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Inverse problems of determining coefficients of time type in a
degenerate parabolic equation

The paper is devoted to the study of the solvability of inverse coefficient problems for degenerate parabolic
equations of the second order. We study both linear inverse problems — the problems of determining an
unknown right-hand side (external influence), and nonlinear problems of determining an unknown coefficient
of the equation itself. The peculiarity of the studied work is that its unknown coefficients are functions of a
time variable only. The work aims to prove the existence and uniqueness of regular solutions to the studied
problems (having all the generalized in the sense of S.L. Sobolev derivatives entering the equation).
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Introduction

The paper studies the solvability of some inverse problems of finding the solution to a degenerate
parabolic equation and a certain coeflicient of the equation itself. If the unknown coefficient determines
the free term (external influence) in the equation, then such an inverse problem will be linear, but if
the unknown coefficient is a multiplier for one or another derivative of the solution, then it will be
nonlinear. In this paper, both linear and nonlinear inverse problems will be studied.

The problems studied in the work will have two features.The first of them is that inverse coefficient
problems for time-variable degenerate parabolic equations will be studied. The second feature is that
the unknown coefficient in our problems will also be a function of the time variable only.

Inverse problems for parabolic equations without degeneracy and with unknown coefficients depen-
ding only on the time variable seem to be thoroughly studied (see [1-12]. As for similar problems
for time-variable degenerate parabolic equations, there are few works here — only works [13-15| can
be named, and in these works either the nature of degeneracy is different, or the problem itself is
completely distinct.

Note the following. The presence of degeneracy in parabolic equations means that the well-posed
boundary value problems for them may differ significantly from the classical initial boundary value
problems for non-degenerate equations (see [16-19]). This is the situation that will be studied in this
paper — a situation in which the boundary conditions in linear problems will be different than in natural
initial boundary value problems.

All constructions and reasoning in the work will be conducted based on the Lebesgue L, and
SobolevWé spaces. The necessary definitions and description of the properties of functions from these
spaces can be found in monographs [20-22].

The purpose of this work is to prove the existence and uniqueness of regular solutions to the
problem, i.e., solutions having all the generalized in the sense of S.L. Sobolev derivatives, included in
the corresponding equation.
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The presence of additional unknown functions in inverse problems requires that, in addition to the
boundary conditions natural for a particular class of differential equations, some additional conditions
are also set — overdetermination conditions. In this paper, overdetermination conditions, called integral
overdetermination conditions in the literature, will be used. Inverse coefficient problems, linear and
nonlinear, with integral overdetermination conditions are well-studied for both classical (elliptic, parabolic
and hyperbolic) and non-classical differential equations. However, for time-variable degenerate parabolic
equations, inverse coefficient problems with integral overdetermination have not been studied before.

Overall, the content of the work consists of four parts. The first part provides studied linear and
nonlinear problems statement. The second part investigates the solvability of linear inverse problems
for degenerate parabolic equations of the second order. The third part studies the solvability of some
nonlinear inverse coefficient problem for degenerate parabolic equations of the second order. Finally,
the fourth part describes some generalizations and amplifications of the results obtained in the second
and third parts of the work, discusses their possible development.

Problem statement

Let © be a bounded domain from the space R™ with a smooth (for simplicity — infinitely differentiable)
boundary I', @ be a cylinder Q x (0,7") variables (z,t) of finite height 7', S =T x (0,7") be the lateral
boundary of Q.

Next, let ©(t), c(z,t), f(z,t), N(x), h(z,t), u(t) and ug(z) be the given functions defined at = € €,
t € [0, T], respectively. L is a differential operator whose action on a given function v(z, t) is determined
by the equality

Lv = ¢o(t)vy — Av + ¢(z, t)v

(A is the Laplace operator for variables x1, xa, ..., Zy).
Inverse problem I: Find the functions u(z,t) and ¢(¢) connected in the cylinder @ by the equation

Lu= f(xa t) + Q(t)h(xat)v (1)
when the conditions for the function u(z,t) are met

u(z,t)|s =0, (2)

/ N(z)u(z,t)dz = 0,t € (0,T). (3)
Q

Inverse problem I1: Find the functions u(z,t) and ¢(¢) connected in the cylinder @ by the equation
(1), when the conditions (2) and (3) are met for the function u(x,t), as well as the conditions

u(z,0) =u(x,T) =0,z € Q. (4)

The inverse problems I and II are linear inverse problems for the parabolic equation Lu = F. Note
that in the problem I there are no boundary conditions for the variable ¢, in the problem II, on the
contrary, two boundary conditions are set for the variable ¢. Both of these situations do not seem to
be characteristic of first-order differential equations (with respect to a time variable), nevertheless,
sufficient conditions will be specified for each of them to ensure the existence and uniqueness of regular
solutions to the corresponding inverse problems.

