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Solution of heat equation by a novel implicit scheme using block
hybrid preconditioning of the conjugate gradient method

The main goal of the study is the approximation of the solution to the Dirichlet boundary value problem
(DBVP) of the heat equation on a rectangle by developing a new difference method on a grid system
of hexagons. It is proved that the given special scheme is unconditionally stable and converges to the
exact solution on the grids with fourth order accuracy in space variables and second order accuracy in
time variable. Secondly, an incomplete block factorization is given for symmetric positive definite block
tridiagonal (SPD-BT) matrices utilizing a conservative iterative method that approximates the inverse of
the pivoting diagonal blocks by preserving the symmetric positive definite property. Subsequently, by using
this factorization block hybrid preconditioning of the conjugate gradient (BHP-CG) method is applied to
solve the obtained algebraic system of equations at each time level.

Keywords: Heat equation, implicit scheme, hexagonal grid, stability analysis, symmetric positive definite
matrix, approximate inverse, incomplete block factorization, block hybrid preconditioning, conjugate gradient
method.

Introduction

For many mathematical models, especially partial differential equations (PDEs), their analytical
solutions are not available. Therefore, for computing the approximate solutions economical and stable
numerical algorithms based on effective theoretical results are getting more important as more advanced
computers are designed.

Among some numerical methods for approximating the solutions of PDEs, the finite difference
method is a widely used approach and the construction of stable and time efficient schemes are essential.
Recent advances in finite difference methods for solving PDEs include [1–7].

More then a half century ago, in 1967, the approximation of the pure diffusion equation

∂u

∂t
=
∂2u

∂x21
+
∂2u

∂x22
,

on regular hexagonal grids was analyzed by giving two implicit difference schemes, defined on three
layers with 21-point and on two layers with 14-point both with fourth order accuracy in space and
second order accuracy in time [8].

Since then, the applicability of the hexagonal grids in many branches of science has been investigated.
Among them is the research on eligibility of the icosahedral-hexagonal grids in meteorological applications.
Finite difference schemes on a spherical geodesic grid were given to integrate the barotropic vorticity
equation [9,10]. Further, the hexagonal grid was extended to the integration of the primitive equations
of fluid dynamics [11–13]. Later, an integration scheme of the primitive equation model by using on
icosahedral-hexagonal grid system with an application to the shallow water equation was given [14].
Additionally, for the simulations of oscillations in shallow circular basins, finite difference techniques
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on the irregular grids were analyzed [15]. Furthermore, hexagonal grids were used for the simulation
of atmospheric processes [16].

Nowadays, the investigation of triangular and hexagonal system of grids has gained more interest
in engineering, applied sciences, computer science, natural sciences and in environmental sciences.
Such as the numerical solution of boundary value problems of PDEs using finite difference method
in convection diffusion equation [17], in the Laplace equation [18], and in the heat equation [5], and
derivatives of the solution to the heat equation [6, 7]. Additionally, hexagonal grids were also used in
finite volume method [19]. For digital image processing and graph processing, some examples include
[20] where digitized rotations of 12 neighbors on the triangular grid were given by considering more
general setting especially the midpoint, the corner points and the edge midpoints as rotation centers.
Also, in [21] the bijectivity of the digitized rotations for the closest neighbors in rectangular, triangular
and hexagonal grids were compared. In addition, the firefighter problem, which is an iterative graph
process, was studied on hexagonal grids in [22]. For hydrologic modelling, we mention the study by
[23] in which a watershed delineation model using the hexagonal grid spatial discretization method
was developed.

The contributions of this work can be summarised as: the DBVP of the heat equation

∂u

∂t
= ω

(
∂2u

∂x21
+
∂2u

∂x22

)
− bu+ f (x1, x2, t) , (1)

given on a rectangleD where ω > 0, b ≥ 0 are constants is considered. A new difference method of order
of convergence O

(
h4 + τ2

)
with 14-point on two layers constructed on hexagonal grids is proposed.

Here, the increments in the variables x1 and x2 are denoted by h and
√
3
2 h accordingly and τ denotes

the increment in time. Further, the unconditional stability of the given scheme is shown. Furthermore,
for SPD-BT matrices an incomplete block matrix factorization algorithm is developed. At each stage of
the recursion for approximating the pivoting diagonal block matrix inverses, the constructed algorithm
uses a two step iterative method with very high rate of convergence (order 33 see [24]). It is proven that
at each iteration the pivoting diagonal block matrix and its approximate inverse are symmetric positive
definite (SPD) matrices. Subsequently this factorization and the pivoting block approximate inverses
are used to precondition the conjugate gradient method [25], which we call block hybrid preconditioning
of the conjugate gradient (BHP-CG) method.

1 DBVP of the heat equation and discretization

We take the rectangle D = {x = (x1, x2) : 0 < x1 < a1, 0 < x2 < a2}. We denote its sides by υj ,

j = 1, 2, 3, 4 and its boundary by S =
4⋃
j=1

υj , so thatD = D∪S is the closure ofD. LetQT = D×(0, T ) ,

and indicate the lateral surface by ST = {(x, t) , x ∈ S, t ∈ [0, T ]} and the closure of QT by QT . We
consider the DBVP of heat equation in (1)

∂u

∂t
= ω

(
∂2u

∂x21
+
∂2u

∂x22

)
− bu+ f (x1, x2, t) on QT , (2)

u (x1, x2, 0) = ϕ (x1, x2) on D, (3)
u (x1, x2, t) = φ (x1, x2, t) on ST , (4)

where ω > 0 and b ≥ 0 are constant. In this study, further investigations are given with the assumption
that DBVP in (2)–(4) has the unique solution u from the Hölder space C6+α,3+α

2
x,t

(
QT
)
, 0 < α < 1.
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1.1 Implicit scheme on rectangular grids

First we consider the classical rectangular grid approximation of the problem (2)–(4) when the
value of the constant b = 0 in Equation (2). We take the step sizes h1 = a1

M1
and h2 = a2

M2
where, M1

and M2 are positive integers. Further, the set of rectangular grids on D is defined as

Dh1,h2 = {x = (x1, x2) ∈ D : xi = lihi, li = 1, 2, ...Mi − 1, i = 1, 2} .

Let Sh1,h2 be the set of rectangular grid points on S and Dh1,h2 = Dh1,h2∪ Sh1,h2 . Further let,

γτ =

{
tk = kτ, τ =

T

M ′
, k = 1, ...,M ′

}
,

γτ =

{
tk = kτ, τ =

T

M ′
, k = 0, ...,M ′

}
.

Also

Dh1,h2γτ = Dh1,h2 × γτ =
{

(x, t) : x ∈ Dh1,h2 , t ∈ γτ
}
,

Sh1,h2T = Sh1,h2 × γτ =
{

(x, t) : x ∈ Sh1,h2 , t ∈ γτ
}
.

