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On the non-uniqueness of the solution to a boundary value problem
of heat conduction with a load in the form of a fractional derivative

The paper deals with the second boundary value problem for the loaded heat equation in the first quadrant.
The loaded term contains a fractional derivative in the Caputo sense of an order α, 2 < α < 3. The
boundary value problem is reduced to an integro-differential equation with a difference kernel by inverting
the differential part. It is proved that a homogeneous integro-differential equation has at least one non-zero
solution. It is shown that the solution of the homogeneous boundary value problem corresponding to the
original boundary value problem is not unique, and the load acts as a strong perturbation of the boundary
value problem.
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solvability, strong perturbation.

Introduction

Loaded differential equations today have a wide practical application in many areas of natural
science. Moreover, loaded equations are a special class of equations that require separate consideration.
In addition, loaded equations can act as one of the ways to introduce generalized solutions of wide
classes of partial differential equations and as an effective method for finding approximate solutions to
boundary value problems for differential equations. A significant contribution to the development of
the theory of loaded equations was made by the work of A.M. Nakhushev [1] (and his other works),
where definitions of loaded differential, loaded integro-differential, loaded functional equations and their
numerous applications are given. In papers [2–5], the theory of loaded equations was further developed.
[3] considers boundary value problems for a loaded differential operator, which are interpreted as
perturbations of the corresponding differential operators. It is shown that the loaded part is a weak or
strong perturbation, depending on the derivative order in the loaded term, as well as on the manifold
on which the trace of the BVP solution is given.

There are many books devoted to fractional analysis today [6–21]. In recent years, an intensive
study of loaded differential equations has been carried out, associated with various applied problems
of mechanics, biology, ecology and chemistry, modeled using loaded equations. To date, many books
have been devoted to fractional analysis (various applications in physics, mechanics, and simulation)
[7], [14–20]. Among the variety of works, the monograph [6], covering a huge range of ideas. Monograph
presents classical and modern results in the theory of fractional analysis, and gives their applications
to integral and differential equations and function theory.

From a mathematical point of view, it is interesting to study the boundary value problems for the
heat equation with a fractional load, when the loaded term is considered in the form of a fractional
derivative or a fractional integral. In [21, 22] the load moves with a constant velocity, namely, it moves
along the line x = t. The loaded term contains a fractional derivative in the Riemann-Liouville sense.
The boundary value problem was reduced to the Volterra integral equation with a kernel containing a
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generalized hypergeometric series. The integral equation has a nonempty spectrum for certain values
of the fractional derivative order and for the spectral parameter.

We also note that the boundary value problems of heat conduction and the Volterra integral
equations arising in their study with singularities in the kernel, similar to the singularities in this
paper, were considered in [23, 24].

In [25–28] fractionally loaded boundary value problems of heat conduction are investigated, the
loaded term is represented in the form of the fractional derivative. The derivative order in the loaded
term is less than the order of the differential part. In [25, 26] the loaded term is represented in the form
of the Caputo fractional derivative with respect to the spatial variable. In [25], it is proved that there
is continuity on the right in the order of the fractional derivative. There is no continuity on the left. In
[26] there is continuity in the order of the derivative in the loaded term of the problem. In [27, 28], the
loaded term has the form of a fractional Riemann-Liouville derivative with respect to the time variable.
The kernel of the resulting integral equation contains a special function, for example, a generalized
hypergeometric function in [25] or the Wright function in [27]. Conditions for the unique solvability of
the integral equation are established by estimating the integral kernel. It is shown that the existence
and uniqueness of solutions to the integral equation depends on the order of the fractional derivative
in the loaded term.

In [29] the first boundary value problem for essentially loaded equation of heat conduction is
considered. It is shown that if the point of load is fixed, then the stated boundary problem is uniquely
solvable.

In this paper, the second boundary value problem for the loaded heat equation is considered in
the domain Q = {(x, t) |x > 0, t > 0}. The load is presented as a Caputo fractional derivative.
The fractional derivative is greater than the order of the differential part of the BVP. The boundary
value problem is reduced to an integro-differential equation by representing the problem solution in
terms of the Green’s function. Solvability of the integro-differential equation depends on the fractional
derivative order in the loaded term of the BVP. The integro-differential equation has an eigenfunction.
The solution of the stated boundary problem is determined by the solution of the obtained integro-
differential equation in explicit form. Since the uniqueness of the BVP solution is violated, in this case
the load can be interpreted as a strong perturbation the BVP.

