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Analytical and numerical research based on one modified refined
bending theory

In the article, an analytical and numerical study based on one modified refined bending theory is presented.
By the finite difference method, a general numerical calculation algorithm is developed. The solution
obtained by the proposed method is compared with the results of known solutions, namely, with the solution
of the classical theory, the exact solution, the solution in trigonometric series, as well as with experimental
data. Comparison of the results obtained by the method given in the article with the solutions determined
by other methods shows sufficient accuracy, which indicates the reliability of the proposed method based
on one option of the modified refined bending theory. Classical theory is not applicable to such problems
under consideration.

Keywords: modified refined bending theory, finite difference method, lagrange variational principle, differential
operator, discretization of a system of equations

Introduction

The rapid development of scientific and technological progress requires the creation and implemen-
tation of new progressive materials and structures with predetermined properties. These requirements
are fully met by composite materials, in particular, multilayer composites, which have a wide range of
performance properties that cannot be achieved using traditional materials.

The use of multilayer composite materials in modern apparatuses and devices required taking into
account their structural features, the physical and mechanical properties of the materials used, the
number, structure and arrangement of layers for the composite material in mathematical research, as
well as the creation of new methods that refine existing theories for the mathematical calculation of
the stress-strain state of such structures.

In multilayer composite structures, the layers are made of such a material and these layers are
arranged so as to endow the structure with a number of predetermined positive properties. At the same
time, the materials are selected in such a way that, in an optimal combination, they give a qualitatively
new type of construction. Or, in other words, in multilayer composite structures, the layers are arranged
so that, under operational conditions, the structure better corresponds to its functional purpose.

The technical, mathematical and mechanical properties of structures made of multilayer inhomo-
geneous materials differ significantly in the thickness of their packages. Therefore, the features study
for the operation of structures made of multilayer inhomogeneous materials in the thickness of their
package by use refined theories is important in the mathematical study and the design of new innovative
lightweight structures made of multilayer materials. Bending theories clarifying mathematical and
technical theory should take into account the most important operational characteristics of multilayer
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composites, such as strain in the orthogonal direction to the layers, interaction of layers, strength,
high resistance to fracture, etc. Each construction of a new multilayer composite that provides an
increase in technical characteristics, as a rule, requires the development of new calculation methods
based primarily on analytical mathematical research, and later on the numerical implementation of
this research and its practical application.

One of the elements for multilayer composite spatial systems is a rectangular plate, which has
numerous independent applications. An example of a rectangular plate, clamped with one edge, is
a vertical panel, and an example of a plate, elastically clamped with three edges, is the wall of a
rectangular reservoir. It should be noted that multilayer plates are a very extensive type of plates
and are more often used in many fields of science and technology. The plate can be applied as an
independent structure or can be part of the used lamellar system. For example, in the construction
plates have all kinds of applications in the form of floorings and wall panels, reinforced concrete slabs to
cover industrial and residential buildings, slabs for the foundations of massive structures, etc. Therefore,
knowledge of the theory for rectangular plates bending and of classical methods for calculating them
is necessary for a modern scientist.

Many analytical and numerical calculation methods are used to study the problems of plate
bending [1-12]. An exact solution in analytical form for such problems is possible only in some
particular cases for the geometrical type of the plate, the load and the conditions for its fixation
on the supports, therefore, for practical applications, numerical, but sufficiently accurate methods for
solving the considered problem are of special importance.

When considering the plate bending problems, the finite difference method is the most interesting
because of connection with their possible numerical implementation in software package.

1 Initial positions and hypotheses

We consider a rectangular plate made of a multilayer composite material. The sides of the plate
are equal to a and b, the thickness of the plate equals h. The study of the deformation of the plate is
carried out in a rectangular coordinate system x1, x2, x3 = z. The number of layers is arbitrary. The
layers of the plate are orthotropic. Orthotropic materials are more difficult to analyze than isotropic
materials, because their properties depend on the direction, so we place the directions of the Oz and
Oz axes on the axes of the orthotropy of the layers. There is a coordinate plane at an arbitrary height
of the plate section. The axes Oz and Oxs lie on this coordinate plane.