The following unconditionally stable 14-point implicit method on rectangular grids is considered [26].
Rectangular Difference Problem (RDP)

Γuh,τ = ωσ1Λ1u
k+1
h,τ + ω (1− σ1) Λ1u

k
h,τ + ωσ2Λ2u

k+1
h,τ + ω (1− σ2) Λ2u

k
h,τ

+ω
h21 + h22

12
Λ1Λ2u

k
h,τ + β on Dh1,h2γτ , (5)

uh,τ = ϕ (x1, x2) , t = 0 on Dh1,h2 , (6)

uh,τ = φ (x1, x2, t) on Sh1,h2T , (7)

where

σ1 =
1

2
− h21

12τ
, σ2 =

1

2
− h22

12τ
,

Γu =
u (x1, x2, t+ τ)− u (x1, x2, t)

τ
,

Λ1u
k = [u (x1 + h1, x2, t)− 2u (x1, x2, t) + u (x1 − h1, x2, t)] /h21,

Λ2u
k = [u (x1, x2 + h2, t)− 2u (x1, x2, t) + u (x1, x2 − h2, t)] /h22,

β = f
k+ 1

2
P0

+
h21
12

Λ1f
k+ 1

2
P0

+
h22
12

Λ2f
k+ 1

2
P0

,

and f
k+ 1

2
P0

= f(x1, x2, t + τ
2 ). The scheme has the order of accuracy O

(∣∣∣ĥ∣∣∣4 + τ2
)
. Here,

∣∣∣ĥ∣∣∣ =√
h21 + h22 and we denote the system (5)–(7) by

K̃1U
k+1 = K̃2U

k + τF̃ k
∗
, (8)

where K̃1, K̃2 are real block tridiagonal matrices with 5 nonzero and 9 nonzero diagonals, respectively.
The vector F̃ k∗ is computed from the initial and boundary function values and the heat source function
f.
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1.2 Novel implicit scheme on hexagonal grids

Let N1 be a positive integer and h = a1/N1 > 0. For the ease of explanation of the new scheme we
assume that a2 is multiple of

√
3. Using the step size h we assign a hexagonal grid on D and denote

this set by Dh as

Dh =

{
x = (x1, x2) ∈ D : x1 =

p− q
2

h, x2 =

√
3(p+ q)

2
h,

p = 1, 2, ..., q = 0± 1± 2, ...} .

Further Dh is the closure of Dh. In addition, P0 is the center and Pi, i = 1, ..., 6 are the neighboring
points in the pattern Patt (P0) of the hexagon. The set of interior nodes are categorized as regular
and irregular hexagons. Those hexagons with Patt (P0) ∈ D

h are called regular and those with a
center P0 that lies h

2 units away from the boundary are called irregular hexagons. The set of irregular
hexagons with a left ghost point are denoted by D∗lh and those with a right ghost point are presented
by D∗rh. Also, D∗h = D∗lh ∪ D∗rh and D0h = Dh\D∗h. Table 1 presents the function values of u,
f and the second order pure derivatives of f . In this table, if P0 ∈ D∗lhγτ then the value of ŝ = 0
and if P0 ∈ D∗rhγτ then ŝ = a1. Besides k + l, l = 0, 12 , 1 denote the time levels t = (k + l) τ for
k = 0, 1, ...,M ′ − 1. Furthermore, the numerical solution on hexagonal grid system is presented by
uk+1
h,τ,Pi

, i = 0, ..., 6, and at boundary points by uk+1
h,τ,PA

, when t = (k + 1) τ, for k = 0, 1, ...,M ′ − 1.
Figure 1 illustrates the irregular hexagons and the exact solution at the center and the neighbouring
points of the pattern at t = kτ and (k + 1) τ time levels.

T a b l e 1

Notations used to denote the function values.

uk+1
P0

= u(x1, x2, t+ τ) uk+1
PA

= u(ŝ, x2, t+ τ)

uk+1
P1

= u(x1 − h
2
, x2 +

√
3

2
h, t+ τ), f

k+ 1
2

P0
= f(x1, x2, t+

τ
2
)

uk+1
P2

= u(x1 − h, x2, t+ τ) fk+1
PA

= f(ŝ, x2, t+ τ)

uk+1
P3

= u(x1 − h
2
, x2 −

√
3

2
h, t+ τ) f

k+ 1
2

PA
= f(ŝ, x2, t+

τ
2
)

uk+1
P4

= u(x1 +
h
2
, x2 −

√
3

2
h, t+ τ) fkPA = f(ŝ, x2, t)

uk+1
P5

= u(x1 + h, x2, t+ τ) ∂2
x1f

k+ 1
2

P0
= ∂2f

∂x21

∣∣∣
(x1,x2,t+

τ
2
)

uk+1
P6

= u(x1 +
h
2
, x2 +

√
3

2
h, t+ τ) ∂2

x2f
k+ 1

2
P0

= ∂2f

∂x22

∣∣∣
(x1,x2,t+

τ
2
)

Figure 1. The illustration of the irregular hexagons and the solution for two time echelons.

Also on the hexagon system of grids we present the set of hexagonal grids on S by Sh and the sets

Dhγτ = Dh × γτ =
{

(x, t) : x ∈ Dh, t ∈ γτ
}
,

ShT = Sh × γτ =
{

(x, t) : x ∈ Sh, t ∈ γτ
}
,
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present interior, and lateral surface nodes respectively. Let D∗lhγτ = D∗lh × γτ ⊂ Dhγτ and D∗rhγτ =
D∗rh × γτ ⊂ Dhγτ and D∗hγτ = D∗lhγτ ∪ D∗rhγτ , also D0hγτ = Dhγτ\D∗hγτ . Figure 2 shows the
hexagonal grid covering of the rectangle D for three time levels t− τ, t and t+ τ, on which the ghost
points are denoted by red colour.

Figure 2. Hexagonal grid covering of the rectangle D for three time echelons t− τ, t and t+ τ.

We propose the next difference problem on hexagon system of grids to approximate the solution of the
DBVP in (2)–(4).

Hexagonal Difference Problem (HDP)

Θ1
h,τu

k+1
h,τ = Λ1

h,τu
k
h,τ + ψ1 on D0hγτ , (9)

Θ2
h,τu

k+1
h,τ = Λ2

h,τu
k
h,τ + Eh,τφ+ ψ2 on D∗hγτ , (10)

uh,τ = ϕ (x1, x2) on t = 0, Dh, (11)
uh,τ = φ (x1, x2, t) on ShT , (12)

k = 1, 2, ...,M ′ − 1, where

ψ1 = f
k+ 1

2
P0

+
1

16
h2
(
∂2x1f

k+ 1
2

P0
+ ∂2x2f

k+ 1
2

P0

)
, (13)

ψ2 =
h2

96τω

(
fk+1
PA
− fkPA

)
−
(

1

6
− h2b

96ω

)
f
k+ 1

2
PA

+ f
k+ 1

2
P0

+
1

16
h2
(
∂2x1f

k+ 1
2

P0
+ ∂2x2f

k+ 1
2

P0

)
, (14)

Θ1
h,τu

k+1 =

(
3

4τ
+

2ω

h2
+

3

8
b

)
uk+1
P0

+

(
1

24τ
− ω

3h2
+

b

48

) 6∑
i=1

uk+1
Pi

, (15)

Λ1
h,τu

k =

(
3

4τ
− 2ω

h2
− 3

8
b

)
ukP0

+

(
1

24τ
+

ω

3h2
− b

48

) 6∑
i=1

ukPi , (16)

Θ2
h,τu

k+1 =

(
17

24τ
+

7ω

3h2
+

17

48
b

)
uk+1
P0

+

(
1

24τ
− ω

3h2
+

b

48

)
(u(s+ η, x2, t+ τ)

+u(s, x2 +

√
3

2
h, t+ τ) + u(s, x2 −

√
3

2
h, t+ τ)

)
,
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Eh,τφ =

(
− 1

36τ
+

2ω

9h2
− b

72

)(
φ(ŝ, x2 +

√
3

2
h, t+ τ) + φ(ŝ, x2 −

√
3

2
h, t+ τ)

)

+

(
1

36τ
+

2ω

9h2
− b

72

)(
φ(ŝ, x2 +

√
3

2
h, t) + φ(ŝ, x2 −

√
3

2
h, t)

)

+

(
1

18τ
+

8ω

9h2
− h2b

48ωτ
+

b

36
− h2b2

192ω

)
φ(ŝ, x2, t+ τ)

−
(

1

18τ
− 8ω

9h2
− h2b

48ωτ
− b

36
+
h2b2

192ω

)
φ(ŝ, x2, t),

Λ2
h,τu

k =

(
17

24τ
− 7ω

3h2
− 17

48
b

)
ukP0

+

(
1

24τ
+

ω

3h2
− b

48

)(
u(s, x2 +

√
3

2
h, t)

+u(s, x2 −
√

3

2
h, t) + u(s+ η, x2, t)

)
,

and
if P0 ∈ D∗lhγτ , then s = h, ŝ = 0, η = h

2 .
if P0 ∈ D∗rhγτ , then s = a1 − h, ŝ = a1, η = −h

2 .