The article is structured as follows. Section 1 includes some necessary concepts, definitions, auxiliary
assertions, and preliminary assumptions about the classes of the BVP solution and the data included
in the problem under study. In Section 2, we set the BVP that we are going to solve. In Section 3, the
problem is reduced to an integro-differential equation with a difference kernel. In Section 4 we solve the
resulting integro-differential equation by Laplace integral transform method. We write out the solution
of the resulting equation in explicit form and formulate the corresponding results on the non-uniqueness
of the solution to the BVP and the solution to the associated integro-differential equation.

1 Preliminaries

We first give some definitions and useful information.
Definition 1 ([6]). Let f(t) ∈ L1[a, b]. Then, the Riemann-Liouville derivative of the order β is

defined as follows

rD
β
a,tf(t) =

1

Γ (n− β)

dn

dtn

∫ t

a

f (τ)

(t− τ)β−n+1
dτ, β, a ∈ R, n− 1 < β < n. (1)

Definition 2. Let f(t) ∈ AСn[a, b] (i.e. f (n−1)(t) is an absolutely continuous function). Then, the
Caputo derivative of the order β is defined as follows

cD
β
a, t f(t) =

1

Γ(n− β)

∫ t

a

f (n)(τ)

(t− τ)β−n+1
dτ ; β, a ∈ <, n− 1 < β < n, (2)

Mathematics series. № 4(108)/2022 99



M.T. Kosmakova, K.A. Izhanova, A.N. Khamzeyeva

From formula (1) it follows that

rD
0
a,tf(t) = f(t), rD

n
a,tf(t) = f (n)(t), n ∈ N.

We study a BVP for the loaded heat equation, when the loaded term is represented in the form
of a fractional derivative. To study the formulated boundary problem, we need a formula for inverting
the differential part of the equation.

It’s known [30; 57] that in the domain Q = {(x, t) |x > 0, t > 0} the following boundary value
problem of heat conduction

ut = a2uxx + F (x, t) ,

u |t=0 = f(x), ux |x=0 = g(x),

has the solution u(x, t) described by the formula

u (x, t) =

∫ ∞
0

G (x, ξ, t) f(ξ) dξ − a
∫ t

0
G(x, 0, t− τ) g(τ) dτ+

+

∫ t

0

∫ ∞
0

G (x, ξ, t− τ)F (ξ, τ) dξdτ, (3)

where

G(x, ξ, t) =
1

2
√
π a t

{
exp

(
−(x− ξ)2

4 a t

)
+ exp

(
−(x+ ξ)2

4 a t

)}
.

The following equality holds true for the Green function G (x, ξ, t)∫ ∞
0

G (x, ξ, t) dξ = 1. (4)

It follows from the definitions that for the existence of a derivative of f(t) in the sense of Riemann-
Liouville (1) it is sufficient that f(t) belongs to the class of summable functions, for the existence
of a derivative in the sense of Caputo (2) it is sufficient that the n − 1st derivative of the function
f(t) be an absolutely continuous function, where n-1 is the integer part of the derivative order, i.e.
f(t) ∈ AСn[a, b] and there is the next relation formula for these derivatives

cD
β
a, t f(t) = rD

β
a,t

[
f(t)−

n−1∑
k=0

f (k)(a)

k!
(t− a)k

]
.

So we assume that the solution u(x, t) belongs to the class

u(x, t) ∈ AС3 (t ∈ [0, T ]) , (5)

The right side of the BVP equation vanishes at t < 0 and belongs to the class

f(x, t) ∈ L∞ (A) ∩ C (B) , (6)

where A = {(x, t) |x > 0, t ∈ [0, T ]}, B = {(x, t) |x > 0, t ≥ 0}, T − const > 0, also we assume

f1 (x, t) =

∫ t

0

∫ ∞
0

G (x, ξ, t− τ) f (ξ, τ) dξdτ ∈ AС3 (t ∈ [0, T ]) . (7)

The classes in which the problem is studied are determined from the natural requirement for the
existence and convergence of improper integrals that arise in the study.
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2 Statement of the fractionally loaded BVP of heat conduction

In a domain Q = {(x, t) : x > 0, t > 0} we consider a BVP

ut − uxx + λ
{
cD

α
0tu(x, t)

}∣∣∣
x=γ(t)

= f(x, t), (8)

u (x, 0) = 0, ux (0, t) = 0, (9)

where λ is a complex parameter,

cD
α
0tu(x, t) =

1

Γ(3− β)

∫ t

0

uτ3(x,τ)

(t− τ)α−2
dτ

is Caputo derivative (2) of an order α, 2 < α < 3, γ(t) is a continuous increasing function, γ(0) = 0 or
γ(t) is a positive const.