The total number of layers in the plate is denoted by n. We number the layers as usual, starting
from the bottom edge of the plate. The number of an arbitrary layer of the plate is denoted by k. The
layer number in the coordinate plane is denoted by m. The totality of all n layers of the plate is called
a package of layers.

In the general case, let’s assume that the layers of the package have different thicknesses and
different stiffness, the mechanical properties of which do not change in their thickness [13]. We suppose
that the number of layers and their placement in the package are arbitrary.

During the transition from layer to layer we assume that static conditions

E k-1 E k-1
0j3 =0;3 » 033 =033
and kinematic conditions
uf =uft (i=1,2,3)

1

are fulfilled, where Ufj (i,7 = 1,2,3) are stresses, u¥ (i = 1,2,3) are displacements of the k-th layer.
This corresponds to the operation of their layers without slipping and tearing.

Let a normal load g(x1,x2) act on the upper surface of the plate. The normal load q(z1, z2) varies
according to an arbitrary law. The positive direction of the normal load coincides with the direction

of the normal axis x3 = z.
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On the plate surface, the boundary conditions take the form
oy = qlz1,22), ofy=0, oj3=0, i=12 j=123.
The conditions of the deformation continuity for the coordinate surface have the form [13]
Xiil — X12, = 0,

€11,12 — 2€12,12 + €22.11 = 0

where ¢; ; is strains, x;;, is the shear function of the coordinate surface.
As the main assumptions for constructing a new refined model of the stress-strain state for a layered
plate of an asymmetric structure with orthotropic layers, we accept the following system of hypotheses

2
k k
z3 = 23¢ 3(2)x,i 033 = _Zn:’,z‘(Z)X,iia uy =W (1)
i=1

where Gf?) is the shear modulus of the material, ¥, n are distribution functions for the k-th layer of the
package, W and x are the sought deflection function and the sought shift function of the coordinate
surface, depending on the coordinates x1 and xo. The distribution functions depend on the z coordinate.

Hypotheses (1) are derived from the hypotheses made by Prof. A.Sh. Bozhenov [1]|, with the
exception of those components that are not of great importance in calculating the stress-strain state
of the plate. Hypotheses (1) guarantee the joint operation of layers without separation from each
other and displacement, as well as conditions on the plate surfaces and determine the nonlinear law
of variation of transverse shear stresses and normal transverse stresses in the plate thickness. It is
assumed that normal displacements are equal to deflections.

For the distribution function in expressions (1), we have the following formulas

1 i z bj—01 .
ubs(2) = g ) — @3], nbi) = [ A’fdwz / Aldz,
i3 bp—1—01 _1—01
z b;j—d1 ) z
nki(2) = / Bkzdz+z / Blzdz, () = / Ghly()dz +CE, (2)
br—1—91 _1—61 br—1—01

where 97 is the distance from the coordinate plane to the bottom edge of the plate, and the constants

have the form
bj—0d1 ) )
ch - Z / Gl (2)d=

Here and in what follows, the notation introduced in [1] is adopted. For the components in formulas
(2), we have the following expressions

Af :05{31 (1+Vu)+G 2} Bk _05Bk(1+y )+G127 szz :Ef:l/(l)ca

x _ oy E_ E k1 kY. k
o; = 7777 vy = (1 - V12V21) ) Bz3 = (V3z + Vle3l)V0a
Li

where Ef is the modulus of elasticity and l/fj is the Poisson modulus for the k-th layer of the plate
[13].
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2 Analytical research

Based on the hypotheses (1) we have adopted, we carry out an analytical study of the stress-strain
state for the layer package. First, we present the relationships that we use to derive the calculation
formulas for stresses and strains.