2 Analysis of HDP (9)-(12)

First we analyze the approximation order of the special scheme in HDP (9)–(12).
Theorem 1. The scheme HDP (9)–(12) has the approximation order O

(
h4 + τ2

)
.

Proof. Let (x1, x2, t+ τ) and (x1, x2, t) ∈ Dhγτ be the centers (P0) of the hexagons at time moment
(k + 1) τ and kτ respectively for k = 0, ...,M ′ − 1. From Equation (9) and using (13), (15) and (16)
for regular hexagonal grids the scheme is

3

4

uk+1
h,τ,P0

− ukh,τ,P0

τ
+

1

24

6∑
i=1

uk+1
h,τ,Pi

− ukh,τ,Pi
τ

=
ω

3h2

(
6∑
i=1

uk+1
h,τ,Pi

− 6uk+1
h,τ,P0

)
+

ω

3h2

(
6∑
i=1

ukh,τ,Pi − 6ukh,τ,P0

)

− b

48

6∑
i=1

uk+1
h,τ,Pi

− 3

8
buk+1
h,τ,P0

− b

48

6∑
i=1

ukh,τ,Pi −
3

8
bukh,τ,P0

+f
k+ 1

2
P0

+
1

16
h2
(
∂2x1f

k+ 1
2

P0
+ ∂2x2f

k+ 1
2

P0

)
. (17)

For the irregular hexagons the following approximations are used for i = 2, 5

uk+1
h,τ,Pi

+ ukh,τ,Pi =
h2

2τω
uk+1
h,τ,PA

+
8

3
uk+1
h,τ,PA

− uk+1
h,τ,P0

− 1

3
uk+1
h,τ,Pi−1

−1

3
uk+1
h,τ,Pi+1

− h2

2τω
ukh,τ,PA +

8

3
ukh,τ,PA − u

k
h,τ,P0

−1

3
ukh,τ,Pi−1

− 1

3
ukh,τ,Pi+1

+
h2b

4ω

(
uk+1
h,τ,PA

+ ukh,τ,PA

)
− h

2

2ω
f
k+ 1

2
PA

+O
(
h4 + h2τ2

)
. (18)
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uk+1
h,τ,Pi

− ukh,τ,Pi = −uk+1
h,τ,P0

− 1

3
uk+1
h,τ,Pi+1

− 1

3
uk+1
h,τ,Pi−1

+
8

3
uk+1
h,τ,PA

+ ukh,τ,P0
+

1

3
ukh,τ,Pi−1

+
1

3
ukh,τ,Pi+1

−8

3
ukh,τ,PA +

h2b

4ω

(
uk+1
h,τ,PA

− ukh,τ,PA
)

− h
2

4ω

(
fk+1
PA
− fkPA

)
+O

(
h4 + h2τ

)
. (19)

Hence, the scheme (10) is obtained by substituting (18) and (19) in (17). Consequently, the error
function εh,τ = uh,τ − u satisfies the next difference problem

Θ1
h,τε

k+1
h,τ = Λ1

h,τε
k
h,τ + Ψk

1 on D0hγτ , (20)

Θ2
h,τε

k+1
h,τ = Λ2

h,τε
k
h,τ + Ψk

2 on D∗hγτ , (21)

εh,τ = 0 on t = 0, Dh, (22)
εh,τ = 0 on ShT , (23)

where

Ψk
1 = Λ1

h,τu
k −Θ1

h,τu
k+1 + ψ1, (24)

Ψk
2 = Λ2

h,τu
k −Θ2

h,τu
k+1 + Eh,τφ+ ψ2, (25)

and ψ1, ψ2 are as given in (13), (14) respectively. Using Taylor’s expansion around the point
(
x1, x2, t+ τ

2

)
we obtain Ψk

1 = O
(
h4 + τ2

)
and Ψk

2 = O
(
h4 + τ2

)
.

Next, we analyze the stability for the special scheme in HDP. At every time stage using standard
ordering the hexagon points in Dhγτ are labeled as Ej , j = 1, 2, ..., N . Thus, all hexagon centers have
the neighboring topology denoted by the following set

SE = {(i, j) : if the grid Ei ∈ Patt (Ej) , i 6= j, 1 ≤ i, j ≤ N} , (26)

exhibiting the sparsity structure of Inc ∈ RN×N called the incidence matrix with entries

[Inc]ij =

{
0 if (i, j) /∈ SE ,
1 if (i, j) ∈ SE .

Further, the scheme in HDP can be put in the subsequent matrix form

K1U
k+1 = K2U

k + τF k
∗
, (27)

where, K1,K2 ∈ RN×N are given as

K1 =
(
S1 +

ωτ

h2
S2

)
, K2 =

(
S1 −

ωτ

h2
S2

)
, (28)

S1 = D1 +
1

24
Inc, S2 = B +

bh2

ω
C, (29)

B = D2 −
1

3
Inc, C = D3 +

1

48
Inc. (30)

Also the computed values of f in (13), (14) and the values of ϕ and φ in HDP (9)–(12) are presented
by the vector F k∗ ∈ RN . Further, D1, D2, D3 are diagonal matrices with entries

[D1]jj =

{
3
4 if Ej ∈ D0hγτ
17
24 if Ej ∈ D∗hγτ

, j = 1, 2, ..., N,
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[D2]jj =

{
2 if Ej ∈ D0hγτ
7
3 if Ej ∈ D∗hγτ

, j = 1, 2, ..., N,

[D3]jj =

{
3
8 if Ej ∈ D0hγτ
17
48 if Ej ∈ D∗hγτ

, j = 1, 2, ..., N,

accordingly. The stiffness matrix K1 at the (k + 1)th time level and the coefficient matrix K2 at the
kth time level both have 7 nonzero diagonals. Next we analyze the properties of the derived matrices.

Lemma 1. a) S1 in (29) and the matrices B and C in (30) are SPD matrices. b) K1 in (28) and S2
in (29) are SPD matrices.

Proof. a) Using (26) if Ei ∈ Patt (Ej) for i 6= j, 1 ≤ i, j,≤ N this implies that Ej ∈ Patt (Ei)
giving IncT = Inc. Thus, S1, B, and C are real symmetric matrices hence the eigenvalues of S1, B,
and C are real. Hexagonal grid is connected grid in the rectangle D thus, by using (30) it can be easily
shown that the matrix B has positive diagonal entries, i.e. bii > 0, i = 1..., N and it is irreducibly
diagonally dominant matrix. Further, the matrices S1, and C also have positive diagonal entries and
are strictly diagonally dominant matrices [27] therefore, S1, B and C are SPD matrices. b) From (29),
since the sum of two SPD matrices is also an SPD matrix, S2 and K1 are SPD matrices.

Theorem 2. The constructed scheme HDP on hexagon system of grids is stable for any h > 0 and
τ > 0 and the approximate solution uh,τ converges to the exact solution u with O

(
h4 + τ2

)
of accuracy

on the hexagonal grids.
Proof. From Lemma 1, the matrix S1 is an SPD matrix hence invertible. The linear system (27)

can be written as(
I +

ωτ

h2
(S1)

−1 S2

)
Uk+1 =

(
I − ωτ

h2
(S1)

−1 S2

)
Uk + τ (S1)

−1 F k
∗
, (31)

where I ∈ RN×N is the identity matrix. On the other hand using (28)–(30) we can express the matrices
S1, C and S2 as linear combination of the identity matrix I and the matrix B as:

S1 = I − 1

8
B, C =

1

2
I − 1

16
B, S2 =

1

2

bh2

ω
I +

(
1− 1

16

bh2

ω

)
B. (32)

Because (S1)
−1 S2 commutes and S1 and S2 are symmetric implies that (S1)

−1 S2 is also a symmetric
matrix. Since the product of two SPD matrices that commute is also an SPD matrix [27, 28] gives
λs

(
(S1)

−1 S2

)
> 0. LetA =

(
I + ωτ

h2
(S1)