The solution of the problem and the right side of the equation belong to the classes (5) and (6),
respectively.

3 Reducing the problem to a Volterra integro-differential equation of the second kind

Lemma 1. Boundary value problem (8)–(9) is reduced to a Volterra integro-differential equation of
the second kind.

Proof. We invert the differential part of problem (8)–(9) by formula (3):

u(x, t) = −λ
∫ t

0

∫ ∞
0

{
cD

α
0tu(x, t)

}∣∣∣
x=γ(t)

G(x, ξ, t− τ)dξdτ+

+

∫ t

0

∫ ∞
0

G (x, ξ, t− τ) f (ξ, τ) dξ dτ.

Taking into account relation (4) and introducing the notation

f1 (x, t) =

∫ t

0

∫ ∞
0

G (x, ξ, t− τ) f (ξ, τ) dξ dτ,

we get the following representation of the solution to problem (8)–(9):

u(x, t) = −λ
∫ t

0
µ(τ)dτ + f1(x, t), (10)

where
µ(t) =

{
cD

α
0tu(x, t)

}∣∣∣
x=γ(t)

. (11)

From representation (10) we take the derivative of the order 2 < α < 3 with respect to the variables
t on both sides and put x = γ(t). On the left side, we get the function µ (t). We also introduce the
notation according to formula (11).

Then BVP (8)–(9) is reduced to the integro-differential equation:

µ(t) + λ

∫ t

0
Kα (t, τ)µ′′(τ)dτ = f2(t), (12)

with conditions µ(0) = µ′(0) = 0, where

Kα (t, τ) =
1

(3− α)(t− τ)α−2
(13)

and
f2(t) =

{
cD

α
0tf1(x, t)

}∣∣∣
x=γ(t)

. (14)

Lemma 1 on reducing the BVP to an integro-differential equation is proved.
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4 Study of the integro-differential equation. Main result

Lemma 2. The homogeneous integro-differential equation (12) has a non-trivial solution.
Proof. We denote the Laplace transforms of µ(t) and f2(t) as

µ(p) = L[µ(t)] =

∫ ∞
0

e−ptµ(t)dt, f2(p) = L[f2(t)].

Since
L

[
1

tα−2

]
=

Γ(3− α)

p3−α
,

then applying Laplace transform to equation (12) with the condition µ(0) = µ′(0) = 0, we get

µ(p) =
f2(p)

1 + λpα−1
. (15)

Consider equation (15) for f2(p) ≡ 0.

µ(p)(1 + λpα−1) = 0. (16)

Let’s solve the equation:
1 + λpα−1 = 0. (17)

For λ ∈ C and 2 < α < 3. Then α− 1 is a real number. Let’s consider cases.
I. α ∈ Q. In case for α ∈ Q, there can be finite number p1, p2, ..., pn are solutions to equation (17).
Then nonzero solutions to (16) are

µk(p) = Ckδ(p− pk),

here δ(x) is the delta function, Ck = const; pk are solutions of equation (17), k = 1, ..., n, n is a
denominator of the rational number α − 1. Here and below, the numbers are in the left half-plane of
the complex plane, i.e. Re, pk < 0.

I. α ∈ Q. Applying the inverse Laplace transform to the last equation, we get

µk(t) = Ck
1

2πi

∫ σ+i∞

σ−i∞
δ(p− pk)eptdp = Cke

pkt.

Integral is taken along the line Rep = σ and is considered in the form of the main value. That’s
why, if p = pk are the solutions of equation (17), then eigenfunctions of equation (12) have the following
form

µk(t) = Cke
pkt. (18)

Remark 1. The power of the complex number z with rational power z
m
n is defined as:

z
m
n = ( n

√
z)m.