Along with the inverse problems I and II, is easy to study linear inverse problems for equation
(1) with the setting of one boundary condition for the variable t at t = 0 or at t = T". The sufficient
conditions for the existence and uniqueness of regular solutions to such problems is presented in the
fourth part of the work.
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Let us consider the problem statement of a nonlinear inverse problem for degenerate parabolic
equations.
Inverse problem III: Find the functions u(x,t) and ¢(t) connected in the cylinder @ by the equation

Lu + Q(t)u = f(xa t)a (5)
when the function u(z,t) fulfills the condition (2), as well as the conditions

u(z,0) = ug(z),x € Q, (6)

/Q N(@)u(z, )dz = p(t), ¢ € (0,T). (7)

The inverse problem III corresponds to the usual first initial-boundary value problem for parabolic
equations of the second order, the inhomogeneity of conditions (2) and (7) is explained by the nonlinea-
rity of the problem.

Solvability of inverse problems I and II

Let us put
ho(t) = / N (@)h(z, t)da,
Q
h

(,t)
ho(t) ’

folt) = /Q N()f(z, t)dz,

fi(z,t) = f(x,t) — hy(z,t) fo(t).
Next, by the given function v(z,t), we define the functions A (¢;v) and As(t;v):

hl(a:, t) =

Al(t;v):/QN(x)Av(x,t)dx,

Ag(t;v):/ﬂc(m‘,t)N(az)v(az,t)daj.

0
For the function w(z) from the space W3 (Q) N W2 (Q) there are inequalities

2 - 2 2 2
/Q W (z)ds < ngz:; /Q W2 (2)de < &2 / [Aw(z)2dz (8)

Q

with the number dy defined only by the domain © (see [20-22]). We will need these inequalities and
the actual number dy below.
In addition to the number dy, we will also need the following numbers:

hy = max |hy(z,1)],
Q
N1 = ElHNHLQ(Q)meslﬂﬁ,
Ny = doh; max [/ A (2, t)N?(z)dz] *mes'/?Q.
Q

0<t<T
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Theorem 1. Let the conditions be satisfied

p(t) € CH([0; T1), (0) < 0,p(T) > 0; (9)
()30, Ao 23 o (o € o st > @)
20— (t)>T >0, 2co+¢ (t)>¢ >0 at (z,t) € Q; (11)

N(x) € Wao(), h(x,1) € Loo(Q), he(w,t) € La(Q); (12)
|ho(t)] > ho >0 at t € [0, T]; (13)
N+ Ny < 1. (14)

Then for any function f(z,t) such that f(z,t) € La(Q), fi(z,t) € L2(Q), the inverse problem has
the solution (u(x,t), ¢(t)) such that u(z,t) € W' (Q), q(t) € La(Q).

Proof. Consider the boundary value problem: Find the function u(z,t), which is the solution to the
equation in the cylinder Q).

Lu = fi(z,t) — ha(z, 1)[A1 (5 u) — Az(t; u)] (15)

and such that the condition (2) is satisfied for it. In this problem, equation (15) is a degenerate parabolic
integro-differential equation (similar equations are also called "loaded" [23|, [24]). We will prove its
solvability in the space W22 ’1(Q) using the regularization method and the continuation method by
parameter.

Let € be a positive number. Consider the boundary value problem: Find the function u(z,t), which
in the cylinder () is the solution to the equation

—euy + Lu = fi(x,t) — hi(x,t)[A1(t;u) — Aa(t; u)] (16)

and such that condition (2) is met for it, as well as the condition

ut(x,0) = u(z,T) =0, x € Q. (17)

This problem is a mixed boundary value problem for an elliptic (non-degenerate) "loaded" equation
(16); its solvability in the space WZ(Q) is not difficult to show using the continuation method by
parameter [25].