−1 S2

)
obviouslyA is an SPDmatrix. Let Â =

(
I − ωτ

h2
(S1)

−1 S2

)
.(

A−1Â
)T

= ÂA−1 =
(
I − ωτ

h2
(S1)

−1 S2

)(
I +

ωτ

h2
(S1)

−1 S2

)−1
=

1

det
(
I + ωτ

h2
(S1)

−1 S2

) (I − ωτ

h2
(S1)

−1 S2

)
Adj

(
I +

ωτ

h2
(S1)

−1 S2

)

=
(
I +

ωτ

h2
(S1)

−1 S2

)−1 I − 1

det
(
I + ωτ

h2
(S1)

−1 S2

) (I +
ωτ

h2
(S1)

−1 S2

)
(ωτ
h2

(S1)
−1 S2

)
Adj

(
I +

ωτ

h2
(S1)

−1 S2

)]
=

(
I +

ωτ

h2
(S1)

−1 S2

)−1 (
I − ωτ

h2
(S1)

−1 S2

)
= A−1Â. (33)

Thus A−1Â is a symmetric matrix, then there exists an orthogonal matrix P̃ and a diagonal matrix D̃
with diagonal entries of eigenvalues λs

(
(S1)

−1 S2

)
so that(

I +
ωτ

h2
(S1)

−1 S2

)
= P̃ T

(
I +

ωτ

h2
D̃
)
P̃ ,
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and (
I +

ωτ

h2
(S1)

−1 S2

)−1
= P̃ T

(
I +

ωτ

h2
D̃
)−1

P̃ .

Thus, (
I +

ωτ

h2
(S1)

−1 S2

)−1 (
I − ωτ

h2
(S1)

−1 S2

)
= P̃ T

(
I +

ωτ

h2
D̃
)−1

P̃ P̃ T
(
I − ωτ

h2
D̃
)
P̃ ,

that is, the matrix A−1Â is similar to
(
I + ωτ

h2
D̃
)−1 (

I − ωτ
h2
D̃
)
. Hence, from (33)∥∥∥A−1Â∥∥∥

2
= ρ

(
A−1Â

)
= max

1≤s≤N

∣∣∣∣λs [(I +
ωτ

h2
D̃
)−1 (

I − ωτ

h2
D̃
)]∣∣∣∣

≤

∣∣∣∣∣∣∣
1− ωτ

h2
min

1≤s≤N
(λs

(
(S1)

−1 S2

)
)

1 + ωτ
h2

min
1≤s≤N

(λs

(
(S1)

−1 S2

)
)

∣∣∣∣∣∣∣ < 1 for
ωτ

h2
> 0 (34)

and from Gerchgorin’s circle theorem we have

0 < λs (B) ≤ 4. (35)

From (32) and (35) and on the basis of Lemma 1 that K1 = S1 + ωτ
h2
S2 is an SPD matrix we have

K1 =

(
1 +

1

2
τb

)
I +

(
−1

8
+
ωτ

h2
− bτ

16

)
B

λs (K1) = λs

(
S1 +

ωτ

h2
S2

)
=

(
1 +

1

2
τb

)
+

(
−1

8
+
ωτ

h2
− bτ

16

)
λs (B)

ρ
(

(K1)
−1
)

= ρ

((
S1 +

ωτ

h2
S2

)−1)
=

∥∥∥∥(S1 +
ωτ

h2
S2

)−1∥∥∥∥
2

≤ 1

κ
,

where κ = min
{

1 + 1
2τb,

1
2 + 1

2bτ + 4ωτ
h2

}
, then∥∥∥(K1)

−1
∥∥∥
2
≤ 1

κ
< 2. (36)

Next using (34) and (36) by induction results,∥∥∥Uk+1
∥∥∥
2
≤

∥∥∥A−1Â∥∥∥
2

∥∥∥Uk∥∥∥
2

+ τ
∥∥∥(K1)

−1
∥∥∥
2

∥∥∥F k∗∥∥∥
2

≤
∥∥U0

∥∥
2

+ 2

k∑
k′=0

τ
∥∥∥F k′∗∥∥∥

2
. (37)

The error function εh,τ satisfying (20)–(23) can also be given in the matrix form (31) as(
I +

ωτ

h2
(S1)

−1 S2

)
εk+1 =

(
I − ωτ

h2
(S1)

−1 S2

)
εk + τ (S1)

−1 Ψ̂k∗ , (38)

where εk+1, εk and Ψ̂k∗ ∈ RN and Ψ̂k∗ involves the truncation errors given in (24), (25). Thus, on the
basis of Theorem 1 and using (24), (25) and (37), (38) we obtain∥∥∥εk+1

∥∥∥
2
≤ 2

k∑
k′=0

τ
∥∥∥Ψ̂k′

∗∥∥∥
2
≤ c1

(
h4 + τ2

)
. (39)
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Here, c1 is a positive constant independent of h and τ . The matrix A−1Â is a normal matrix since it
is also a symmetric real matrix. The inequality in (34) is sufficient as well as necessary for stability
from the Von Neuman condition for stability [29]. Therefore, the unconditional stability of the implicit
scheme (9), (10) follows from (37). Let

∥∥∥εk+1
h,τ

∥∥∥
C

= max
Dhγτ∩{t=(k+1)τ}

∣∣∣εk+1
h,τ

∣∣∣ =
∥∥εk+1

∥∥
∞ , then by using

(39) and norm concordance we get∥∥∥εk+1
h,τ

∥∥∥
C
≤
∥∥∥εk+1

∥∥∥
2
≤ c1

(
h4 + τ2

)
.

Therefore, the order of accuracy of the approximate solution uh,τ to the exact solution u is O
(
h4 + τ2

)
.

3 Incomplete block matrix factorization and preconditioning of an SPD-BT matrix

In this section, for a real block matrix K ∈ RN×N of block size n×n, the inequality K �s 0 defines
that K is symmetric positive semi-definite (SPSD) matrix and K �s 0 denotes that K is a symmetric
positive definite (SPD) matrix. Analogously, A �s B (A �s B) denotes A − B �s 0 (A − B �s 0).
Further, for a symmetric matrix K, λk (K) denotes the kth eigenvalue of K ordered in increasing order
and λmin and λmax are the minimum and maximum eigenvalues respectively.

3.1 Block incomplete decomposition algorithm and analysis

We consider symmetric positive definite block tridiagonal (SPD-BT) matrix

K =


K1,1 K1,2 · · · 0

K2,1 K2,2 K2,3
...

...
. . . . . . Kn−1,n

0 · · · Kn,n−1 Kn,n

 , (40)

of n × n, block size. Additionally, the nonzero blocks may be dense and Kp,q is of size np × nq (1 ≤
np, nq ≤ n) which includes the case where all or some Kp,q are scalar entries of K and main diagonal
blocks Kp,p are square matrices. We consider approximate factorization of K = LU−Q in block matrix
form of a lower block triangular matrix L and an upper block triangular matrix U . We repartition the
matrix K into 2× 2 block form and initially for s = 1, take K(1) = K

K(s) =

[
K

(s)
1,1 K

(s)
1,2

K
(s)
2,1 K

(s)
2,2

]
, (41)

where K(s)
1,1 is the current pivot and K(s)

i,j is of order n(s)i × n
(s)
j for i, j = 1, 2 and n(s)2 >> n

(s)
1 , also

n
(s)
1 = ns for s = 1, 2, ..., n.

For M−matrices the two-step iterative method for approximating the pivoting diagonal block
inverses with rate of convergence 33 was given in [24]. Algorithm 1 approximates the inverse of the
pivoting diagonal block matrix of a block tridiagonal matrixK �s 0, analogous to the two-step iterative
method in [24] however, is modified in the choice of the initial approximate inverse Z(s)

0 at every stage
s. Further, Algorithm 2 gives incomplete block factorization of a SPD-BT matrix K, (see also [27] for
incomplete block decomposition techniques of matrices with special structure).

Algorithm 1. Modified two-step iterative method (MTSIM) for approximate matrix inversion.
Require: The predescribed accuracy ε > 0.