We have the relations of Hooke’s law

k _ pk k k Kk 1 k k _ ok k k _ ok k
o = Bjiej; + 2Bisegs + Bisegs, o1y = 2Gsely, 053 = 2Gises. (3)

Inverse expressions of Hooke’s law have the form

k k
ko Lk Vi k_ Vi3 k
i Ek%‘ Ekffu Ek033a
j I 3

k k
koL ko Vsik Vs ok
33 Ek 33 Ef 11 Eg 225

3
1 1
kE _ k k
2e53 = ok Oi3, 2€7p aF 012
i3 12
The Cauchy relationships are the following formulas
kE_ .k k _ .k k kE _ .k k E _ .k
€i; = Ui, 2€79 =Ujg+Uyj. 2€3=1ujg+U3z;, €33=7uss. (4)

We determine the transverse shear strain e&(z1,z9,2) from Hooke’s law (3) by substituting the
hypothesis expression for transverse tangential stresses (1)

k
2efs = Ylax.i. (5)
We find normal transverse strains ek (1, 22, 2) from the last Cauchy relation taking into account (1)

Integrating the third Cauchy relation (4) with respect to z, as well as using the relations (1) and
(5), we obtain formulas for calculating tangential displacements

M=y —2W, + %bf,z'x,i, (7)

u

where u; are tangential displacements and W; are the sought deflection functions of the coordinate
surface, depending on the coordinates x; and xo. Normal displacements are considered equal to
deflections.

From the conditions for the joint work of the layers of the package
uf = ub1(i =1,2,3)
and conditions on the layer located in the coordinate surface
ui"(z1,22,0) = u(z1, 22)
we find the distribution function wf in the form of the following expression

bj —o1

i z i k-1 . bm—1—01 m—1

— J m

(o / Vi 3dz + Z/ i,3d% +/ Vizdz — Z /
bp_1—01 j=1 bj_1—01 0 j=1 b

bj751 .
J
i’3dz.

j—1—01
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Tangential deformations are found from the first Cauchy relations (4), substituting expressions for
tangential displacements (7) into them. As a result, tangential strains are expressed by the following
formulas

et =€ — Wi+ ¢le,11,
€5y = 22 — 2W 22 + Y X 22, (8)
b = €91 — 2W o1 + 0.5(w§ + wlf)x,m-

Taking into account formulas (1) and expressions for tangential strains (8), the stresses of the
generalized Hooke’s law (3) are found by the formulas [13]

2
oty = Bii(en — Wi +9ixn) + Bia(eaz — 2Waa + ¢5x.22) — Bl > 1hiX.iis
=1

2
085y = Bl (22 — 2Wa2 + ¥ x,22) + Bia(e11 — 2Woan + ¢ x.11) — Bl > mhiX.ais
=1

oty = 2G%, 222 + 0.5(F + ¥) x 12 — 2 W)

Based on formulas for calculating displacements (1), (7) and strains (5), (6), (8) it is possible to
determine the components of the stress-strain state of the plate at an arbitrary point of the k-th layer.

Using the Lagrange variational principle and the relationships derived taking into account hypotheses
(1), we obtain a system of equations for bending plates made of multilayer composite material with
orthotropic layers. We notice that the number and arrangement of layers is arbitrary. Then we introduce
force functions into the system of equations and obtain this system of equations in a mixed form

AF¢+ ATW — (D3g — Alg)x =0,
Nlgp+ (D35 — AB)W + (A7 — Ay — Alg)x = —4, (9)
Nsgo + (A2g — A2)W + (AB) — A3y — Aps)x =0.

This system describes the bending of a multilayer plate with an asymmetric thickness structure with
orthotropic layers.

The system of resolving equations of a layered plate is presented in a transformed form in [1].

The general order of the system of equations (9) is equal to twelve. The system of equations (9)
takes into account the transverse shear and the interaction of layers. The functions of the coordinate
plane, namely the force function ¢, the deflection function W and the shear function y are the sought
functions in the system of equations (9).

There are differential operators in the system of equations (9). A is a second order differential
operator, and A? is a fourth order differential operator. These differential operators have the following
form

NG = AT('“),1111 + Az(“'),um + Ag("'),mzz’
Dg=Bi (o) 1y + B3 () 5o, (10)

where A% (j =1,2,3) and B} (i = 1,2) are coefficients in equations (10). These coefficients depend on
the stiffness of the package layers.

