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On bounded solutions of linear systems of differential equations with
unbounded coefficients

This paper deals with a problem of finding a bounded solution of a system of nonhomogeneous linear
differential equations with an unbounded matrix of coefficients on a finite interval. The right-hand side of
the equation belongs to a space of continuous functions bounded with some weight; the weight function is
chosen taking into account the behavior of the coefficient matrix. The problem is studied using a modified
version of the parameterization method with non-uniform partitioning. Necessary and sufficient conditions
of well-posedness of the problem are obtained in terms of a bilaterally infinite matrix of special structure.
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In various branches of applied mathematics there arise problems leading to systems of ordinary
differential equations involving singularities or defined on an infinite interval. Numerous works [1-
12] have been studied the existence of bounded solutions of such problems. In [6], the boundedness
condition for a solution at a singular point is replaced by an equivalent relation in a neighborhood of this
point, namely, the equation of a stable initial manifold generated in the neighborhood of the singular
point by the total set of bounded solutions of the system. In [8], the existence and approximation of a
bounded (on the whole axis) solution of a linear ordinary differential equation are investigated by using
the parameterization method. In this paper, we apply the parameterization method with non-uniform
partition of the interval (0, T) to the linear differential equation

d
T =AWMa+f(), TeR", te(0,1), (1)
where A(t) and f(t) are continuous on (0,T), |[A(t)|| = max ) |a;;(t)| = a(t). We assume that the

7=1
function a(t) is continuous on (0,7") and satisfies the following conditions:

T/2 T
/ a(t)dt = oo, ti%&oa(t) = 00, / a(t)dt = oo, t—1>1:IFn—0a(t) = 00.
0 T/2

_ We introduce the following spaces:
C((0,T),R™) is the space of functions z : (0,7) — R™ that are continuous and bounded on (0,7),
equipped with the norm

zllv = sup |lz(t)[];
te(0,T)
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C~'1/a((0, T),R™) is the space of functions f : (0,7) — R™ that are continuous and bounded on (0,7)
with the weight 1/a(t), equipped with the norm

1flla = sup)llf(t)a(t)ll;

te(0,T

m,, is the space bounded bilaterally infinite sequences A; € R™ with the norm

Mz = 11C- - Ars Argas ) ll2 = sup [ Al 7 € Z
T

L(my,) is the space of all bounded linear operators mapping m,, into itself, equipped with the induced

norm.
oo

Let us choose a number # > 0 and make the partition (0,7) = | [tr—1,%r) by the points t,,
r=—00
t,
r € Z, defined as follows: to = T/2, [ «(t)dt =0.

tr—1
Let h(6) be the bilaterally infinite sequence of the partition step-sizes h, = ¢, — {1, 7 € R. We
denote by z,(t) the restriction of a function z(¢) € C((0,7),R") to the r-th subinterval and introduce
one more space my,(h) of bounded bilaterally infinite sequences of functions x,.(t), r € Z, that are

continuous and bounded on [t,_1,t,), equipped with the norm

lzftllls = I - 2 (), 2ppa(t), .. ) [ls =sup  sup  [lz,(t)]-
T tE[tr—1,tr)

Definition 1. We call Problem 1, the problem of finding a bounded on (0,7") solution of Eq. (1)
with f(t) € Cl/a((oa T)an)

The existence of a solution z(t) € C((0,T),R™) of Problem 1, is equivalent to the existence of a
solution z[t] € my,(h) of the multipont problem for the equations

dz,
dt

subject to the gluing conditions for x(t) at the interior partition points:

= A()zr + F(£), € [tr_1,t), 2)

lim z,(t) = z,41(t,), r€Z. (3)
t—t,-—0

Note that the derivative %r

ar in Eq. (2) is understood as the right-sided limit ~ lim  92=

t—tr140 U

Indeed, let Z(t) be a solution of Problem 1,. Let us show that the system of its restrictions to
the partition subintervals, Z[t] = (..., Z.(t), Zr+1(t),...)’, belongs to m,(h) and satisfies Eq. (2) and
conditions (3).

Since Z(t) is a solution of Eq. (1), it is continuously differentiable on (0,7"). Hence z,(¢) and dg;r,
r € Z, are continuous on [t,_1,t,). The boundedness of the function Z(¢) on (0,7") implies that the
functions Z,.(t), 7 € Z, are bounded on [t,_1,t,), and Z[t] € my(h).

