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Systems of integral equations with a degenerate kernel and an
algorithm for their solution using the Maple program

In the mathematical literature, a scalar integral equation with a degenerate kernel is well described (see
below (1)), where all the written functions are scalar quantities). The authors are not aware of publications
where systems of integral equations of (1) type with kernels in the form of a product of matrices would
be considered in detail. It is usually said that the technique for solving such systems is easily transferred
from the scalar case to the vector one (for example, in the monograph A.L. Kalashnikov "Methods for the
approximate solution of integral equations of the second kind" (Nizhny Novgorod: Nizhny Novgorod State
University, 2017), a brief description of systems of equations with degenerate kernels is given, where the
role of degenerate kernels is played by products of scalar rather than matrix functions). However, as the
simplest examples show, the generalization of the ideas of the scalar case to the case of integral systems
with kernels in the form of a sum of products of matrix functions is rather unclear, although in this case
the idea of reducing an integral equation to an algebraic system is also used. At the same time, the process
of obtaining the conditions for the solvability of an integral system in the form of orthogonality conditions,
based on the conditions for the solvability of the corresponding algebraic system, as it seems to us, has
not been previously described. Bearing in mind the wide applications of the theory of integral equations in
applied problems, the authors considered it necessary to give a detailed scheme for solving integral systems
with degenerate kernels in the multidimensional case and to implement this scheme in the Maple program.
Note that only scalar integral equations are solved in Maple using the intsolve procedure. The authors
did not find a similar procedure for solving systems of integral equations, so they developed their own
procedure.

Keywords: integral operator, degenerate kernel, Maple program procedure, scalar integral equation.

1 Fredholm integral equations with a degenerate kernel
(general theory)

Consider the integral system

m T
y(t) = )\ZAj(t)/Bj(s)y(s)ds + h(t). (1)
Jj=1 0

Let the expressions A;(t) and Bj(s), forming the kernel of the integral operator in it be matrix functions
(their smoothness and dimensions are specified below). Just as in the one-dimensional case [1-4], such
systems can be reduced to algebraic systems using the following operations. Denote

T
w = [ Biws)ds, j = Tm @
0
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Systems of integral equations ...

Then instead of (1) we get the equality

m

y(t) =AY Aj(w; + h(t). 3)

j=1

Multiplying in turn equality (3) on the left by matrices Bi(t), ..., By (t) and integrating the resulting
equalities with respect to t € [0,T], we get

T T
/Bl t)dt = AZ /B w; + /Bi(t)h(t)dt, i=T1,m.
0 0
Using (2), we obtain the algebraic system of equations
m
wi =AY cyw; + H; (i =1T,m), (4)
j=1

T T
where indicated: ¢;; = [ B;(t)A;(t)dt, H; = [ B;(t)h(t)dt, i,j = 1,m. Now let us refine the conditions
0 0

on the matrices A;(t), B;(t),7 = 1,m. It is clear that these matrices must be integrable on the [0, T].
We assume that all their elements are continuous on the segment [0,7]. In addition, there must be
matrices A;Bj, BiA;j, >, B;A;, By, Bjh, so their sizes must be consistent for all ¢, j = 1, m. This can
be achieved if we take all matrices A;(t) of the same size n x p and all matrices Bj(t) of the same size
p X n, where p is any natural number. Then the vector w; will be a column of the size px 1, ¢;jis (p X p)-
matrix, Hjis (p x 1)-vector, i, j = 1,n. Introduce the vectors w = {w,...,wy}, H = {Hi,...,Hy}
of the size (pm) x 1 and the matrix

C11 C12 e Clm

C21 CcC22 ... Com
C =

Cml Cm2 ... Cmm

This matrix is square in size (mp) x (mp). Now system (4) can be written as follows:
w=ANw+ H<& (I — \C)w = H. (5)

For A = 0 system (5) has an obvious solution w = H, so we will assume that A # 0. In this case,
system (5) can be rewritten as

(uI = C)w = puH <u=i)- (6)

Now let’s establish a connection between system (6) and system (1). These systems are equivalent in
the following sense: if there exists the solution y = y(t) € C([0,T],C") of the system (1), then there
exists the corresponding solution

= {/TBl(s)y /TBm (s)ds}
0 0

of the system (6). Conversely, if there exists the solution w = {wi, ..., wy} € C™ of the system (6),
then there is the solution y(t) = XY "L, Aj(t)w; + h(t)of the original system (1).