Mathematics series. № 1(109)/2023 67



S.C. Buranay, N. Arshad

Ensure: I is the identity matrix and ms = 0, 1, ..., is the iteration at stage s. Also,

R(s)
ms = I −K(s)

1,1Z
(s)
ms and Ω(R(s)

ms) = R(s)
ms +

(
R(s)
ms

)2
,

Ψ(R(s)
ms) =

(
R(s)
ms

)2
+
(
R(s)
ms

)4
and Γ(R(s)

ms) =
(
R(s)
ms

)4
.

1. Initial step

Step1(I)

β(s) = λmax

(
K

(s)
1,1

(
K

(s)
1,1

)T)

ms = 0, Z
(s)
0 =

(
K

(s)
1,1

)T
β(s)

, and R(s)
0 = I −K(s)

1,1Z
(s)
0 .

2. Prediction and correction steps:
While

∥∥∥R(s)
ms

∥∥∥
∞
≤ ε < 1 do

Step2(P)

Z
(s)

ms+
1
2

= Z(s)
ms

[
I + Ω(R(s)

ms)
]
,

R
(s)

ms+
1
2

= I −K(s)
1,1Z

(s)

ms+
1
2

,

Step2(C)

Z
(s)
ms+1 = Z

(s)

ms+
1
2

[
I + Ω

(
R

(s)

ms+
1
2

)[
I + Ψ

(
R

(s)

ms+
1
2

)[
I + Γ

(
R

(s)

ms+
1
2

)]]]
,

R
(s)
ms+1 = I −K(s)

1,1Z
(s)
ms+1, increase ms by one.

End while.
3. Terminating step: Z(s) denotes the matrix Z(s)

m∗s
obtained for performing m∗s iterations.

Algorithm 2. Incomplete block matrix factorization of K �s 0.
Require: s = 1 and K(1) = K.
1. Partition K(s) as in (41).
2. While s ≤ n do
find the approximate inverse Z(s) of K(s)

1,1 using the Algorithm 1.
Ensure: K̂(s) is an approximation of K(s) factored as

K̂(s) = L(s)U (s) =

[
I 0

K
(s)
2,1Z

(s) I

][
K

(s)
1,1 K

(s)
1,2

0 K(s+1)

]
,

where, K(s+1) = K
(s)
2,2 −K

(s)
2,1Z

(s)K
(s)
1,2 .

4. End while.
5. The matrix L in the final approximate factorization of K is block lower triangular matrix with
diagonal blocks being identity matrix and the sth column of its lower triangular part is formed by
K

(s)
2,1Z

(s).

6. The matrix U is block upper triangular with block diagonal matrix
{
K

(1)
1,1 ,K

(2)
1,1 , ...,K

(n)
1,1

}
and the

sth row of its upper triangular part is formed by K(s)
1,2 .
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Lemma 2. Let K be an SPD-BT matrix and K(s)
1,1 be the pivoting diagonal block at stage s of the

Algorithm 2. If K(s)
1,1 �s 0, then R(s)

ms �s 0 for every ms = 0, 1, ..., and

ρ
(
R

(s)
0

)
< 1,

R
(s)
ms+1 =

(
R

(s)
0

)33ms+1

,

where ρ
(
R

(s)
0

)
is the spectral radius of R(s)

0 = I −K(s)
1,1Z

(s)
0 .

Proof. For ms = 0 we have R(s)
0 = I −K(s)

1,1Z
(s)
0 = I − 1

β(s)K
(s)
1,1

(
K

(s)
1,1

)T
and if K(s)

1,1 �s 0, it follows

that R(s)
0 is symmetric matrix and

λk

(
R

(s)
0

)
= 1− 1

β(s)
λk

(
K

(s)
1,1

(
K

(s)
1,1

)T)
,

0 ≤ λk

(
R

(s)
0

)
= 1−

λk

((
K

(s)
1,1

)2)
λmax

((
K

(s)
1,1

)2) < 1,

which gives ρ
(
R

(s)
0

)
< 1 and R(s)

0 �s 0. Further, from Step2(P) we get

R
(s)

ms+
1
2

= I −K(s)
s,sZ

(s)
ms

[
I +R(s)

ms +
(
R(s)
ms

)2]
=

(
R(s)
ms

)3
. (42)

Also from the Step2(C) in Algorithm 1 using (42) we get

Ω(R
(s)

ms+
1
2

) = R
(s)

ms+
1
2

+

(
R

(s)

ms+
1
2

)2

=
(
R(s)
ms

)3
+
(
R(s)
ms

)6
, (43)

Ψ(R
(s)

ms+
1
2

) =

(
R

(s)

ms+
1
2

)2

+

(
R

(s)

ms+
1
2

)4

=
(
R(s)
ms

)6
+
(
R(s)
ms

)12
, (44)

Γ(R
(s)

ms+
1
2

) =

(
R

(s)

ms+
1
2

)4

=
(
R(s)
ms

)12
. (45)

Using (42)–(45) at the Step2(C) for the residual error R(s)
ms+1 we obtain

R
(s)
ms+1 = I −K(s)

s,sZ
(s)
ms+1

= I −K(s)
s,sZ

(s)

ms+
1
2

[
I + Ω

(
R

(s)

ms+
1
2

)[
I + Ψ

(
R

(s)

ms+
1
2

)[
I + Γ

(
R

(s)

ms+
1
2

)]]]
=

(
R(s)
ms

)33
=
(
R

(s)
0

)33ms+1

.

Thus, R(s)
ms+1 �s 0 because R(s)

0 �s 0.

Theorem 3. Let K be an SPD-BT matrix and K(s) be the matrix obtained at stage s of the
Algorithm 2. If K(s)

1,1 �s 0 then

K
(s)
1,1Z

(s)

ms+
1
2

= Z
(s)

ms+
1
2

K
(s)
1,1 , and K

(s)
11 Z

(s)
ms+1 = Z

(s)
ms+1K

(s)
1,1 , (46)
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and Z(s)

ms+
1
2

�s 0, and Z(s)
ms+1 �s 0 satisfying(

K
(s)
1,1

)−1
�s Z(s)

ms+1 �s Z
(s)

ms+
1
2

�s Z(s)
ms �s 0, (47)

for every ms = 0, 1, ..., where Z(s)

ms+
1
2

and Z
(s)
ms+1 are the approximate inverse of K(s)

1,1 obtained by

Step2(P) and Step2(C) in Algorithm 1.
Proof. The proof of (46) follows from induction. Using Algorithm 1 for ms = 0 and from Step1(I)

gives Z(s)
0 = 1

β(s)

(
K

(s)
1,1

)T
. Since K(s)

1,1 is a symmetric matrix we get

K
(s)
1,1Z

(s)
0 = K

(s)
1,1

1

β(s)

(
K

(s)
1,1

)T
=

1

β(s)

(
K

(s)
1,1

)T
K

(s)
1,1 = Z

(s)
0 K

(s)
1,1 .