The function system Z[t] satisfies Eq. (2) for all t € [t,_1,t,), 7 € Z:

dr,(t)  dz(t)
. dt
The continuity of Z(¢) on (0,7") implies the existence of the left-sided limits

t=t,_1

— A)F() + F(t) = AW (1) + F(D).

lim z.(t) = lim 2(t) = 2(t Z
P P = A O =), ez
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that is, conditions (3) are satisfied:

Let us now show that if Z[t] = (..., %.(t),Z,41(t),...) € my(h) is a solution of problem (2),(3),
then the function z(t), defined as z(t) = z,(t), t € [t,—1,tr), r € Z, is a solution of Problem 1.

It follows from (3) that z(t) is continuous on (0, 7). Since the functions z,(t), r € Z, satisfy Eq. (2)
for all ¢ € [t,_1,t,), the function Z(t) is continuously differentiable for all x € (0,T") except the points
t=t., r €Z, and

di(t) _ di,(2)

dt o = ADT() + f{t) = ADT(E) + f(2),
€ (0, T)\{t=t,,r €Z}.

The function Z(t) has the right-hand derivative at the points t = t,, r € Z. Let t; be one of these
points, and let us consider Eq. (1) on the intervals [t;_1,tx) and [tx, txr1):

d(t)

= AWEO + S(0), [t 1), (4)
PO _ AW0) + 10), o). (5)

From (4) and the continuity of A(t), f(¢), and Z(t) on (0,7"), we have
dx

lim

im S = A1) + £ (t)

i.e., at t = tj, there exists the left-hand derivative of z(¢):

T(ty — 0) = A(tp)Z(tr) + f(ts).

Taking into account (5) and the existence of Z(t, + 0) = A(tx)Z(tx) + f(t), we obtain that the
continuous derivative of T exists at ¢ = t;, and Eq. (1) holds at this point.

Thus, the function z(t) is continuously differentiable on (0,7") and satisfies Eq. (1) for all z € (0,T).
It follows from Z[t] € my,(h) that Z(t) is a bounded solution of Eq. (1).

Let A, denote the values of x,(t) at t = t,_1, r € Z. Setting u,(t) = z,(t) — A\, on each partition

subinterval [¢,_1,t,), we obtain the following boundary value problem with parameter:

d(ZT = At)[ur + N ] + f(t), tE[tr—1,tr), ur(ty—1) =0, (6)
t—l>itIn—0 Ur(t) +A=Np1, TEZ (7)
(A, ult]) € my x mp(h). (8)

If a pair (A\*, u*[t]) € m, X my(h) is a solution of problem (6)-(8), then the function x*(¢), obtained
by gluing the function systems (A* + u*[t]), 7 € Z, belongs to the space C((0,T),R") and satisfies
Eq. (1) for all t € (0,T). Conversely, if x(t) is a solution of Problem 1,, then the pair (A, u[t]) (with
A= (o xp(ten), e (tr), - ) and wft] = (.o, 20 () — 20 (t—1), T2 (B) — 241 (tr), . . .), Where z,.(t)

are the restrictions of z(t) to the r—th subintervals, r € Z) belongs to m, x my(h) and satisfies Eq.
(6) and conditions (7).
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Since (6) is an initial-value problem with parameter, we obtain the integral representation of w,(t)
for fixed parameter values \;:

t

up(t) = / A up(7) + Aldr + / f(r)dr, ret. ()

tr—1

Replacing u,(7) with the right-hand side of (9) and repeating this procedure v times (v = 1,2, ...),
we obtain

Ur(t) = Dl/ﬂ”(t))\?“ + FV,T'(t) + Gl/,’l”(ua t)7 te [tr—lu tr)7 (10)

where
t

Z/ATl /ATJ+1)dT]+1 dTl,

J= Ot tr—1
Ti—1 Tj
/f'rl d7'1+2/ 7’1 /A(Tj)/f(Tj+1)d7‘j+1d7‘j...d7'1,
J= 1tr 1 tr—1 tr—1

Gyr(u,t) / A(ry) / A(Tj1)ur(Tjp1)dTjq1 ...dm, To=1t, 1€ELL

-1

Now, substituting the values . 1itm Our(t), r € Z, determined from (9), into equations (10), we
—ty—

obtain the bilaterally infinite system of algebraic equations in parameters \;:
I+ Dyy(he) A — As1 = —Fup(hy) — Gup(u, hy), 1 €Z. (11)

Here I is the identity matrix of order n.
Let us denote by Q,, 7(0) the bilaterally infinite block-banded matrix corresponding to the left-hand
side of system (11). The only non-zero terms in each block row of @, hi(o) re I+ D,,(h;) and —1I.

