi ynusepcumemi, Pamazycma, Typrus;
2Payp Jdenwmaw yrusepcumemi, Huxocus, Typrus

Tyiiingec rpa/iueHTTEP J/IICIH OJOKTHI-rUOpUATI KaiiTa miapTrayra
KOJIJaHAa OTBIPHII, YKaHA alfiKbIHEMeC cxeMa OOMBIHIIIA
KBLTYOTKI3TINITIK TeHAEYiH IerTy

BepTTeyain HEri3ri MakCaThl — aJITHIOYPHIIITAPALIH TOP KYHEeCciHIe KaHa albIPBIMIBIK, 9/IICIH 2Kacay apKbLIbI
TIKTOPTOYPBIIITAFbI XKBIITYOTKI3MIITIK TeHeyinin Iupuxiie merTik ecenTepain MentiMin »KybIkTay. By ap-
Hallbl CxeMa CO3Ci3 TYPAKTHI KoHE KEeHICTIKTIK alfHbIMAJIbLIAp OONBIHINA TOPTIHII J9JIIK PETi KOHE YaKBIT
afHBIMAJIBICHI OOMBIHIIIA €KIHII J2JIIIK peTi 6ap TopJap/arbl HAKTHI IIEIIMIe XKaKbIH AN THIHBI JOJIEJIICH/TI.
Exinmminen, Toabik emec G/IOKTHIK (haKTOPJIAHIBIPY CHUMMETPHUSIIBI OH AHBIKTAJFAH OJIOKTBHIK, YIIOYPBIIITHI
MaTpHUIAJIAp YIIiH CAMMETPHUSJIbI OH, aHBIKTAJIFaH KACHETTI CAKTall OTBIPHIN, aiHAJIMAJILI JUATOHAJIBILI OJI-
OKTap/IblH, Kepi >KarblHA >KYBIKTAUTHIH KOHCEPBATHUBTI WUTEPAIUSIJIBIK, 9JIICTI KOJJaHA OTBIPBII OepijreH.
Bonamaxkra dpakTopaasapipy OGJIOTBIHBIH KOMEriMEH AJIBIHFAH aJIreOpaiblK, TEHIEYIep *KYMeCiH op yakbIT
JeHTeiHIe enTy VImiH TYHiHIec TpaIneHTTep oIiCiHin rubpuaTi KaiiTa mapTTaysl KOJTIAHBLIAIbL.

Kiam cesdep: XKbUIyoTKI3riINTIK TeHEyl, aflKbIHEMEC CXEeMa, AJITBIOYPBIIITH TOP, TYPAKTBUIBIKTHI TAJIIAY,
CHMMETPUSLIBI OH AHBIKTAJFaH MAaTPHUIA, KYBIKTAJFAH KePi, TOJBIKEMEC OJIOKTHI (paKTOPJIAHIABIPY, OJIOKTHI-
ruOpuATI KaiiTa mapT KO, TYWIHIEC IPaJueHTTep 9IiCi.

C.K. Bypanaii', H. Aman?

L Bocmorno-cpedusemmomoperutl yrusepcumem, Pamazycma, Typyus;
2 Vnusepcumem Payda Jenkmawa, Hukocua, Typyua

Pelnnene ypaBHeHHS TEIJIOIIPOBOIHOCTHU 110 HOBOM HESIBHOI cXeMe C
MCIIOJIb30BaHNEM OJIOYHO-TMOPUIHOIO IIPe100yCJIOBINBAHNASA METO/IA
COIIPSAXKEHHBIX I'PAANEHTOB

OCHOBHOI! TIEJIBIO MCCJIEIOBAHUS SIBJISIETCS AMMIPOKCUMAITUST PEIeHns KpaeBoit 3amadn /upuxie ypaBHeHUs
TEIJIONPOBOIHOCTH HA MPSIMOYTOJIbHUKE IyTeM pa3pabOTKN HOBOT'O PA3HOCTHOI'O METO/A Ha CETOYHOU Ch-
cTeMe IIECTUYTOJIBHUKOB. JloKa3aHO, 4TO JaHHAs CllenuasbHas cxeMa 06e3yCJIOBHO yCTONYNBA M CXOIUTCS K
TOYHOMY PEIIEHUIO Ha CETKAaX C YeTBEPTHIM HOPSIKOM TOYHOCTH IO IIPOCTPAHCTBEHHBIM IIEPEMEHHBIM U BTO-
PBIM HOPSIIKOM TOYHOCTH 10 BDEMEHHOM! 1epeMeHHo. Bo-BTOpBIX, HemoHast 6109Has1 haKTOpU3aIus JaHa
JJIsl CUMMETPUYHBIX TOJIOKUTEIHLHO OIPEJIEJIEHHBIX OJIOYHBIX TPEXIUArOHAJBHBIX MAaTPHUIL C HUCIIOJIH30Ba-
HHEM KOHCEPBATUBHOTO UTEPATUBHOTO METOA, KOTOPBI AIITPOKCUMHUPYET OOPATHYIO CTOPOHY TTOBOPOTHBIX
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JIUArOHAJIBHBIX OJIOKOB, COXPAHSs CUMMETPUYHOE IIOJIOXKUTEILHO OIpeJIeJIEHHOEe CBOUCTBO. B naspHeliniem
C IIOMOIIBIO 9TOro HJI0Ka (haKTOpU3AIMH IPUMEHEHO MMOpH/IHOE Peo0YCIOBINBAHIE METO/IA COIPSIZKEH-
HBIX TDPAIMEHTOB JJIsi PEIIeHNs MOy YEHHOM aarebpamdecKoil CHCTeMbl yPABHEHUN HA KaXKJOM BPEMEHHOM
YPOBHe.

Karoueswie carosa: ypaBHEHUE TEILJIONPOBOIHOCTH, HEsIBHASI CXeMa, TE€KCAIOHAJIbHAS CETKA, AHAJIN3 YCTOWYIN-
BOCTH, CHMMETPUYHAS TIOJIOKUTETBLHO OIpeeieHHAsT MATPUIA, TPUOJINKEeHHAss 0OpaTHast, HEloJHasT 0104~
Has paKTopU3aIns, 0JJOUYHO-TUOPUIHOE TIPEI00YCIIOBINBAHUE, METOI, CONIPSIXKEHHBIX I'PAJIMEHTOB.
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