Assume that the proposition is true for ms that is K
(s)
1,1Z

(s)
ms = Z

(s)
msK

(s)
1,1 then for ms+1 at the Step2(P)

gives

K
(s)
1,1Z

(s)

ms+
1
2

= K
(s)
1,1Z

(s)
ms

[
I +R(s)

ms +
(
R(s)
ms

)2]
= Z(s)

ms

[
I +R(s)

ms +
(
R(s)
ms

)2]
K

(s)
1,1

= Z
(s)

ms+
1
2

K
(s)
1,1 . (48)

Also using (42)–(45) and (48) at the Step2(C) gives the second equation in (46).
The proof of (47) also can be given using induction. For ms = 0 from Step1(I) gives Z(s)

0 =

1
β(s)

(
K

(s)
1,1

)T
and from the assumption K(s)

1,1 �s 0 implies that Z(s)
0 �s 0. Assume that the proposition

is true for ms that is Z(s)
ms �s 0 then from Lemma 2 using that R(s)

ms �s 0 at the Step2(P) and using
(46) gives (

Z
(s)

ms+
1
2

)T
=

[
I +R(s)

ms +
(
R(s)
ms

)2]T (
Z(s)
ms

)T
= Z(s)

ms

[
I +R(s)

ms +
(
R(s)
ms

)2]
= Z

(s)

ms+
1
2

. (49)

Next using (42)–(45) and (49) at the Step2(C) and from (46) results(
Z

(s)
ms+1

)T
=

[
I + Ω

(
R

(s)

ms+
1
2

)[
I + Ψ

(
R

(s)

ms+
1
2

)[
I + Γ

(
R

(s)

ms+
1
2

)]]]T (
Z

(s)

ms+
1
2

)T
= Z

(s)
ms+1. (50)

From (49) and (50) we conclude that Z(s)

ms+
1
2

and Z(s)
ms+1 are also symmetric forms+1 and from Step2(P)

and Step2(C) we get Z(s)

ms+
1
2

�s 0 and Z(s)
ms+1 �s 0. Further from (46) Z(s)

msR
(s)
ms and Z(s)

ms

(
R

(s)
ms

)2
are

symmetric matrices. Thus, yields Z(s)
msR

(s)
ms �s 0 and Z(s)

ms

(
R

(s)
ms

)2
�s 0. From the Step2(P) results

λk

(
Z

(s)

ms+
1
2

− Z(s)
ms

)
= λk

(
Z(s)
msR

(s)
ms + Z(s)

ms

(
R(s)
ms

)2)
≥ λk

(
Z(s)
msR

(s)
ms

)
+ λmin

(
Z(s)
ms

(
R(s)
ms

)2)
≥ 0
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giving Z(s)

ms+
1
2

�s Z(s)
ms . Analogously, using (42)-(45) at the Step2(C) results Z

(s)
ms+1 �s Z

(s)

ms+
1
2

. Denoting

the error by E(s)
ms =

(
K

(s)
1,1

)−1
−Z(s)

ms at sth stage from K
(s)
1,1 �s 0 we get

(
K

(s)
1,1

)−1
�s 0 and using that

Z
(s)
0 �s 0 (for ms = 0) we get E(s)

0 is symmetric matrix. Further, it follows that

λk

(
E

(s)
0

)
= λk

((
K

(s)
1,1

)−1
− Z(s)

0

)
≥ λmin

((
K

(s)
1,1

)−1)
+ λk

(
−Z(s)

0

)
≥ 1√

β(s)
−
√
β(s)

β(s)
= 0.

Thus E(s)
0 �s 0. Assume that for ms the proposition E(s)

ms �s 0 is true then using K(s)
1,1E

(s)
ms = R

(s)
ms we

obtain(
K

(s)
1,1

)−1
− E(s)

ms+1 = Z
(s)
ms+1

= Z
(s)

ms+
1
2

[
I + Ω

(
R

(s)

ms+
1
2

)[
I + Ψ

(
R

(s)

ms+
1
2

)[
I + Γ

(
R

(s)

ms+
1
2

)]]]
,

=
(
K

(s)
1,1

)−1
− E(r)

ms

(
R(s)
ms

)32
.

From Lemma 2, R(s)
ms �s 0 and from (46)

E(s)
msR

(s)
ms = R(s)

msE
(s)
ms ,

E(s)
msR

(s)
ms

(
E(s)
msR

(s)
ms

)T
= E(s)

msR
(s)
ms

(
R(s)
ms

)T (
E(s)
ms

)T
= E(s)

msR
(s)
msR

(s)
msE

(s)
ms =

(
E(s)
msR

(s)
ms

)T
E(s)
msR

(s)
ms ,

that is E(s)
msR

(s)
ms is normal. Thus from Theorem 3 in [30]

E
(s)
ms+1 = E(s)

ms

(
R(s)
ms

)32
�s 0. (51)

Theorem 4. Let K be an SPD-BT matrix. If Algorithm 2 is used then K(s) �s 0 and the inequality
(47) holds at every stage s of the recursion.

Proof. The proof follows by induction. Assume that K �s 0 and is block tridiagonal matrix and
Algorithm 2 is used. From the assumption K(1) = K is an SPD matrix and particularly K(1)

11 �s 0,
hence Theorem 3 implies that the inequalities in (47) holds true for s = 1. Assume that K(s) �s 0 then
it follows that K(s)

i,i �s 0 for i = 1, 2 and are regular and,

S
(s)
i = K

(s)
i,i −K

(s)
i,j

(
K

(s)
j,j

)−1
K

(s)
j,i , i, j = 1, 2, i 6= j, (52)

exist and S(s)
i �s 0, i = 1, 2. Since K(s) �s 0 so is

(
K(s)

)−1. Further, from Theorem 3 the approximate

inverse Z(s) of K(s)
1,1 satisfies

(
K

(s)
1,1

)−1
�s Z(s) and Z(s) �s 0 and from Algorithm 2(

K(s+1)
)T

=
(
K

(s)
2,2 −K

(s)
2,1Z

(s)K
(s)
1,2

)T
= K(s+1). (53)

Using (52) and (53) follows K(s+1) �s 0, and (47) hold true for s+ 1.
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Theorem 5. Let K be an SPD-BT matrix of n × n block size. If K(s)
1,1 , s = 1, 2, ..., n are the

diagonal pivoting blocks of K(s) at stage s = 1, 2, ..., n obtained by the Algorithm 2, then the sequences{
Z

(s)
ms+1

}
, obtained by Algorithm 1 converge to

(
K

(s)
1,1

)−1
, s = 1, 2, ..., n, respectively in Euclidean

matrix norm ‖·‖2 when ms →∞ with 33 order of convergence and the inequality

∥∥∥∥(K(s)
1,1

)−1
− Z(s)

ms+1

∥∥∥∥
2

≤

∥∥∥R(s)
0

∥∥∥33ms+1

2

∥∥∥∥(K(s)
1,1

)T∥∥∥∥
2

β(s)
(

1−
∥∥∥R(s)

0

∥∥∥
2

) ,

holds true at the sth stage.

Proof. By taking the initial approximate inverse Z(s)
0 = 1

β(s)

(
K

(s)
1,1

)T
the proof is analogous to the

proof of Theorem 4 in [24].

3.2 Block hybrid preconditioning of the Conjugate Gradient method

We consider the linear system Kũ = b̃ where, K �s 0 is a block tridiagonal matrix of the form
(40).

Theorem 6. Let K be an SPD-BT matrix of n × n block size. If K(s)
1,1 , s = 1, 2, ..., n are the

diagonal pivoting blocks of K(s) at stage s = 1, 2, ..., n obtained by the Algorithm 2, and Z(s) are
the corresponding approximate inverses obtained by Algorithm 1 by performing m∗s iterations, then
Z(s)K

(s)
1,1 are SPD matrices and

κ
(
Z(s)K

(s)
1,1

)
≤ 1 + ε

1− ε
, (54)

where, κ
(
Z(s)K

(s)
1,1

)
=

∥∥∥∥(Z(s)K
(s)
1,1

)−1∥∥∥∥
2

∥∥∥Z(s)K
(s)
1,1

∥∥∥
2
is the condition number of Z(s)K

(s)
1,1 and 0 < ε <

1 is the predescribed accuracy in Algorithm 1.

Proof. On the basis of Theorem 3, we have K(s)
1,1Z

(s) = Z(s)K
(s)
1,1 for every s = 1, 2, ..., n and

Z(s) �s 0. Theorem 4 implies that K(s)
1,1 �s 0 thus the product of two commuting symmetric positive

definite matrices is also symmetric positive definite we get Z(s)K
(s)
1,1 �s 0. Next, since I −K(s)

1,1Z
(s) is

symmetric matrix and Algorithm 1 gives
∥∥∥I −K(s)

1,1Z
(s)
∥∥∥
∞
≤ ε, yielding

ρ
(
I −K(s)

1,1Z
(s)
)

=
∥∥∥I −K(s)

1,1Z
(s)
∥∥∥
2
≤
∥∥∥I −K(s)

1,1Z
(s)
∥∥∥
∞
≤ ε < 1.