Hence, for any sequence h(f), the matrix Q, 7(p) Maps the space m,, into itself, and the following
estimate holds:

||th HLmn §2+Z

Jj= 1

The matrix form of system (11) is
Qy,ﬁ(a))‘ - _FV(E) - GV(U7E)’ A € My,

where

F,(h)=(...,Fyr(he), Fyri1(hrs1),...) € my,
Gu(u7ﬁ) = ( R Gy,r(uv hr)v Gy,r+1(u7 hr+1)7 .. -), € mp
for all u[t] € m,(h) and h(6).

Definition 2. Problem 1, is well-posed if it has a unique solution z(t) € C((0,T),R"™) for any
f(t) € C1s0((0,7),R"), and [|z||y < K| f|la, where K is a constant independent of f(t).

110 Bulletin of the Karaganda University



On bounded solutions ...

Theorem 1. Let @, 3y have an inverse for some h(#) and v (v =1,2,...), and let

—1 7
12 % gy ey < 0B, (12)
_ —( 0 0"
qv(h) =y (h) e—1—0—...—; <1 (13)
Then Problem 1, is well-posed and its solution satisfies the estimate
. B _
ol < e |2 0 @) — 1) 4 06) + m (B)(E? — 1) + e] 1l
1-— qy(h) V!

The proof of Theorem 1 follows the scheme of Theorem 1 in [7].

Let 2*(t) be the solution of Problem 1,. Then the pair (A*,w*[t]) with components A} = x}(¢,_1)
and w(t) = «*(t) — 2*(tr—1), t € [tr—1,tr), 7 € Z, is the solution of problem (6)—(8). Moreover, there
exist numbers d; and 0 such that [|A*|| < 61 and ||uf(t)| < b2, t € [tr—1,t,), r € Z, and for any v € N
the following identities hold:

WHt) = Dy (DN + Fyn(t) + Gop(u®,t), tE [tro1,ty), 1€Z, (14)
Qo = —Fo(h) — G (u", ). (15)

It can be easily shown that |G, (u*,h)|s < V, el < %52, and D, ,(t) and F,,(t) converge
uniformly to

oo t Tj
D.p(t)=>" / A(ry). .. / A(tj11)dTjs1 .. . dm,
jZOtT71 tr—1
and
/ flrm)dm —I—Z / A(mp) / A(T) / f(Tjs1)dTjprdrj ... dry,
71tr 1 tr—1 tr—1
respectively. Then, letting v — oo in (14), (15), and dividing both sides of (15) by 6 > 0, we obtain
up(t) = Dir(O)A; + Fir(t), t€tr_1,t,), reEL, (16)
1 * 7 *
Here F\ (A, f,h(0)) = lim $F,(h).
Thus, if (A*, *[t]) is a solutlon of problem (6)—(8), then the parameter A* = (..., X, A5 ,...)" €

my, satisfies Eq.(17), and the solutions w}(¢) of the Cauchy problems (6), corresponding to A, r € Z,
are of the form (16). R R
We now assume that A = (..., A, \rg1,...)" € my, is a solution of the system

)

1 1 1
5[[ + D*,T<t7‘>])\7’ — EATJ'_I = _EF*J'(t)a
or 1
5 Q.o = —F(4, £.7(0)), (18)

and uft] = (..., Up(t), Up41(t),...)" is the system of solutions of the Cauchy problem (6) on [t,_1,1,)
with A, = A, 7 € Z. Let us show that the pair (A, u[t]) is the solution of problem (6)—(8). Since u,(t)
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is the solution of the Cauchy problem (6) with A, = Ar, it follows from (16) and the unique solvability
of the Cauchy problem (6) for fixed parameter values A, that

Up(t) = Dy (DDA + Fup(t), t€[tr1,t,), 1€ (19)
In view of (18), we have
N+ [Dar(t) A + Fup(tn)] = Apy1, 1 €Z. (20)

Then, by (19) the expressions in square brackets in (20) are equal to lim wu,(t), r € Z, and the pair

R t—t,.—0
(A, uft]) satisfies (7) as well.

Theorem 2. Problem 1, is well-posed iff, given an arbitrary v € N, there is a () > 0 such that
the matrix @, 7, has an inverse for all h(0) = (..., h(0),hr41(0),...) and the inequalities (12) and
(13) hold.