II. α ∈ R but α 6∈ Q. Then α− 1 is an irrational number
Remark 2. Power of the complex number z with real irrational index of power 0 < s < α − 1 is

defined as the limit

zs = lim
n→∞

z
αn
βn ;

αn
βn
→ s,
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here αn and βn are sequences of natural numbers.
Based on Remark 2 we can claim that equation (17) has at least one solution p0 for λ ∈ C and

2 < α < 3.
Then equation (12) has at least one eigenfunction (18). The number of eigenfunctions depends on

the values of parameters α and λ.
Now let’s find a solution of nonhomogeneous equation (12) (f2(t) 6= 0).
Equation (15) can be rewritten:

µ(p) = f2(p)− λ
pα−1

1 + λpα−1
f2(p). (19)

Now we apply the inverse Laplace transform to equation (19)

L−1
[

pα−1

1 + λpα−1

]
=

1

2πi

∫ δ+i∞

δ−i∞

A(p)

1 + λpα−1
dp = Rλ(t, α), (20)

here A(p) = pα−1ept.
The integral in (20) is considered as the main value and the integration is taken along the contour

which doesn’t include pk on the left side. Then the solution of equation (12) can be written as: the
solution of equation (12)

µ(t) = f2(t) +
∑
k

Cke
pkt − λ

∫ t

0
Rλ(t− τ ;α)f2(τ)dτ, (21)

here pk are the roots of equation (17), Ck are arbitrary constants and Rλ(t;α) is defined as in (20).
The zeros of the denominator of the integral function in (20) are the numbers pk so that A(pk)) 6= 0.
Therefore

Rλ(t, α) =
∑
k

resp=pk
A(p)

1 + λpα−1
=
∑
k

A(pk)

λ(α− 1)pα−2k

=
∑
k

pke
pkt

λ(α− 1)
.

Then (21) can be rewritten as

µ(t) = f2(t) +
∑
k

Cke
pkt −

∑
k

pk
α− 1

∫ t

0
epk(t−τ)f2(τ)dτ. (22)

Thus, the following theorem has been proved.
Theorem. Integro-differential equation (12) with kernel and right side defined by the formulas (13)

(2 < α < 3) and (14), respectively, has a solution defined by the formula (22), moreover, the
corresponding homogeneous equation (12) (when f2(t) = 0) has a nonzero solution

µ(t) =
∑
k

epkt,

where here pk are the roots of equation (17) and Repk < 0.

Сonclusion

So function (22) is the solution of equation (12). Then the solution of BVP (8)–(9) has the form
of (10)

u(x, t) = −λ
∫ t

0
µ(τ)dτ + f1(x, t),

where the function f1(x, t) is defined by the formula (7).
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In such a way it can be claimed that term with a load in equation for BVP (8)–(9) is considered a
strong perturbation, since according to (22) and (10) the homogeneous BVP (8)–(9) (when f(x, t) = 0)
has non-zero solutions in the form of:

u(x, t) =
∑
k

λ

pk
(epkt − 1),

here pk are solutions of equation (17) and Repk < 0.
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Академик Е.А.Бөкетов атындағы Қарағанды университетi, Қарағанды, Қазақстан

Бөлшек туындысы түрiндегi жүктемемен жылу өткiзгiштiктiң
шекаралық есебiн шешудiң бiрегей еместiгi туралы

Бiрiншi квадрантта бөлшектiк-жүктелген жылуөткiзгiштiк теңдеуi үшiн екiншi шеттiк есеп қарасты-
рылған. Жүктеме қосылғышы 2 < α < 3 реттi Капуто бөлшек туындысы ретiнде берiлген. Шеттiк
есеп дифференциалдық бөлiгiн ауыстыру арқылы айырма өзектi интегро-дифференциалдық теңдеуге
келтiрiледi. Бiртектi интегро-дифференциалдық теңдеудiң кем дегенде бiр нөлдiк емес шешiмi бар
екенi дәлелдендi. Бiртектi шекаралық есептiң шешiмi бiрегей емес, ал жүктеме шекаралық есептiң
қатты ауытқуы болып табылатыны көрсетiлген.

Кiлт сөздер: екiншi шеттiк есеп, жүктелген теңдеу, Капуто бөлшектiк туындысы, көп мағыналы
шешiлiм, қатты ауытқу.
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О неединственности решения краевой задачи теплопроводности с
нагрузкой в виде дробной производной

В статье рассмотрена вторая краевая задача для нагруженного уравнения теплопроводности в пер-
вом квадранте. Нагруженное слагаемое содержит дробную производную в смысле Капуто порядка
2 < α < 3. Краевая задача сводится к интегро-дифференциальному уравнению с разностным ядром
изменения дифференциальной части. Доказано, что однородное интегро-дифференциальное уравне-
ние имеет хотя бы одно ненулевое решение. Показано, что решение однородной краевой задачи, соот-
ветствующей исходной краевой задаче, неединственно, а нагрузка выступает как сильное возмущение
краевой задачи.

Ключевые слова: вторая краевая задача, нагруженное уравнение, дробная производная Капуто, неод-
нозначная разрешимость, сильное возмущение.
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