Mathematics series. Ne 4(108)/2022 61



B.T. Kalimbetov, V.F. Safonov, O.D. Tuychiev

The last statement needs proof, but we will not carry it out. Let us find out in which case
different solutions of the system (6) generate different solutions of the integral system (1). So, let
w = {wy,...,wp} and © = {Wy,..., Wy} there be different solutions of the system (6). Then the
solutions y(t) and g(t) of the integral system (1), corresponding to them, will coincide, if

> A, = iAJ t)ab; @ZA wi) =0 (Vt € [0,T)). (7)

If we denote by Ag- ) the k-th column of the matrix Aj, and by w(k), (k) the k-th components of the
vectors w; and W; respectively, then identity (7) can be written in the form

m p
~(k
SN AP Y o) =0 (vt e [0,1)). (8)
Jj=1k=1
Since w # w, then at least one of the differences wik) — k)

;. — W is not equal to zero, therefore the identity
(8) means that the columns of the matrix

S) =A@, ... AP @ A @), .. AP @), AD®), . AP (1))

m

are linearly dependent on the segment [0,7]. Hence, if the columns of the matrix S(¢) are linearly
independent on the segment [0, 7], then it follows from the identity (8) that everything w(k) = ’J)J(k),
and therefore y(t) = y(¢). So, in the case of linear independence on the segment [0, 7] of the columns
of the matrix S(¢), the correspondence w — y(t) will be one-to-one (w <« y(t)), therefore, in this
case, we can replace the study of the solvability of the system (1) with the study of the solvability of
the algebraic system of equations (6) (or what is the same system (5)). Henceforth, we will assume
that the columns of the matriz S(t) are linearly independent on a segment [0, T]. Systems of type (6)
are well studied in linear algebra. It is known that if p = % is not an eigenvalue of the matrix C,
then the homogeneous system (u/ — C)w = 0 has only a trivial solution w = 0. This means that the
corresponding integral system (1) has a solution for any right side h(t) € C([0,T],C™), which can be
written as

ZA Jwj + h(t) (w={wi,...,wn}).

If p = % (A # 0) is an eigenvalue of the geometric multiplicity  of the matrix C, then the homogeneous
system (il — C)w = 0 has the basic system w®), ..., w(") of solutions, and its general solution can be
written as

w = aw® + ..+ aqw®,

where aj,...,q, are arbitrary constants. In this case, the conjugate homogeneous system (al —
C*)z = 0 also has a basic system 2 .. 2 of solutions, consisting of r vectors. In order for
the inhomogeneous system (6) to have a solution, it is necessary and sufficient that its right side be
orthogonal to all vectors of the basis system of solutions of the adjoint homogeneous system:

(MH, z(j)> =0< (H, z(j)> =0,7=1,r. 9)
In this case, the inhomogeneous system (6) has the following solution:

w=ow+..  +auw® 4+, (10)
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where a1, ..., a, are arbitrary constants, w = @ is a particular solution of the system (6) (or, what is
the same, of the system (5)). Let’s see which condition for the original integral system (1) is equivalent
to condition (9). For this, we write a homogeneous adjoint equation for (1):

j=1
< g(t) = AL By (t) [ Aj(s)i(s)ds. (11)
0
Denoting z; = fA* s)ds, j = 1,m, we rewrite system (11) as

§(t) = XD Bi(t)z. (12)
Multiplying both parts of (12) on the left by A¥(¢) and integrating over t € [0,T], we obtain

fA* )\Z] 1 fA* (t)dt)z; <

=z = )\Z;nzl diij,i = 1,m,

T
where indicated: d;; = [ Af(t)B}(t)dt, i,j = 1,m. It is easy to see that d;; = ¢}

2 where ¢;; are the

0
matrices involved in system (4). The matrix of the system (12;) has the form

* * *

€11 €1 " Gn1
* * *

Clg Ca2 "'° Cpo

c* = e e o
b

* * *

Cim Com 7 Cmm

therefore, the algebraic system corresponding to the homogeneous conjugate integral equation (11) will

be as follows: B B
z2=AC"2& (I - NC*)z =0
(13)

& (I~ )z =0(u=1% A #£0).

All solutions of the adjoint equation (11) are found from (12), where z = {z1,..., 21} is the solution
of the system (13). Orthogonality (9) means that (take into account that

T
H= {/ Bi(Hh(t)dt, ... ,/Bm(t)h(t)dt, 20 = {9200y
0

m T
0 Z/(h(t),B;“(t)zi(j))dt e
0

=1

m T
Z/ t)dt, z(]
0

i=1
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According to (12), we obtain from this that the orthogonality conditions (9) are equivalent to the
conditions

T
[, 59@na 0.5 =T (14)
0

where (M (t), ..., 7™ (t) is the basic system of solutions of the conjugate homogeneous integral system

(11). Thus, if p = %()\ # 0) is an eigenvalue of the geometric multiplicity r of the kernel of equation
(1), then for the solvability of the integral system (1) in the space C([0,7],C"), it is necessary and
sufficient that orthogonality conditions (14) hold. In this case, the general solution of the equation (1)
can be written as

y(t) = aryW() + .+ ary ) +3(0),
where i, ..., q, are arbitrary constants (the same as in (10)), M (¢),...,y")(t) is the basic system

of solutions of the corresponding homogeneous equation, and y(t) = A

K(t,s)y(s)ds (A = i) is a

particular solution of the inhomogeneous system (1).