Proof. The sufficiency of the conditions of Theorem 2 for the well-posedness of Problem 1, follows
from Theorem 1.
Necessity. Let us consider the equation

1
EQ*7E(9)A — b7 )\, b € My.

Obviously, the kernel of the matrix %Q* 7(6) consists only of the zero vector of the space my,.
Suppose, contrary to this claim, that there is a A € m,, such that %Q* E(@)X =0, ||| # 0. Hence, as

shown above, the pair (X, alt]), with @[t] = (..., %, (t), Tr11(t), . ..)" being the system of solutions of the
Cauchy problems (6) with A, = A, on [t,_1,t,), is the solution of problem (6)—(8) with f(¢) = 0. The

function Z(t), obtained by gluing the function systems (A, + @, (t)), r € Z, belongs to C((0,T),R")

and satisfies the equation Cfl—f = A(t)x. But sup |Z(¢)|| # 0, which contradicts the well-posedness of

te(0,T)
Problem 1,. Thus, the matrix @, 7(0) has an inverse.

Let us fix € > 0 and choose 0y(g) > 0 satisfying the inequality

1 £/2
g€ ~1=0 < sa ATy

Then, by Lemma in [12], for arbitrary b, € R", r € Z, the functions f;, € C([t,_1,t,],R™) can be
constructed such that

(21)

Fo(A fo,) =br, max [[fy, (8)/a(t)] < (1+¢/2)[br]-

t€[tr—1,t]
Hence, the function f,(t) defined as fi(t) = fp,(t), t € [tr—1,,], satisfies the relations
fot) € CUO,T), R, lfslla < (1 +e/2)llbll2,  Fu(A, £, h(6)) = b.

The well-posedness of Problem 1, implies that Eq.(17) has a unique solution A\, € m,, for any
fb(t) € Cl/a((07T)7Rn)7 and

[Aoll2 = sup [ Ay, [| = sup [[zp(tr )| < sup [lzp()]| < K| folla < K(14¢/2)[|b]2-
reZ reZ te(0,T

)

Taking into account that || Ay[|2 = [|[3Q, E(a)]_lbﬂg, the latter estimate yields

1o _ 11
||[9Q*,h(9)] ||2 < (

1+5)K, Vb € mp.
[10l2

2
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This gives
1

1 9
15@um0)  nenn < (145) K. v € (0,60,

Hence, choosing 6 € (0, 6] such that

“*f;/m’((e@_l_e_..._e”)< -

and taking into account

1 1
HeQ*,h(G) a0

1 o
o),
Limn) 0 V!

by the theorem on small perturbations of boundedly invertible operators, we obtain that the matrix
Q, 7(6) has a bounded inverse satisfying the estimate

1 -1
I |:9Qu,h(9):| | L(m,) < (1+€)K.

Finally, (17) yields

qy(ﬁ(a)):(ue)% <e9—1—a_...—ey> < 5€<1,

vl

which completes the proof.

Theorem 3. Problem 1, is well-posed iff, given an arbitrary v € N, there is a 0o(v) such that the
matrix @, 7 has an inverse for all sequences h(f), 6 € (0, 6o], and

I @us@] o < 5 (22)

where 7 is a constant independent of h(6).

Moreover, if the well-posedness constant K is known, then for any ¢ > 0 there exists 6(e,v) > 0
such that estimate (22) holds with constant v = (1+4¢)K for all § € (0,0(e, v)]. Conversely, if estimate
(22) holds, then K = .

Proof. Necessity. Let Problem 1, be well-posed with constant K. Given ¢ > 0, we choose (e, v) €
(0,6o(g)], where y(e) satisfies condition (21). Then, as it was shown in Theorem 2, the matrix @y k(o)

_ -1 1 K
is invertible for all 6 € (0,60(e,v)] and || [Qu,ﬁ(e)} I Lm) < (+0€)7 ie. v=(1+¢)K.

Sufficiency. Let estimate (22) hold. let us choose  so that g,(h(f)) < 1. Then, by Theorem 1,
Problem 1, is well-posed and

1 e Y
P A S A AU REEEY 0 T 1 o
ol <e [9 R LR R TR L1
Letting & — 0, we obtain
[z*]l1 < A fllas

i.e. K =, which completes the proof.
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P.E. Yremosa!, E.B. Kokorosa?