Let A be a number from the segment [0;1]. Consider a family of problems: Find the function u(z,t),
which in the cylinder ) is the solution to the equation

—eug + Lu = fi(z,t) — Aha(z,t)[A1(tu) — Azt u)] (18)

and such that conditions (2) and (17) are met for it.

Boundary value problem (18), (2), (17) in the case of A = 0 with a fixed ¢ and if the conditions of
the theorem are met, it is solvable in the space W2 (Q) for any function f(x,t) belonging to the space
Ls(Q) (see [21]). Further, integrating by parts in equality (19)

. / vy Auddt — / Luludzdt = — / (Fa(t) — Mo, O[As () — Aot w)]}Audadt  (19)
Q Q Q
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(which is a consequence of equation (18)), using conditions (9)—(14) and applying the Helder and Young
inequalities, it is easy to obtain that for all possible solutions u(z,t) to the boundary value problem
(18), (2), (17) we take an estimate

ey /Q w2 dxdt + /Q (Au)?dzdt < M /Q fAdadt (20)
=1

with a constant M, defined only by the functions ¢(t), ¢(x,t), h(x,t), N(x), as well as the domain Q.
Consider now the equality

c / 2dadt — / Luugdedt = — / CFa(t) — Mo, O[As () — Aot w)Jugdadt.  (21)
Q Q Q

Integrating again by parts, using conditions (9)—(14) and applying the Helder and Young inequalities,
we obtain that for all possible solutions u(z,t) to the boundary value problem (18), (2), (17) a priori
estimate is performed

5/ utztd;vdt—i—Z/ uiitd:z:dt < M2/ fPdzdt, (22)
Q i=17@ Q

where the constant My is defined by the functions ¢(t), ¢(x,t), h(z,t) and N(z), the domain 2, and
the number e.

From estimates (20) and (22), as well as from the second basic inequality for elliptic operators [21],
it follows that for solutions u(x,t) to the boundary value problem (18), (2), (17) the next estimate is
true

lullwz @) < Msl|fllLaq)» (23)

where the constant M3 is defined by the functions ¢(t),c(x,t), h(x,t) and N(x), the domain €, and
the number e.

From estimate (23), from the solvability in the space W2(Q) of the problem (18), (2), (17) in the
case of A = 0, as well as from the theorem on the continuation method by parameter [25], it follows
that for a fixed e, for an arbitrary A\ from the segment [0,1] and if conditions (9)—(14) are met, the
boundary value problem (18), (2), (17) will be solvable in the space W2(Q) for any function f(z,t)
from the space L2(Q).

Let {em}m=1 be a sequence of positive numbers converging to zero. According to the above, the
boundary value problem (18), (2), (17) in the case of € = &, and A = 1, there is a solution u,(z,t)
belonging to the space WZ(Q). For the family {u,,(z,t)}°_;, there is a priori estimate (20) which is
uniform by e. Next, on the right side of the equality (21) with € = &,,, we will integrate by parts with
respect to the variable ¢. Further, using the conditions of the theorem and applying the Helder and
Young inequalities, we obtain that for the functions w,,(z,t) there is a true estimate

Em /Q uppdadt + /Q Uz, dadt < My /Q (f* + f2)dzxdt, (24)
=1

the constant My where is defined only by the functions ¢(t),c(x,t), h(z,t) and N(z), as well as the
domain €.

Estimates (20) and (24) for functions u,(z,t), the reflexivity property of the Hilbert space 25|, as
well as embedding theorems [20-22] mean that there are functions w,,, (z,t),k = 1,2, ..., and u(x,t)
such that for k& — oo there are convergences
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U, (2,t) = u(z,t) weakly in W22’1(Q),
Uz, (T, 1) = ug, (x,t) strongly in Lo(Q) for 3=1,...,n,
Uz, (T,1) = ug, (z,t) strongly in Lo(S) for 8=1,...,n,
Emp Umytt(T,1) = 0 weakly in Lo(Q).

From these convergences, as well as from the representation

Al(t§umk) = - Z fQ Nﬂci (x)umlcl‘z (I,t)dx - fF N(x) agjk ds
i=1

it follows that for the limit function u(x,t), equation (15) will be fulfilled. The function u(x,t) belongs
to the space W22’1(Q).
Let us put

The functions u(z,t) and ¢(t) are connected in the cylinder @ by equation (1). We show that the
condition (3) holds for the function u(z,t).