2 Computational implementation of finding solutions to the integral system (1) with a degenerate
kernel

It was shown above that in order to obtain a solution to the integral system (1), it is necessary to
find vectors w = {wy, ..., wy, } from system (5) and substitute its components into formula (3). However,
despite the simplicity of this scheme, its implementation is associated with considerable computational
difficulties. Let’s list them:

T
1) calculation of integrals ¢;; = [ B;(t) Aj(t)dt (i,j =1,m) and compilation of matrices C' =
0

(cij), C* = (dij) of the size (mp) x (mp);
T
2) calculation of integrals H; = [ B; (t) h (t) dt (i = 1,m) and composing the vector H = {Hq, ..., Hy }
0

of the size (pm) x 1;

3) find the solution of the adjoint system (I — XC’*) z = 0;

4) verification of the orthogonality conditions (H, z(j)) =0 (j = 1,7m) , where 2 ... (™) are the
basic solutions of the adjoint system;

5) when the orthogonality conditions are met, the calculation of the solution w = wq, ..., wy, of the
algebraic system (I — A\C)w = H,

6) constructing the solution to the original integral system (1): y(t) = A>T, Aj(t)w; + h(t).

Overcoming these difficulties manually will take a long time, so there is a need to overcome them
with the help of some program on the computer. The intsolve program in Maple allows you to quickly
and efficiently solve scalar integral equations with a degenerate kernel [5-9]. We do not know an
analogue of such a program for systems of integral equations, so we considered it necessary to develop
it ourselves. For the sake of simplicity of presentation of such a program, consider the case of a second-

order system
1
Yy (t) o al (t) bl ( ) as (t) bg
{ z(t) ] _0/ [ a3 (t) bz (s) aa(t)bs
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(the unit in the upper limit of the integral is not essential here; it can be replaced by an arbitrary
number 7T'). There is no doubt that this system is a system with a degenerate kernel, but it is not so
easy to represent it in the form (1), i.e., to write the kernel as a sum of products of matrices A; (t) and
B; (s). Therefore, below we choose a way to represent the kernel as a sum of products of matrices with
separated variables, based on the expansion of any matrix in a standard basis:

a b 10 0 1 0 0 0 0
el Lo aleelo o]V 8] =a[5 V]
The easiest way to do this is with Maple. First, note that in Maple, indexes can be written both in

square brackets and directly in the usual form. For example, a with an index j can be written both in
. : 1
the form a; and in the form a[j]. If we denote by el and e2 unit vectors el = [ 0 ] , €2 = [ (1] ] ,

then this decomposition can be written as follows:

[i cﬂ_a-e[l].(e[l])%T+b-e[l]-(6[2])%T+C-6[2}-(6[1])%T+d'e[2]'(6[2])%T’

where %T is the sign of the transposition, the dot in the middle means the multiplication of a scalar
by a vector, and the dot below is the matrix multiplication of vectors. For example,

G -le ) D -]
Now the kernel of the integral operator in (15) can be written as
(@[] (@) - e[ (b0 (s) - 1)) + (@2l (1) -e[1]). (121 (5) - (e [2)™) +
+(al3)(t)-e2) . (6181 (s) - (D7) + (a4 (&) - e [2)). (B[4 (s) - (e[2)").

and system (15) itself in the form

(16)

u(s)ds+h(t),

s = (1] - [ ¢

represented as the sum of products of matrices with separated variables:
AL(t) = a[1] (£) - e [1]: B1(s) = b[1] (s) - (1) ; A2 () = a[2] (1) - ¢
B2(s) = b[2] (s) - (e [2))" ;A3 () = a [3] (t) - € [2]; B3 (s) = b[3] (s) - (e [1)"";
A () = al4] () - e[2]5 BA(s) = b[4] (s) - (e [2) .

} . In this notation, the kernel of the integral operator is

Let us rewrite system (16) in the form
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Enter numbers

1 1
| B1l(s).u(s)ds=wl, [ B2(s).u(s)ds=w2,
10 ’ (17)

of B3 (s).u(s)ds =w3, [ B4(s).u(s)ds = wd.
Then system (17) takes the form
u(t)=Al(t) - wl+ A2(t) - w2 + A3 (t) - w3 + A4 (t) -wd + h(t). (18)