Therefore, ∣∣∣∥∥∥K(s)
1,1Z

(s)
∥∥∥
2
− ‖I‖2

∣∣∣ ≤ ε,
giving

1− ε ≤
∥∥∥K(s)

1,1Z
(s)
∥∥∥
2
≤ 1 + ε. (55)

Also ∥∥∥∥(Z(s)K
(s)
1,1

)−1∥∥∥∥
2

=

∥∥∥∥(I − I − Z(s)K
(s)
1,1

)−1∥∥∥∥
2

≤ 1

1− ε
(56)

so from (55) and (56) follows (54). (57)
Theorem 6 shows that Z(s) may be used as approximate inverse preconditioners for K(s)

1,1 for s =

1, 2, ..., n. Algorithm 3 gives the BHP-CG method for solving Kũ = b̃ based on the CG method in [25].
In this algorithm incomplete block factorization LU of K is used as implicit preconditioner while the
approximate inverses Z(s) are used as explicit preconditioners for K(s)

1,1 for s = 1, 2, ..., n.
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Algorithm 3. BHP-CG method.
Ensure: the construction of L and U by using the Algorithm 2.
Require: l = 0 and ũ0 as an initial guess, r0 = b̃−Kũ0.
Require: p−1 arbitrary and σ0 = 0.

1. While ‖rl‖∞‖b̃‖∞
≤ η < 1 do

2. Solve the system LUzl = rl. For the solution of the block lower triangular system Lωl = rl where
ωl = Uzl forward substitution works since the diagonal blocks of L are identity matrices. Then for the
solution of the block upper triangular system Uzl = ωl, the preconditioned CG method is used to solve
the block subsystems with the explicit preconditioners Z(s) for the matrices K(s)

1,1 .
3. If l ≥ 1 then compute σl = 〈zl, LUzl〉 / 〈zl−1, LUzl−1〉.
4. Else σ0 = 0.
5. End if.
6. pl = zl + σlpl−1 and αl = 〈zl, LUzl〉 / 〈pl,Kpl〉,
7. ũl+1 = ũl + αlpl and rl+1 = rl − αlKpl.
8. End while.
9. Let l∗ be the iteration number performed, in 1–8 then ũl∗ is the approximate solution satisfying
‖rl∗‖∞
‖b̃‖∞

≤ η.

4 Numerical investigation

We take D =
{

(x1, x2) : 0 < x1 < 1, 0 < x2 <
√
3
2

}
, for t ∈ [0, 1] and the prediscribed accuracy ε in

Algorithm 1 is taken as 5× 10−5. Also in all tables CPUs stands for Central Processing Unit time in
seconds and ptl stands for per time level wherever they appear. Let in addition, the following notations
be used in this section where K1 is the matrix in (27) and K̃1 is as given in (8).

MH
14P ,M

R
14P denote the newly developed HDP and classical RDP.

Nh,τ (MH
14P ), Nh,τ (MR

14P ) denote the size of the matrices K1 and K̃1.

Preh,τ (MH
14P ), P reh,τ (MR

14P ) are the preconditioning time of K1 and K̃1.

Conh,τ (MH
14P ), Conh,τ (MR

14P ) are the condition number of K1 and K̃1.

CTM
H
14P , CTM

R
14P denote the CPUs ptl for the method MH

14P and MR
14P .

TCTM
H
14P , TCTM

R
14P denote the total CPUs required by the method MH

14P and MR
14P for solving the

problem on t ∈ [0, 1].

neg means that CPUs is less than one millisecond.

We present the function εh,τ defining the error on the grid points Dhγτ , by εM
H
14P (h,τ) obtained

from the application of the method MH
14P . Similarly we use εMR

14P (h,τ) to show the error function εh,τ
obtained by the method MR

14P on the grid points Dh1,h2γτ . In addition, the convergence order of the
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methods MH
14P and MR

14P are

<MH
14P = log2


∥∥∥εMH

14P (2
−µ,2−λ)

∥∥∥
∞∥∥∥εMH

14P (2
−(µ+1),2−(λ+2))

∥∥∥
∞

 ,

<MR
14P = log2


∥∥∥εMR

14P (2
−µ,2−λ)

∥∥∥
∞∥∥∥εMR

14P (2
−(µ+1),2−(λ+2))

∥∥∥
∞

 ,

respectively, where µ, λ are positive integers.

4.1 Test problem: Example 1

∂u

∂t
=

∂2u

∂x21
+
∂2u

∂x22
+ f (x1, x2, t) on QT ,

u (x1, x2, 0) = 0.07x6+α1 + 0.3x6+α2 + 1 on D,
u (x1, x2, t) = v (x1, x2, t) on ST ,

f (x1, x2, t) =
(

3 +
α

2

)
t2+

α
2 cos

(
t3+

α
2

)
− e−t

− (6 + α) (5 + α)
(
0.07x4+α1 + 0.3x4+α2

)
,

v (x1, x2, t) = 0.07x6+α1 + 0.3x6+α2 + sin(t3+
α
2 ) + e−t,

where v is the exact solution. Table 2 shows the CTMH
14P , CTM

R
14P and the error norms

∥∥∥εMH
14P (h,τ)

∥∥∥
∞
,∥∥∥εMR

14P (h,τ)
∥∥∥
∞

for h = 2−µ, µ = 4, 5, 6, 7, 8 when τ = 2−λ, λ = 6, 8, 10, 12, 14 and the order of

convergence <MH
14P ,<MR

14P for Example 1 when α = 0.8. Table 3 shows the same quantities by using
the methods MH

14P and MR
14P when α = 0.01. These tables indicate that both methods have fourth

order convergence in spatial variables and second order convergence in time variable.
On the other hand the second and fifth columns of these tables show the computational time

CTM
H
14P and CTMR

14P required for the method MH
14P and MR

14P respectively. By analyzing the values
of CTMH

14P and CTMR
14P we conclude that the proposed method is more economical in computational

time per time level when the BHP-CG method given in Algorithm 3 is applied to solve the derived
systems. This conclusion is also supported by the results given in Table 4 which demonstrates the
number of grid points in the stiffness matrices Nh,τ (MH

14P ) and Nh,τ (MR
14P ), the preconditioning times

Preh,τ (MH
14P ) and Preh,τ (MR

14P ), the condition numbers of the preconditioned matrices Conh,τ (MH
14P )

and Conh,τ (MR
14P ) and the total computational time required in seconds TCTMH

14P and TCTMR
14P of

the methods MH
14P and MR

14P respectively for Example 1 when α = 0.8.
Further, when h = 2−6 and τ = 2−10 for α = 0.8, the grid function

∣∣∣εMH
14P (2

−6,2−10)
∣∣∣ presenting the

errors in absolute values at four time stages t = 0.25, 0.5, 0.75, 1 by the method MH
14P are shown in

Figure 3 for Example 1. Analogously, Figure 4 demonstrate the function
∣∣∣εMR

14P (2
−6,2−10)

∣∣∣ at the same

time levels and (h, τ) pair and α value obtained by the method MR
14P .
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T a b l e 2

Results by the methods MH
14P and MR

14P for Example 1 when α = 0.8

(h, τ) CTM
H
14P

∥∥∥εMH
14P (h,τ)

∥∥∥
∞

<M
H
14P CTM

R
14P

∥∥∥εMR
14P (h,τ)

∥∥∥
∞

<M
R
14P(

2−4, 2−6
)

neg 4.19389E − 5 neg 4.26584E − 5(
2−5, 2−8

)
0.047 2.62266E − 6 3.9992 0.047 2.66787E − 6 3.9991(

2−6, 2−10
)

0.156 1.63922E − 7 3.9999 0.234 1.66749E − 7 3.9999(
2−7, 2−12

)
0.641 1.02449E − 8 4.0000 1.016 1.04224E − 8 3.9999(

2−8, 2−14
)