We multiply equation (1) with the function ¢(¢) defined above by the function N(z) and integrate
over the domain Q. Considering the form of the functions hg(t), fo(t), h1(z,t), A1(t;u) and As(t;u), we
obtain that for the function w(t) which is defined by equality

w(t) = [o N(z)u(z,t)de,
the equation is performed
o(t)wr + cow = 0.

Multiplying this equation by the function w and integrating over the segment [0, 7], we get

w(t)=0 at te[0,T].

Hence, it follows that for the function w(z,t), which is the solution to the boundary value problem
(15), (2) the overdetermination condition (3) is satisfied.

All of the above means that the found functions u(z,t) and ¢(t) give the desired solution to the
inverse problem I.

The theorem is proved.

There is a similar result to the above for the inverse problem II.

Theorem 2. Let the condition (25) be satisfied

p(t) € CH([0;T1),0(0) > 0,0(T) < 0; (25)

as well as conditions (10)—(14). Then for any function f(z,t) such that f(x,t) € L2(Q), fi(x,t) €
Ly(Q), f(z,0) = f(x,T) = 0 for z € § the inverse problem II has a solution (u(zx,t),¢(t)) such that
u(z,t) € Wa(Q), q(t) € Ly([0,T7)).

The proof of this theorem is carried out in general analogous to the proof of Theorem 1, the only
difference is that in the boundary value problem for equation (16), conditions are not (2) and (17),
they are (2) and (4).
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Solvability of the inverse problem II1

The study of the solvability of the nonlinear inverse problem III will also be carried out by
using the transition to integro-differential (loaded) equations. For simplicity, we will limit ourselves
to analyzing the case of ¢(z,t) = 0; the general case will differ from the one considered only by the
greater cumbersomeness of conditions and calculations.

Let us put

2 xX
M, = d fQ fw((t’)t) drdt + [, ud(z)dz.

Theorem 3. Let the conditions be satisfied

o(t) € C([10; T)), [(t)] ™" € La([0;T)), (t) > 0, when t € [0;T); (26)
c(z,t) =0 at (z,t) € Q; (27)
0 0

N(w) € W) N W), p(t) € WA(0.T), uo(a) € W) N W (€), (28)

f(,1) € Loo(0, T; W (Q));
pu(t) > po > 0, fo(t) — e(t)p'(t) > pn >0 at t €[0,T7; (29)
M| AN Ly < s (30)
/Q N(@)uo(x)dz = u(0), (31)

Then the inverse problem III has a solution (u(z,t),q(t)) such that u(z,t) € Loo(0,T; W2(2) N

0
W3(Q)), w(=,t) € La(Q), q(t) € Leo([0,T1), g(t) >0 at ¢ € [0,T].
Proof. Let {e,,}2°_, be a sequence of positive numbers converging to 0. Denote ¢, (t) = ¢(t) +em.
Next, we define the cutting function G;(€),€ € R :

&, if|¢l < M,
Gu(€) =M, it &> M,
—M, if € < —M.

Let My be a number from the interval (0, u1]. Consider the boundary value problem: Find the
function u(x,t), which is the solution to the equation in the cylinder @

L
p(t)

and such that conditions (2) and (6) are met for it, as well as the condition

Pm(t)us — Au+ empm () A%+ —<[fo(t) — o) (t) + Gar (Ar(tw)]u = f(,1) (32)

Au(z,t)][s = 0. (33)

In this problem, equation (32) for a fixed m is a non-degenerate parabolic equation of the fourth
order with bounded nonlinearity in the lower term. Using standard energy estimates for parabolic
equations [26], the Galerkin method or the fixed-point method, it is easy to establish that the problem
(32), (2), (6), (33) has a solution w,,(z, t) belonging to the space W2471. We show that using the functions
um(x,t) it is possible to find a solution to the inverse problem III.
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Multiply equation (32) by the function [p(t)] ™ um (z,t) and integrate over the domain € and over
the time variable from 0 to the current point. After integrating by parts and reassigning variables, we
get equality

Jo ud (z,t)dx + Z fo Jo TZ;“Ef T)d$d7'+€m fo JolAup, (z, 7)|?dadr+

+ fo fQ u Jo(m) = o(T)p' (1) + G ary (A1 (75 um) )| ddT = (34)

= fo fQ (px(:))um x,7)dxdr + 5 fQ ud(z)dw.