We multiply this equality successively by matrices B1 (t), B2 (t), B3 (t), B4 (t) on the left and integrate
the results over ¢ € [0,1]; we get

wl = (({131 (t) Al (t)dt) cwl + <Of1B1(t) A2 (1) dt> w2+

1 1 1
+ (f B1(t) .A3(t) dt> cw3 + <f B1(t) .A4(t) dt) ~wd + [ B1(t).h(t)dt;
0 0 0

w2 = ({132 (t) Al (t)dt) wl + (({132 (t) A2 (t) dt> w2+

1 1 1
< [B2(t) .A3(t) dt) w3+ ( [B2(t) .A4(t) dt) cwd+ [ B2(t).h (1) dt;
0 0 0

1 1
w3 = <fB3 (t) .A1(t) dt> ~wl + <fB3 (t) .A2(t) dt) cw2+
’ ’ | (19)

1 1
+ (f B3(t) .A3(t) dt> cw3 + <f B3(t) .A4(t) dt) ~wd + [ B3(t).h(t)dt;
0 0 0

1 1
wi = ( ([ BA(t) AL () dt> cwl + < Oj BA(t) .A2(1) dt> .w21+

1 1
+ (f B4 (t) .A3(t) dt> cw3 + <f B4 (t) .A4(t) dt) ~wd + [ B4(t).h(t)dt.
0 0 0

Since the matrices A [i], B[j] are known and their product B [j].A[i] is a scalar quantity, then (19)
is a system of linear algebraic equations with respect to the unknowns wl, w2, w3, w4. Solving this
system in Maple and substituting the found unknowns in (18), we find the solution of the original
integral system (15).

Ezxample 1. Solve a system of integral equations

y(t) =

z (t)

1
6tsy (s) ds+ [ 3t?sz (s) ds+ %+ 1,
0

O LO— .

(34+1)(5s+3)y(s) ds+f(8t+5) s32(s) ds + 4t.
0

Solution. Enter the coefficients

ar (t) :=6t;b1 (t) :==t;a2 (t) :== 3% by (t) :=t;a3(t) := 3+ t;
by (t) =5t +3;a4(t) :=8t+5;bs(t) := t35m(t) ==t + 1;n(t) =4t

Enter vectors
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Enter matrices:

AL(t) == a1 (t) - e[1]; B1(s) == b[1] (s) - (e [1)*"; A2(t) == a[2] (t) - e[1];
B2(s) :=b[2] (s) - (e[2)""; A3 () == a[3] (t) - e [2]; B3 (s) := b[3] (5) - (e [1]))""
A4(t) = ald] (1) - e[2]; B4(s) = b[4] (s) - (e[2])"";

We compose and solve a system of equations for unknowns wl, w2, w3, w4

: ) Y 9 ?
wl = (fBl(t) Al (t)dt> ~wl + <fBl(t) .A2(t)dt> ~w2+
1 0 1 0 1
(fBl(t).AB(t)dt) ~w3 + (fBl(t).A4(t)dt> cwd+ [B1(t).h(t)dt
0 0
1

0
w2 = <fB2(t) Al (t)dt> ~wl 4 <le2(t) A2 (t)dt> cw2+
1 0 1 0 1
<fB2(t).A3(t)dt> ~w3 + <f32(t).A4(t)dt> cwd + [B2(t).h(t)dt
0

w3 leB()Al()

0

1
= ~wl+ | [ B3(t) )dt>-w2
0

1 1
+<fB3(t) A3 (t )dt) w3+ (fBB(t).A4(t)dt) cwd+ [ B3(t).h(t)dt
0 0

0
1 1
w4 = <f B4 (t).Al(t) dt> ~wl + <f B4(t).A2(t) dt> ~w2+
0 0
1 1 1
(f B4 (t).A3(¢) dt> ~w3 + <f B4 (t).A4(t) dt> cwd+ [B4(t).h(t)dt
0 0 0
Calculate the solution of the original integral system

u(t) =

Al (t) - wl+ A2(t) - w2 + A3 (t) - w3+ A4 (t) - wd + h(t)
Answer.

- ]

381 38
Verification. Let us introduce the obtained solutions:

) 602t2 80 P41 2 (1) : 832 4 265 265
=t — — z(t) i= ——=
Y 381 127 381 T 381"
Let us calculate the difference between the left and right parts of the original system
1 1
f6tsy (s) ds+ [3t?sz (s) ds+t>+1
y(@) | 0
z (1)

1 1
JB+t)(5s+3)y(s) ds+ [ (8t +5)s32(s) ds+ 4t
0 0

Got a vector { 8 ]

Thus, the solution to system (20) is the vector function
o] ] e g
z (t) 381 -l- 381 t

the second

Remark 1. We have considered the two-dimensional case of the integral system (20). It is clear that
the described algorithm obviously extends to any integral systems of type (20) of order higher than
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3 Systems of integro-differential equations with a degenerate kernel and their reduction to integral

systems
Systems of equations of the form
T
dy _ 0
i tyy + N | K(t,s)y(s)ds + h(t),y(0,e) = y°, t € [0,T], (21)
0

where y = {y1(t),...,yn(t)}is an unknown function, h(t) = {hi(t),...,h,(t)} is the known function
(inhomogeneity), A(t), K (t, s) are known matrices of size nx n, are called systems of integro-differential
equations of the Fredholm type (or simply integro-differential systems). They can be reduced to an
integrated system. It is done like this.