! Xanvapasv axnapammons mexnosozuasap yrueepcumemi, Aamamot, Kasaxcman;
2 . . .
K. XKybanos amwmdazer Axmebe onipaix ynusepcumemi, Axmebe, Kasaxcman

Kosddburmenrrepi mekreamereH nuddepeHInaIIbIK TeHaeyJIep
CBHI3BIKTHI 2KYyleJepiHiH IMeKTeJITeH MIelIiM/Iepi TypaJibl

MakaJstazia mekTenmeren KoddduimeHTTep MaTpuiachbl 6ap 6ipTeKTI eMec ChI3BIKTHI I depeHInaIbK
TeHJeyIep Kyheci VIMH aKbIpJIbl MHTEPBAJa IMEKTeIreH mennMin taby ecebi KapacTeIpbLiraH. TeHge-
VIiH OH »Kafbl y3ijicci3 »KoHe KaH/ai mga 6ip cajMakIieH IIeKTeJreH (PyHKIUsIap KeHiCTiriHe »Karaibl;
caJIMaKThIK OYHKINA KO3bPUIMEHTTep MATPULIACHIHBIH, OPEKETIH eCKepe OTBIPBIN TaH aJIbl. KapacTeIpbl-
JIBITT OTBIPFAH €CENTi 3epTTey VImiH OipKesKi eMec GoiMMEH mapaMeTpsiey OIiCiHIH MOIuMUKAIUICH KOJI-
JaHBLLIBL. ApHaiibl KYyPBUIBIMIBI €Ki YKaKThI MIEKCi3 MATPUIACHl TYPFLICBIHAH 3€PTTEIIeH €CElTiH JyPbIC
HIeNTiTiMITIriHe KaXKeTTi yKoHe »KEeTKIJIIKT] mapTTap aJIbIHFaH.

Kiam cosdep: kot 1n ePEHIINAJIABIK TEeHAEY/IED, CAHTYIAPJIbL IITETTIK ecell, KOPPEeKTi MIeIiTiMIIiK, ma-
b b )
pamMeTpJiey 9JIici, IMEeKTEeJINeH IIeIiM, ChI3BIKTHI XKYiie, IeKTeIMereH K03 UuInueHTrep.

P.E. Yremosa', E.B. Kokorosa?

! Meowcoynapooraiii yrusepcumem ungopmayuornmos mexnoaozut, Armamo, Kazazcman;
2 Axmaobuncruts pezuonarsruiti ynusepcumem umenu K. XKybanosa, Axmobe, Kasaxcman

OO0 orpaHWYEeHHBIX pENIeHUSAX JUHEMHBIX cucTeM JquddPepeHITnaTbHBIX
ypPaBHEHUII ¢ HeorpaHUYeHHbIMU Ko3d durmenramm

B crarpe paccmorpena 3ajiatua HAXOXKJEHUsI OIPAHUYEHHOI'O HA KOHEYHOM HHTEpPBAJie PEIIeHUs] CHCTEMBI
HEOJHOPOIHDIX JIMHEHHDLIX UM depeHIaIbHbIX YPABHEHUI C HEOTPAHIMTIEHHOM MaTpuIeil Koap UIMEHTOB.
IIpaBast yacTh ypaBHEHH: IPUHA/IEXKUT IIPOCTPAHCTBY HEIPEPBHIBHBIX U OTPAHUYEHHBIX C HEKOTOPBIM BECOM
dyHKIW; BecoBast (DYHKIWs BBIOUPAETCSI C y9IETOM IOBEJEHUsI MaTpulbl Koaddunnenron. st ucciero-
BaHUsI PacCMaTPUBAEMOIl 3a1a49u IPUMEHEHA MOAUMUKAINST METOIA IapaMeTPU3AIUU C HEePABHOMEDPHDLIM
pasbuenneM. [TorydeHbl HEOOXOMMBIE U JTOCTATOYHBIE YCIOBUS KOPPEKTHON PAa3pPEIINMOCTH PACCMaTPUBA-
€MOii 3a/1a41 B TEPMUHAX JIBYCTOPOHHE-OECKOHETHON MAaTPHUIIBI CIIEIUAJILHON CTPYKTYPHI.

Karouesvie caosa: OObIKHOBEHHBIE JauddepeHnaJbHble YPaBHEHUsI, CHHIYJISpHAs KpaeBas 3ajada, KOp-
PEeKTHasl pa3pelImMOCTb, METOJ, TapaMeTPU3allii, OrPAHUYEeHHOE DelleH e, JNHEeiHas CucTeMa, HeOrpaHM-
qeHHbIe KOYDMUITUEHTHI.
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