Due to conditions (26) and (29), all the terms of the left side of this equality are non-negative.
Applying the Young’s inequality and inequality (8) to the first term of the right part (34), taking
into account also condition (28), we obtain that for functions wu,,(x,t) for ¢ € [0,T], the evaluation is
performed

/ W2, (2, £)dz < M. (35)
Q

Analyzing  the equalities obtained after multiplying equation (32) by the functions
~[pm )] L Aup (2, 1), [0m ()] A%y, (2,t) with subsequent integration over the domain  and over
the time variable from 0 to the current point, we obtain by using conditions (26), (28) and (29), and
the Helder inequality and the inequality (35) that for the functions w,,(z,t) the evaluation is performed

Z Jo U2, (@, t)dz + [o[Aum (2, )2 dz + em Z fo Jo(Aupa, (2, 1)) 2dudr+
+em fo Jo (A% (z, t))le‘dT < M,

with a constant My defined only by the functions ¢(t), u(t), N(x), f(x,t) and ug(z), as well as the
domain © and the number 7. To obtain the last necessary estimate, multiply equation (32) by the
function [pm ()] ume(x, t) and integrate over the cylinder Q. After simple transformations using the
conditions of the theorem, the Gelder inequality and estimates (35) and (36), we obtain that for the
function wu,,(z,t) the inequality holds

(36)

/ u?,,(z,t)dedt < My (37)
Q

with a constant M3 defined only by the functions ¢(t), u(t), N(x), f(x,t) and ug(z), as well as the
domain §2 and the number T'. Let’s clarify the value of the number My: My = 1. With this choice of
the number My, it follows from the estimate (34) and condition (30) that G, (A1 (t;um)) = A1(t; um)
is satisfied in equations (32). Further, from the estimates (34)—(37) and from the reflexivity property of
the Hilbert space, as well as from the embedding theorems, it follows that there exists a subsequence
{ump(z, ) }o°_; from the sequence of solutions to the boundary value problem (32), (2), (6), (33), and
the function wu(z,t) such that for k& — oo there are convergences:

U, (x,1) = u(z,t) weak in W22’1(Q) and strong in Ls(Q),
Emp A% U, (7,1) — 0 weak in La(Q).

Let us put )
q(t) = T[fo( ) — et (t) + Ar(tu)], (38)

/N u(z, t)dr — p(t). (39)

For the function u(x,t) and for the function ¢(¢) defined by equality (38) in the cylinder @, equation
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(5) is fulfilled. Further, for the function u(z,t), conditions (2) and (6) are fulfilled. We show that
the overdetermination condition (7) is satisfied for the function wu(z,t). Multiply equation (5) by the
function N(z) and integrate over the domain Q. Comparing the obtained equality with equality (38),
we come to the equation for the function w(?):

p(t)w'(t) + q(t)w(t) = 0. (40)
Since the function w(#) is bounded on the segment [0, T, the function [¢(t)]~! belongs to the space
Ly([0,T]), then (40) can be written as

W () + Sdw(t) = 0.

Multiplying the last equality by the function w(t) and integrating, we come to equality

Lo Pa(r) Lo
v (t) —l—/o mw (r)dr = i (0). (41)

Since the function ¢(t) is non-negative on the segment [0,7"] and w(0) = 0 (due to condition (31)),
then from (41) it follows that w(t) is an identically zero function on the segment [0, 7).

The equality to zero of the function w(t) and the formula (39) mean that the overdetermination
condition (7) is satisfied for the found function u(x,t).

So, for the functions u(z,t) and ¢(t) defined above, equation (5) is fulfilled, boundary conditions
(2) and (6) are fulfilled, as well as the overdetermination condition (7). Belonging of the functions
u(z,t) and ¢(t) to the required classes follows from a priori estimates (34)—(37). Consequently, these
functions will give the desired solution to the inverse problem III.

The theorem is proved.

Comments and additions

1. Throughout the work, it is assumed that certain inequalities or conditions for functions from the
Lebesgue or Sobolev spaces (conditions (13), (14), etc.) are fulfilled in the sense of their truth almost
everywhere on the corresponding set, that is, truth everywhere except, perhaps, for some set of zero
Lebesgue measure.