Let us assume that Y(¢) is the fundamental matrix of solutions of the differential system G = A(t)z.

T

Taking H(t) = X [ K(t,s)y(s)ds + h(t) for the inhomogeneity of the differential system dy/dt =
0

A(t)y + H(t), we find its “solution”

y(t) = YO+ A J YY1 K(Cs)y(s)ds)d +
. 0 0 (22)
+ [ YO HOMC
Denoting
holt) = Y (1)y +/Y h(¢)dC (23)

and changing the order of integration in the iterated integral (22), we have

T t
~) 0/ O/ Yt K(C, 8)dC)y(s)ds + ho(t). (24)

We have obtained an integral system (24) with a kernel

- / vt K(C, s)dC. (25)
0

It is easy to show that the system (24) is equivalent to the system (21). The following result is obtained.

Lemma 1. If Y(t) is a fundamental matrix of solutions of a homogeneous system Z = A(t)z (it is
assumed that it exists on a segment [0,77]), then the integro-differential system (21) is equivalent to
the integral Fredholm type:

1
Y1) = / G(t, )y(s)ds + ho(t), (26)
0

¢
where ho(t) = Y (#)y° + [Y7H({)h(¢)d(, and the kernel G(t, s) has the form (25).
0

For equations (26) of the Fredholm type, statements about solvability look rather complicated.
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Theorem 1. Let in the system (21) the matrices A(t) € C([0,T],C"*"),K(t,s) € C(0 < s,t <
< T,C™™),h(t) € C([0,T],C™). Then the following statements are true:

a) if A is not a characteristic value of the kernel (25), then the integro-differential system (21) is
solvable for any right-hand side h(t) and, moreover, uniquely; in this case, its solution is given by the
formula

T
y(t) = ho(t) + A / RA(t, 5)ho(s)ds,
0

whereR)(t, s) is the resolvent of the kernel (25), ho(t) is the function (23);
b) if A is the characteristic value of the kernel (25) of rank r, then system (21) is solvable in the space
Cl([0,T],C") if and only if the inhomogeneity (23) is orthogonal to all solutions of the homogeneous

adjoint system z( f s)ds, i.e.
0

T
/ (ho(t), 29 (8))dt = 0, j = T,7,
0

where z(l)(t), ..., 2" is the basic system of solutions of the homogeneous adjoint system. In this case,
the solution of the integro-differential system (21) is given by the formula

t) = > ajy () + §),
j=1

T
where y(M(¢), ..., y("(¢) is the basic system of solutions of the homogeneous system, y(t) = A [ G(¢, s)y(s)ds,
0

y(t) is a particular solution of the integral system (26), and «ay, ..., @, are arbitrary constants.
Now let the kernel in the original equation (21) be degenerate, i.e.

m

K(t,s) = Y Aj(t)Bj(s), (27)

where all A;(t) are matrices of the size n x p, and all Bj(s) are matrices of the size p x n, j = 1,m
(we assume that the columns of the matrix S(t) = (Ai1(¢),..., Am(t)) are linearly independent on the
segment [0, 7). Then the kernel of equation (26) will have the form

YWY QK. 8)dC =
0 (28)

R0 (fY () Bis) = S, (01555,

where denoted: ®;( f y-1 (¢)d¢,j = 1,m. Hence, the degenerate kernel (27) of the

original integro—dlfferentlal system (21) generates the degenerate kernel (28) of the integral system
(24), equivalent to it, therefore, to construct a solution to system (24), we can apply the procedure
developed above. We will show how this is done using the Maple program in the following example.
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Example 2. Let’s try to get the solution of the system

$y<t>:—y<t>+ja1<t>b1<> (s) ds+fa2 by () 2 (s) ds +m (1),
%za) —2z<t>+£‘ (t)bs (5)y (5) ds+fa4 Vb () 2 (s) ds +n (1)
y(0) =a,z(0) =0,

where, for the sake of simplicity, the following data are taken:
al (t) =t;a2(t) =t%a3(t) =2t;a4 (t) =t + 1;01 (t) =3 t;
b2(t) =2t%03(t) =t;04(t) =t —1;m(t) =2t;n(t) =t%a=1; b= 3.