For different values of f and g, the coefficients of the operators take different values, which are
shown in Table 1 [14]. When solving the system of equations (9), one should take into account the
boundary conditions for fixing the edges of the plate with respect to the force function, the deflection
function, and the shear function [12].
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3 Numerical calculation

Using the finite difference method, the system of equations (9) and the boundary conditions of
the plate were discretized. |3, 15]. The exclusion of unknown functions of the system of equations (9)
outside the grid area of the plate is made in a matrix form.

An algorithm for numerical calculating the bending of multilayer composite plates with orthotropic
layers, where the number of layers, their structure and arrangement are arbitrary, was developed by the
finite difference method. This algorithm is implemented by a software package on a PC. This software
package consists of a head program and several subroutines when using the FortRUN programming
language.

The flowchart of the head program is divided into several blocks. Each block is autonomous and
designed to perform specific functions. For the convenience of performing calculations, all magnitudes
with dimensions are determined in a dimensionless form [12].

Below we describe the functions for these blocks of the flowchart of the head program.

In the first block, all the initial data and parameters of the task are introduced. In the second
block, the stiffness characteristics are set for a multilayer composite plate with orthotropic layers. In
the third block, systems of equilibrium equations for the plate under consideration are compiled and
then solved. In the fourth block, the stress-strain state of the multilayer plate is calculated.

Conclusion

Using hypotheses (1), Lagrange’s variational principle, the system of equations of the twelfth order
is obtained. This system of equations describes the bending for a multilayer plate of an asymmetric
structure in thickness with orthotropic layers. Three functions of the coordinate surface are unknown:
the function of forces, the function deflection and the function shear.

The boundary conditions consist of two groups of relations. The first group of boundary conditions
is similar in form to the conditions of the classical theory of plate bending and describes the boundary
conditions for the coordinate plane of the plate [12|. The second group of equations simulates the type
of deformation of the end surface for the plate and assumes the presence of various types of diaphragms
at the end of the multilayer plate. The combination of the conditions from the two groups makes it
possible to obtain various design features on the contour of the plate, i.e. it allows you to vary the
boundary conditions on the edges of the plate.

In Table 2 [14], the solutions calculated by the method described above are checked against the
results of solutions determined by known methods, namely, with the solution of the classical theory,
the exact solution, the solution in trigonometric series, and the error of the solutions is calculated. In
Table 3 [14], a comparison of the obtained solution with experimental data for three-layer plates with
different plate parameters is presented.

Comparison of the obtained solution by the finite difference method with solutions determined
using known methods, as well as with experimental data, shows a sufficiently acceptable accuracy in
solving such problems and indicates the reliability of the proposed relations. It is impossible to apply
classical theory for the problems under consideration.

It should be noted that when calculating the multilayer plates with orthotropic layers by analytical
methods in the most general formulation: with arbitrary boundary conditions (including elastic),
different types of load, complex shapes and different sizes of plates, different thickness of layers and
different elastic characteristics, etc., we have to face with great mathematical difficulties, and in most
cases to obtain an analytical solution of the problem under consideration is not possible. Such problems
can be solved by applying a very efficient finite difference method, which gives a sufficiently high
accuracy of solutions.
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Bip moandukanusianral HaKTbIJIAHFAH Uy TeOpUsCHl HETi3iHae
AHAJIUTUKAJBIK YKOHE CaHJbIK 3epTTey

Maxkanana 6ip MogudUKaIUsIIaHFAH HAKTBIIAHFAH Wiy TEOPHUsIChI HETI3IH/Ie aHAJTUTUKAJIBIK, }KOHE CAHJIbIK,
3epTTeyJiep KYPriziaren. AKbIP/Ibl afibIPMAIIBUILIKTAD OICI HEri3iH/e CAHJIBIK, €CENTEYIH YKAJIbl AJIN0-
puTMmi >KacayraH. Y CBIHBLIFAH djlicTeMe OOMBbIHINA aJIbIHFAH IIeIiM Oesrisi meniMaep/Iin, HoTHKeTepIMeH,
aTan alTKaH/1a, KJACCUKAJBIK TEOPHUSHBIH IIENIMIMeH, oJ1 IIEHIIMMEH, TPUTOHOMETPUSIBIK, KaTapJap-
JAFBI MIEMIIMMEH, COHBIMEH KATap YKCIIEPUMEHTTIK MOJIIMETTEPMEH CAJBICTHIPhLIAIbI. Makaraaa KepceTii-
IPeH OJIiCIIeH aJIbIHFaH HOTHKeJep/li O0acka o/licTepMeH aHbIKTAJFaH IIENIiMIePMEH CAJIBICTBIPY >KETKIIIKTI
JOAIIKTI Kepcereni. by uinynin MmoaudukanusianFaH HAKThIIAHFAH TEOPUSICHIHBIH, 61p HYCKACHI HETri3iHjie
YCBIHBIIIFAH 9JIICTiH ceHIMIITITiH mosemnaeiiai. KapacThIpbIIbIT OTBIPDFAH €CenTep YIMH KIACCUKAIBIK, TEOPUST
KOJIJTAaHBLIMAMTBI.