2. The approaches to proving the solvability of the corresponding inverse problems in clause 3 and
clause 4 are significantly different. First of all, we note that the statement of problem III does not
imply, despite the possible reversal of the function ¢(t) to zero at t = 0, the liberation of the set
{z € Q, t =0} from carrying the initial condition. Further, the conditions of Theorem 3 do not imply
differentiability of the function ¢(t), which is required in Theorems 1 and 2. All this is explained by
the fact that the conditions of Theorem 3 allow only weak degeneracy at t = 0, with weak degeneracy
and the nondifferentiability of the function ¢(t) at the points of its vanishing, the liberation of the
initial manifold of the initial data does not occur.

Note also that the conditions on the right side of f(x,t) in Theorems 1, 2, and 3 differ significantly.

3. The paper studies the solvability of some inverse problems for model parabolic equations. Similar
results (with minor changes) can be obtained for more general equations, for example, with the
replacement of the Laplace operator by an elliptic operator

-

8?34 (aij ($)u$j)?

7

=1

or for equations with first derivatives in variables x1, ..., z,,, etc.
4. Let one of the conditions be satisfied in equation (1)
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©(0) >0, ¢(T) >0,
©(0) <0, (T) <0.

In these cases, the inverse problems of finding the functions u(z, t) and ¢(¢) connected in the cylinder
Q@ by equation (1) will be correct when conditions (2) and (3) are set, as well as the initial or final
conditions:

u(z,0) =0, z € Q,
or
u(x, T)=0, z € Q.

The proof of the corresponding existence theorems is carried out analogously to the proof of
Theorem 1, the only difference is that in regularized problems either such conditions are given

u(z,0) = u(x,T) =0, x € Q,
or else such
ur(x,0) = u(z,T) =0, z € Q,

and for the function f(z,t), f(x,0) =0 or f(z,T) = 0 must be executed for z € (2.
5. The condition of turning the function N(z) to zero at x € I' (see condition (28)) can be
abandoned. Let the condition be true for the function f(z,t)

Flat) € Loo(0,T: WE(Q) N WA ().

Consider the problem: Find the function u(x,t), which is the solution to the equation in the
cylinder @

p(t)ur + s lfo(t) — o' (t) + [o N(y)uly, t)dylu = Af (1)

and such that the condition (2) and the condition are fulfilled for it
u(z,0) = Aug(x), x €.

The existence of regular solutions to this problem (under conditions similar to conditions (26)—(31))
is easy to prove by the method by which Theorem 3 was proved. Finding the function @(x,t), it will
not be difficult to further find the desired solution (u(x,t),q(t)) to the inverse problem III.

6. On the contrary, if in the inverse problems I and II the function N(x) vanishes at x € T" and
belongs to the space W2(f2), then using the representation

Ai(t;u) = Jo AN(y)uly, t)dy

it is not difficult to obtain a condition other than (14) for the solvability of inverse problems I and II.
7. The conditions of theorems 1 and 2 are satisfied if the measure of the domain € is small, the
functions ¢(z,t) and () are small.
We show that in the inverse problem III, the set of initial data for which all the conditions of
Theorem 3 are satisfied is not empty.
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Letn=1,Q=(0;1), N(z) = #(1—2), ug(x) and f(z) be functions from the space W2(Q)NW}(Q)
positive in . Next, let v be a positive number, a number for which the inequality holds

%A%wm>

If now p(t) is an arbitrary decreasing on the segment [0,7] continuously differentiable function
such that

e

<5 /Q f(z)N(z)dz.

M@ZAN@WWM

f(z,t) and ¢(t) are functions of vf(z) and t*, 0 < a < %, then all the conditions of the Theorem 3
will be executed for sufficiently small numbers T
Other examples can be given for the inverse problems I, II, and III.
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AN. Koxkanos!?, V.V. A6piikanpos>?, I.P. Amyposa®

LC.JI. Cobones amuvindaes Mamemamuxa urncmumymuo, Hosocubupex, Peceti;
2 Hosocubupck memaexemmir yrusepcumems, Hosocubupcek, Pecet;
3 0n-Dapabu amwmdaes. Kasax yammuk ynusepcumemi, Aamama, Kasaxeman;
4 Mamemamuxa orcone mamemamuraios modeavdey urncmumymot, Aamamor, Kasaxcman