Solution.*
restart:
with(linalg):

Enter the coeflicients:

al (t) :=t;a2(t) :=t%a3(t) =2t a4 (t) =t + 1;b1(t) =3 ¢t;
b2(t) :=2t%b3(t) :=t;04(t) =t —1;m(t) :=2t;n(t) :=t*a:=1; b:=

Enter kernel:

(al (&) - e[1)). (b1 (5) - (1)) + (a2 (8) - e 1)) (b2 () - (e [2)"
+(a3(6) - e[2)). (83 (s) - (1)) + (ad (1) - e [2)). (b4 (s) -

®
9
N
ﬁv
S
—

Enter vectors:

o [24].

o= [£4]

Then the integro-differential system (29) takes the form:

ma 1) U = -1 0 U a -e 1 s)- (e AT u(s S
pUkt], w00 o o | @@ el (b)) ) d
+(a2(t)-el1]). [ <b2 () - (e [2])%T) u(s)ds
01
+(a3(t)-el2]). [ (b3 (s)- (e [1])%T) u(s)ds
01
+(ad(t) - e[2]) Of (b4 (s)- (e [2])%T) w(s)ds+h(t);
Enter matrices:
AL(t) :=al () e[1]; BL(s) = bl (s) - (e [1)*"; A2(t) == a2 (t) - e [1];
B2(s) := b2(s) - (e[2)"; A3 (¢) := a3 (¢) - € [2]; B3 (s) 1= b3 (s) - (e [1))"";
Ad(t) == ad (t) - e[2]; BA(s) = b4 (s) - (e[2)"";

* Maple does not put punctuation marks.
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Then the IDE system (29) can be rewritten as:

map (dif f, u(t),t) = [ _(1)
+A2(t).

FAL(L).

O P

We find the fundamental decision matrix:

B4(s).u(s)ds+ h(t);

1
B2 (s) .u(s)ds + A3(t). of B3 (s).u(s)ds

dsotve ({35000 = (0. 5 (0 =220} )

Change the inhomogeneity:

h1(t):=Y (¢). [ Z } +map (int,Y (t).Y " () .h(z

Enter matrices:

F1(t) :=map (int,Y (¢t).Y ' (z).Al (z), 2 =
F2(t) :=map (int,Y (t).Y ! (z).A2 (z) 2 =
F3(t) :=map (int,Y (t).Y ' (2).A3(z) 2z =
FA(t) :=map (int,Y (t).Y ! (z).A4 (z) 2 =

1
Denote wj = [ Bj(s).y(s) ds,j =1,4:

0
Then the equivalent integral system can be written as:

w(t)=F1(t) - wl+ F2(t) - w2+ F3(t) - w3+ F4(t) - wd+ hl(t):

Multiply this equation on the left sequentially by the matrices B1(t),B2(t),B3(t),B4(t)
integrate the results obtained over ¢ € [0, 1] . We obtain the system of algebraic equations:

int,wl - B1(t).F

1(t) +w2-B1(t).F2(t)

eql :=wl =map | +w3- Bl() F3(t) +wd- B1(t).F4(t)
+B1(t).hl(t),t=0.1
int,wl-B2(t).F1(t) +w2- B2(t).F2(t)
eq2 :=w2=map | +w3- BZ() F3(t) +wd- B2(t) .F4(t)
+B2(t).h1(t),t =0.1
int,wl- B3 (t).F1(t) +w2-B3(t).F2(t)
eq3:=w3=map | +w3- B3() F3(t) +wd- B3(t).F4(t)
+B3(t).h1(t),t =0.1

int,wl - B4(t).F1(t) +w2-B4(t
eqd : wd =map | +w3- B4()F

+BA(t).h

Let’s solve this system:

L(t),

)
3(t) +w4 B4 (t) .F4(t)
t=

F2(t)

solve ([eql, eq2, eq3, eq4] , {wl, w2, w3, w4}) :

Mathematics series. Ne 4(108)/2022

and

71



B.T. Kalimbetov, V.F. Safonov, O.D. Tuychiev

and activate the found solutions with the assignment operator (:=).
We write down the solution of the original integro-differential system (29):

F1(t) - wl+F2(t) - w2+ F3(t) - w3+ F4(t) -wd + hl(t);

9 (394416e~1e~2410800e "1 —139299e~2—10975) (ett—el+1)e

y(t) = =55 9864c T 218664c T —3561c 2—1831
1 (739476ete=2—105660e ! —154209e~2+17035) (e!t? —2ett+2et —2)e~* (30)
10 9864¢—Te—2+8664e— 1 —3561e— 2—1831 +

e+ (2eft — 2! +2) e

3 (394416eTe~2+10800e 1 —139299e~2—10975) (2te?! —e2!41)e~ 2t
2(t) = —45 9864 e~ 218664e 135612 — 1831
1 (98208e~te™2+457696e 1 —26187e~2—11719) (2te?! el —1)e~2t
40 9864e—Te—28664e_ I —3561le— 21831

The verification is carried out by substituting the solution into the difference between the left and right
parts of the system (29):

v ] [~y +2
0 ]| 2
].(()fl?)sy(s)ds)—%{tg].(({l%%(s)ds)

(Lo
(—I—[gt}(oflsy(s) ds>+[t£1].<g‘(s—1)z(s) ds)

simplify _s)ymbolic 8
Remark 2. When entering data in a Maple file, take into account that exponents and signs of

differentials are entered as operators.