Kiam ceadep: mopudukanusianral HaKTbIAHFAH Uiy TEOPUSICHI, aKBIPJIbI aiibIpMAIIBLILIKTAP dici, Jlar-
paHXK BapHUALMSLIBIK, IPUHITAI, TU(MOEPEHITHAIBIK, OIIEPATOP, TEHIEYIEP KYMECIH TUCKPEeTU3aINIIAY.

A.T. Kacumos!, I A. Ecenbaena?, B.A. Kacimvos?, [A. Ecenbaesa’, O. Xa6umomnma?

! Kapacanduncruti mexnumneckuti ynusepcumem umenu A. Cazunosa, Kapazanda, Kasaxcman;
2 Kapazanduncrutd ynusepcumem umenu axademura E.A. Byxemosa, Kapazanda, Kasaxcman;
SHUIT «Taparwms, Kapazanda, Kazaxcman;

4 Kapazanduncrud yrusepcumem Kasnompebceorsa, Kapazanda, Kaszaxcman

AnarmTyeckoe n YNCJIEHHOE HCCJIeJOBaHNEe HAa OCHOBE OJHOI
MOAUPUITMIPOBAHHON yTOUYHEHHOI Teopuu m3rmnda

B crarbe npoBesieHO aHAIUTUYECKOE M YUCJIEHHOE HCCJIeJOBAHWE HA OCHOBE OMHOM MOuUIMpPOBaAHHON
yTOUYHEHHOI Teopun m3rnba. Ha ocHOBe MeTO/1a KOHEIHBIX PA3HOCTEH pa3paboTaH OOIIHI aJTOPUTM IUCIEH-
HOro pacuera. [loydentoe o mpeyIo2KeHHON METOIMKE PEIIeHIe COTIOCTABIIEHO C PE3YIbTATAMHU H3BECTHBIX
pelleHnii, a UMEHHO C PelIeHNeM KJIACCUYECKON TEOPUH, C TOYHBIM PeIlleHHEM, C PElIeHNeM B TPUTOHOMET-
PUYECKHX Psax, a TaKyKe C SKCIePUMEHTAIbHBIMU JaHHbIME. CpaBHEHME DPe3yJIbTATOB, MOJYIEHHBIX II0
JAHHOM B CTaThe METOIUKE, C PEIIEHUSIMY, OIIPEIEJIEHHBIMU JIPYTUMHI METOJAaMU, IIOKa3bIBAeT JOCTATOYHYIO
TOYHOCTB, 9YTO CBUJIETEJIBCTBYET O JIOCTOBEPHOCTHU IIPE/jIaraeMOil METOJMKHN Ha OCHOBE OJTHOI'O BapHaHTa
MOIUMUITMPOBAHHON yTOYHEHHOM Teopun n3ruba. Kiaaccudaeckas: Teopusi Jijisi pACCMATPUBAEMBIX 3a1a9 HE
IIPUMEHUMA.

Karouesvie crosa: MomuduiimpoBannas yTOYHEHHAs TEOPHs N3rHOa, METO KOHEUYHBIX PA3HOCTEe, BapHAIlH-
oHHBII npuHnun Jlarpamxka, nuddepeHIuaIbHbIi OllepaTop, JUCKPETU3AIMS CUCTEMBI YPaBHEHHUIA.
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