OsrenieseHreH 1ceBaA0NapadoJIadbIK TeHJAeyre KONbLIFraH
KO3 punmeHTTi Kepi ecenrep

MakaJjia e3rerreseHreH eKiHIl peTTi mapadboJiaiblK, TeHIeyIep YIIiH KOd(MUIMEHTTI Kepi ecenTepIiy 1e-
misiiMaiirig 3eprreyre apraaral. ChI3BIKTBIK, Kepi ecenTep peTine Tenaeyaiy 6eiricis oy »KarblH (CBIPTKBI
ocep) aHBIKTay ecenTepi KoHe Genrici3 6ip ko3 dUIMEHTT] aHBIKTAaY/IBIH, CHI3BIKTHIK, eMeC ecebl KapacThbl-
pbUIFaH. 3epTTeseTiH *KYMBICTaP/IbIH ePeKIIesIiri — oaapiarsl 6eiricis KoadduimeHTrep TEK yaKbIT aifHbI-
MaJIBICHIHBIH, (DYHKIUAIAPBI OOJIBIT TaObLIaabl. 2K YMBICTBIH MaKCaThl — 3€PTTEJIETIH €CENTEPAIH, TYPAKThI
mermimzepinin (Tegaeyre karbicatsi dyarmusaapasH, C.JI. Co6omeB MarbIHACBIHIA GAPJIBIK, KAITHLIAMA
TYBIHABLIAPEL 6ap) 6ap »KOHE MKAJIFBI3BIFBIH JIDJIEIIEY.

Kiam cesdep: e3rerienenrer napaboiasblK TEHIEYIED, ChI3BIKTHIK, KEPi ecenTep, ChI3BIKTHI eMecC Kepi ecer-
Tep, peryisp menriMaep, menimMuig 6ap O00JIybl.

AN. Koxxanos!?, V.V. A6euikanpos>?, I.P. Amyposa®

L Bvemumym mamemamuxy umernu C.JI. Coboaesa, Hosocubupcr, Poccus;
2 Hosocubupcruti zocydapcemeenmitl yrusepcumem, Hosocubupes, Poccus;
3 Kasaxcrutl mayuonassruili ynusepcumem umeny ans-Papabu, Aimams, Kazaxcmar;
4 HMnemumym mamemamury, U MamemamuMeckozo modeauposanus, Aimamo, Kazazcman

Oo6parHble 3aga4un onpeaesieHust KO3 UIMEHTOB BPEMEHHOI'0 TUIIA B

140

BBIPOXKJaI0oNIeMcsa MapadboMmIecKOM ypaBHEHUN

Crarbsl IOCBSIIEHA HMCCIEIOBAHUIO PAa3PEIIUMOCTH OOPATHBIX KO(DMUIIMEHTHBIX 3a/ad JJIsi BBIPOXKIAI0-
UXCsT TapabOIMIeCKUX yPaBHEHUI BTOPOTo Topsijika. M3ydeHn! Kak JIMHEHbIE 0OOpaTHBIE 33/ 1a49d — 33241
OTIpE/IEJICHNsT HEM3BECTHON MPaBOil 9acTh (BHEITHErO BO3MEHCTBUA), TAK W HEJUHEHHBIC 38189 ONPEIeIe-
HUsl HEKOTOPOro KoaddurimenTa camoro ypaBHerus. OCOOEHHOCTBHIO M3yYaeMbIX PabOT SABJISETCS TO, UTO
HEU3BECTHBIE KOI(DMDUINEHTHI B HUX SIBJISTFOTCsI (DYHKIIUSIMHE JIMIIL OT BpEMEHHOH niepemenHoii. [leas paboTsr
— JIOKA3aTeJbCTBO CYNIECTBOBAHUS U €INHCTBEHHOCTU PErYJISIPDHBIX PEIeHUH N3yIaeMbIX 3aad (pereHuii,
nmeromux Bee 0606mmennpie, mo C.JI. Co6oseBy, TpOU3BOAHBIE, BXOJSIIIE B YPABHEHHUE).

Karoueswie cr06a: BHIPOXKTAIOIIAECS TapabOINYecKue ypaBHEHNUsI, JUHEeHbIe 0O0paTHbIE 3a/1a4Uu, HeJIUHel-
Hble OOpATHBIE 337441, PETY/IsIPHBIE DEIeHNsI, CyIIeCTBOBAHNE.
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