In conclusion, we note that the developed procedure, with some modifications, will be used to study
linear and nonlinear singularly perturbed systems of integral and integro-differential equations with
rapidly oscillating coefficients and inhomogeneities [10-14].

Consequently, functions (30) satisfy system (29).
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O3zrentesieHTreH sAPOChl 0ap MHTErPAJIABIK TEHJeyJaep XKylieci >KoHe
osapabl Maple 6armapjiaMacbIMeH IMENTy aJropuTMi

Maremarukamblk, o7ebrerTepe ©3rellesleHIeH SIPOChl 6ap CKaJIsIPJIBIK WUHTEIDAJIIBIK TEHJEYJIED *KAKChI
cunarrasran (Temerge (1) KapaHbI3, MyHa GAPJIBIK KA3bLIFAaH (DYHKIUSIAD CKAIAp Niamasap). ABTop-
JIlapra MaTPHUIAJIAPIABIH KebelTinaici Typingeri siaponapst 6ap (1) TunTi MHTErpasgbIK TeHAEYIep XKyiiec
erKei-TerKeityii KapacThIPbLIATHIH *KapusiJIaHbIMIap 6esricis. Oierre MyH Al 2Kyitesep/i ey saicremeci
CKAJIAD JKaFJaii/IaH BEKTOPJIBIK, YKaFIaiiFa OHAl aybICTBIPBLIAIBI Aen aiTbuianpt (Mmbrcasst, A.J1. Kamammn-
KOBTBIH "MeTopl NpUGIMKEHHOTO PEIlleHnsl NHTErPaIbHbIX ypaBHenuil Broporo poga" (Hukuwmit Hosro-
pox: HHI'Y, 2017) MoHOrpadusChbIHa ©3relleIeHIeH sAPOJIbl TeHIEYJIeD XKy HeCIHIH KBICKAIIIa CUIIATTAMACHI
GepinreH, MyH/Ia ©3TeIle/IEHTeH sITPOHBIH, POJIIH MATPUIAIBIK, (DYHKIIAIIIAP €MEC, CKAJISIPIIBIK, (DYHKITUSIIAp-
JbIH KebeiTinmici arkapaapl gesinren). Asaiiza, KapamaibiM MBICAJIIAP KOPCETKEHIEH, MATPUIAIBIK, (DyHK-
IUSTaPAbIH KON TiHAICiHIH KOCBIHBICH TYPIHAETI SPOJIBI HHTETPAJIIBIK XK Yiiesep KarJaiibIHa CKAJISIPIIBIK,
JKAFIAfIbIH UesIapblH »KaJnblaay OipramMa TYCIHIKCI3, JereHMeH OyJl Kargaiifa WHTErPaJIbIK KyHeHi
ajrebpaJIblK, TEHJEYJIep XKyHecine KeaTipy mieschbl KOJJIaHbuiaabl. COHbIMEH Karap, CoiKec aJrebpasibik,
JKYWeHIH HIemmiMIiIiK IapTTapblHa CyiieHe OTBIPHIII, OPTOrOHAJIBLIBIK, IIAPTTAPBl TYPIHAETI HHTErPAJIIbIK
KYHMeHiH IMenMIiIiK mapTrapblH ajay Tporeci OypbIiH cumarraaMarad. Kosmaubasbl ecenTep/eri nwHTe-
rPaJIAbIK, TEHJEYIeP TEOPHUSICHIHBIH, KeH KOJIIAHBLIYbIH €CKePe OTBIPBIN, aBTOPJIAD KOMOJIIEeMIl Karaaiga
AJPOJIAPhI ©3relIe/IeHNeH NHTErPAJIIBIK, YKYyHeaep i eIy iH ersKei-Terkeilyii cxeMachlH 0epy/Ii »KoHe Oy
cxemanbl Maple 6armapiiaMacbiHIa eHTi3yAl KaxKeT gen caHaabl. Maple 6armapiiaMachblHIa TEK CKAJISIPIIBIK,
MHTErPAJIBIK TEHIEYIEp intsolve mponesypachl apKbLIbl MIENIJIETIHIH eCKepini3. ABTOpJIap UHTErpasIbIK,
TeHJEeyIep XKYHWeCiH IeNy il yKCac MPOIelyPAChIH TAIIA/Ibl, COHIBIKTAH OJIap ©3J/IePiHIH MPOIELy PAChIH
2KaCAIBL.

Mathematics series. Ne 4(108)/2022 73



B.T. Kalimbetov, V.F. Safonov, O.D. Tuychiev

74

Kiam cesdep: nHTErpaJlIbIK OllepaTop, e3reieaeHres sapo, Maple 6arnapiaMachlHbIH IPOIELYPACH, CKa~
JISIPJIBIK, WHTETPAJIJIBIK, TEHJIEY.