2.578 6.40304E − 10 4.0000 4.312 6.51384E − 10 4.0000

T a b l e 3

Results by the methods MH
14P and MR

14P for Example 1 when α = 0.01

(h, τ) CTM
H
14P

∥∥∥εMH
14P (h,τ)

∥∥∥
∞

<M
H
14P CTM

R
14P

∥∥∥εMR
14P (h,τ)

∥∥∥
∞

<M
R
14P(

2−4, 2−6
)

neg 4.19389E − 5 neg 2.98695E − 5(
2−5, 2−8

)
0.047 2.62266E − 6 3.9994 0.047 1.86757E − 6 3.9994(

2−6, 2−10
)

0.188 1.63922E − 7 3.9999 0.219 1.16726E − 7 3.9999(
2−7, 2−12

)
0.64 1.02449E − 8 4.0000 1.016 7.29597E − 9 3.9999(

2−8, 2−14
)

2.5 6.40298E − 10 4.0000 4.25 4.56001E − 10 3.9999

T a b l e 4

Computational efficiency comparison of MH
14P , MR

14P for Example 1 when α = 0.8

(h, τ)
(
2−4, 2−6

) (
2−5, 2−8

) (
2−6, 2−10

) (
2−7, 2−12

) (
2−8, 2−14

)
Nh,τ (MH

14P ) 233 977 4001 16193 65153

Nh,τ (MR
14P ) 225 961 3969 16129 65025

Preh,τ (MH
14P ) neg neg 0.063 0.36 2.797

Preh,τ (MR
14P ) neg neg 0.062 0.359 2.625

Conh,τ (MH
14P ) 0.99997 0.99993 0.99989 0.99986 0.99983

Conh,τ (MR
14P ) 0.99991 0.99988 0.99987 0.99985 0.99981

TCTM
H
14P 0.61 9.09 194.84 2659.03 42582.52

TCTM
R
14P 0.70 11.83 272.91 4258.53 71073.79

Figure 3. The grid function
∣∣∣εMH

14P (2
−6,2−10)

∣∣∣ when t = 0.25, 0.5, 0.75, 1 by MH
14P for Example 1.
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Figure 4. The grid function
∣∣∣εMR

14P (2
−6,2−10)

∣∣∣ when t = 0.25, 0.5, 0.75, 1 by MR
14P for Example 1.

4.2 Test problem: Example 2

∂u

∂t
=

∂2u

∂x21
+
∂2u

∂x22
− 0.5u+ f (x1, x2, t) on QT ,

u (x1, x2, 0) =
1

2
x

37
6
1 + x

37
6
2 + 1 on D,

u (x1, x2, t) = v (x1, x2, t) on ST ,

f (x1, x2, t) = −
(

37

12
t
25
12 sin

(
t
37
12

)
+

1147

72
x

25
6
1 +

1147

36
x

25
6
2

)
+0.5

(
1

2
x

37
6
1 + x

37
6
2 + cos

(
t
37
12

))
,

v (x1, x2, t) =
1

2
x

37
6
1 + x

37
6
2 + cos

(
t
37
12

)
,

where, v is the exact solution. Table 5 demonstrates the CTMH
14P , TCTMH

14P and the error norms for
h = 2−µ, µ = 4, 5, 6, 7, 8 when τ = 2−λ, λ = 6, 8, 10, 12, 14 respectively, and the order of convergence
<MH

14P for Example 2. Figure 5 shows the absolute error function
∣∣∣εMH

14P (2
−6,2−10)

∣∣∣ for time values

t = 0.25, 0.5, 0.75, 1 obtained by the given method MH
14P for Example 2.

T a b l e 5

Results by the method MH
14P for Example 2

(h, τ) CTM
H
14P TCTM

H
14P

∥∥∥εMH
14P (h,τ)

∥∥∥
∞

<M
H
14P(

2−4, 2−6
)

neg 0.61 2.378442E − 5(
2−5, 2−8

)
0.047 9.907 1.543029E − 6 3.9462(

2−6, 2−10
)

0.172 207.547 1.015411E − 7 3.9256(
2−7, 2−12

)
0.735 2904.99 6.623985E − 9 3.9382(

2−8, 2−14
)

2.829 50743 4.251592E − 10 3.9616
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Figure 5. The grid function
∣∣∣εMH

14P (2
−6,2−10)

∣∣∣ when t = 0.25, 0.5, 0.75, 1 by MH
14P for Example 2.

5 Conclusion

On a hexagonal system of grids, a novel implicit method is developed for approximating the solution
to the DBVP of the heat equation (2)–(4) on rectangle. Further, by using the modified two-step
iterative method, block hybrid preconditioning of the conjugate gradient method is given. The obtained
theoretical and numerical results demonstrate that the given implicit method is economical since it is
computationally time efficient. We remark that in Section 2, the given implicit scheme on hexagonal
grids was studied in the dissertation [31].
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С.К. Буранай1, Н. Ашад2

1Шығыс Жерорта теңiзi университетi, Фамагуста, Түркия;
2Рауф Денкташ университетi, Никосия, Түркия

Түйiндес градиенттер әдiсiн блокты-гибридтi қайта шарттауға
қолдана отырып, жаңа айқынемес схема бойынша

жылуөткiзгiштiк теңдеуiн шешу

Зерттеудiң негiзгi мақсаты – алтыбұрыштардың тор жүйесiнде жаңа айырымдық әдiсiн жасау арқылы
тiктөртбұрыштағы жылуөткiзгiштiк теңдеуiнiң Дирихле шеттiк есептердiң шешiмiн жуықтау. Бұл ар-
найы схема сөзсiз тұрақты және кеңiстiктiк айнымалылар бойынша төртiншi дәлдiк ретi және уақыт
айнымалысы бойынша екiншi дәлдiк ретi бар торлардағы нақты шешiмге жақындайтыны дәлелдендi.
Екiншiден, толық емес блоктық факторландыру симметриялы оң анықталған блоктық үшбұрышты
матрицалар үшiн симметриялы оң анықталған қасиеттi сақтай отырып, айналмалы диагональды бл-
октардың керi жағына жуықтайтын консервативтi итерациялық әдiстi қолдана отырып берiлген.
Болашақта факторландыру блогының көмегiмен алынған алгебралық теңдеулер жүйесiн әр уақыт
деңгейiнде шешу үшiн түйiндес градиенттер әдiсiнiң гибридтi қайта шарттауы қолданылады.

Кiлт сөздер: жылуөткiзгiштiк теңдеуi, айқынемес схема, алтыбұрышты тор, тұрақтылықты талдау,
симметриялы оң анықталған матрица, жуықталған керi, толықемес блокты факторландыру, блокты-
гибридтi қайта шарт қою, түйiндес градиенттер әдiсi.
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Решение уравнения теплопроводности по новой неявной схеме с
использованием блочно-гибридного предобусловливания метода

сопряженных градиентов

Основной целью исследования является аппроксимация решения краевой задачи Дирихле уравнения
теплопроводности на прямоугольнике путем разработки нового разностного метода на сеточной си-
стеме шестиугольников. Доказано, что данная специальная схема безусловно устойчива и сходится к
точному решению на сетках с четвертым порядком точности по пространственным переменным и вто-
рым порядком точности по временной переменной. Во-вторых, неполная блочная факторизация дана
для симметричных положительно определенных блочных трехдиагональных матриц с использова-
нием консервативного итеративного метода, который аппроксимирует обратную сторону поворотных
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диагональных блоков, сохраняя симметричное положительно определенное свойство. В дальнейшем
с помощью этого блока факторизации применено гибридное предобусловливание метода сопряжен-
ных градиентов для решения полученной алгебраической системы уравнений на каждом временном
уровне.

Ключевые слова: уравнение теплопроводности, неявная схема, гексагональная сетка, анализ устойчи-
вости, симметричная положительно определенная матрица, приближенная обратная, неполная блоч-
ная факторизация, блочно-гибридное предобусловливание, метод сопряженных градиентов.
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