B.T. Kammv6etos!, B.®. Cadonos?, O./1. Tyirunes?

! FOscno- Kasazcmancrud ynueepcumem umenu M. Ayesoea, ITvmxenm, Kasaxcman;
2 Hayuonasvroiti uccaedosamenvcruti yrusepcumem, Mockosckutl snepeemumMeckuts uWnemumym,
Mocxesa, Poccus;
3 Xydorcandexuti 2ocydapemeermot yrusepcumem umerny B. Tagyposa, Xydorcand, Tadocurucman

CucreMbl MHTErPAJbHBIX YPAaBHEHUI C BBIPOXKJIEHHBIM SAPOM U
aJITOPUTM MX PellleHnd C MOMOIIbIo ITporpaMmMbl Maple

B maremaTmveckoil jmTeparype XOPOIIO OIHMCAHO CKAJsSPHOE WHTErpPajibHOe yDaBHEHUE C BBIPOXKIEHHDBIM
anapoum (cm. amke (1), Tae Bee 3anucanabie hyHKIMN ABISAIOTCA CKAJSPHBIMA BeJUIUHAMY ). ABTOpaM HEW3-
BECTHBI IIyOJIMKAIIMN, B KOTOPBIX MOJPOOHO PACCMATPUBAJIUCH ObI CUCTEMbI MHTETPAJIbHBIX YPABHEHUI TUIIA
(1) ¢ spavu B Buze pousseeHusi MaTpul. OGBIYHO FOBOPST, YTO TEXHUKA PEIIEHUs] TAKUX CHCTEM JIE'KO
MIEPEBOJINTCS CO CKAJIAPHOTO CJIydas Ha BEKTOPHBIHA (Hampumep, B monorpadgun A.JI. Kamammukosa «Me-
TOJbI IIPUOJIMKEHHOTO DEIIeHNs] UHTEIPAJIbHBIX ypaBHEHH Broporo poias (Hwmxuwit Hosropox: HHI'Y,
2017). /TaHo KpaTKoe OIMCAHHE CHCTeM YDABHEHHIl ¢ BBIPOXKJEHHBIMH siAPDAMM, [JIe POJIb BBIPOXKIEHHBIX
SA7Iep UTPAIOT MTPOU3BEIECHNs CKAJAPHBIX, 8 He MATPUIHbIX dyHKIwmii). OIHAKO, KAK MOKA3BIBAIOT IIPOCTEMH-
e npruMepsbl, 0600IIeHne WJIell CKaJISIPHOTO CJlydasi Ha CJIydail [EeJOYUCIEHHBIX CUCTEM C si[DAMU B BHJIE
CYyMMBI IIDOU3BEJCHIH MaTPUI-(PYHKIMI BeCbMa HEsICHO, XOTsI B 9TOM CJIydae UCHOJIb3yeTCs UJIesl CBEICHUS
WHTErpaJia ypaBHEHUS K ajrebpamdeckoil cucreme. B To ke BpeMsi mpOIECC MOTyYeHUs YCIOBUU paspe-
IIUMOCTH HWHTEIPAJIbHON CHCTEMBI B BUJIE YCJIOBUN OPTOrOHAJBHOCTH HA OCHOBE YCJIOBWIl Pa3perIMMOCTU
COOTBETCTBYIOIIEH aJirebpandecKoil CUCTeMbI, KaK HaM KajKeTCsl, paHee He OIMCBHIBAJICS. Y YUThIBasl IIHPO-
KO€ TIpUMEHEHNe TeOPUN WHTETPAJbHBIX YPABHEHUN B MPUKJIAIHBIX 331a9aX, aBTOPBI COWIN HEOOXOMMMBIM
[IPUBECTH MOJAPOOHYIO CXEMY PEIIeHHs] NHTEIPAJILHBIX CUCTEM C BBIPOXKJCHHBIMU sIJIDAMH B MHOTOMEPHOM
cydae M peajin30BaTh 3Ty cxeMmy B nporpamme Maple. O6parure Bunmanue, aro B Maple ¢ momoripio mpo-
ey phl intsolve pemaroTes: TOIbKO CKAJISPHBIE MHTErPAJIbHbIE yPaBHEeHUs . ABTOPBI HE HAIILIM AHAJIOTUIHON
METOJIMKH PEIleHUs CUCTEM MHTErPaIbHBIX yPABHEHUI, I09TOMY pa3paboTaiu COOCTBEHHYIO METOIUKY.

Kmouesvie crosa: HHTETPAIbHBIN OMEPATOP, BEIPOXKIEHHOE SIIPO, IpOrpaMMHast mporeaypa Maple, ckassip-
HOe MHTerpaJibHOe ypaBHEHHe.
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