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Inverse coefficient problem for differential equation in partial
derivatives of a fourth order in time with integral over-determination

Derivatives in time of higher order (more than two) arise in various fields such as acoustics, medical
ultrasound, viscoelasticity and thermoelasticity. The inverse problems for higher order derivatives in time
equations connected with recovery of the coefficient are scarce and need additional consideration. In this
article the inverse problem of determination is considered, which depends on time, lowest term coefficient in
differential equation in partial derivatives of fourth order in time with initial and boundary conditions from
an additional integral observation. Under some conditions of regularity, consistency and orthogonality of
data by using of the contraction principle the unique solvability of the solution of the coefficient identification
problem on a sufficiently small time interval has been proved.
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Introduction

Fourth order derivative in time arises in various fields. For instance, in the Taylor series expansion
of the Hubble law [1], in the study of chaotic hyper jerk systems [2] and in the kinematic performance
of long-dwell mechanisms of linkage type [3|. The fourth order in time equation, that is our motivation
point, was introduced and first studied by Dell’Oro and Pata [4]

Orrrr(2, T) + @Orrru(x, 7) + BO-ru(, T) — v A Orru(z, 7) — p A u(x, 7) =0,
where «, 3,7, p are real numbers. More recently, this model has attracted the attention of many authors
[5-9].

We consider an inverse problem of recovering the time-dependent lowest term in the fourth order
in time partial differential equation in the following type

Orrrrt(w,7) + Orrt(m, 7) — ADpru(w, 7) — Aulz, 7) = a(T)u(z,7) + f(z,7) (1)
subject to the initial conditions
U(ZL‘, 0) = 50(1')7 UT($7 0) = fl(x)a u‘r‘r(xv 0) = 52(1‘), UTTT(xa O) = 63(1;) (2)

and the boundary conditions
U(O, T) - uﬂ?(lv T) = 07 (3)

and the additional condition
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where Dy = {(z,7): 0 <z <1, 0 <7 <T} for some fixed T' > 0, f(x,7) is the force function, &(z),
i =0,1,2,3 are initial displacements, and E(7) is the extra integral measurement to obtain the solution
of the inverse problem.

The inverse coefficient problems for the first or second order in time (i.e. parabolic and hyperbolic
equations, respectively) PDEs are studied satisfactorily. The inverse problems of the parabolic and
hyperbolic PDEs investigated numerically and/or theoretically in [10-12] and [13, 14|, respectively.
The inverse problems of determining time or space dependent coefficients for the higher order in
time (more than 2) PDEs attract many scientists. The inverse problem of recovering the solely space
dependent and solely time dependent coefficients for the third order in time PDEs are studied by
[15,16], respectively. More recently, in [17] authors studied the inverse problem of determining time
dependent potential and time dependent force terms from the third order in time partial differential
equation theoretically and numerically by considering the critical parameter equal to zero.

Main purpose of this paper is the simultaneous identification of the time-dependent lowest coefficient
a(7), and u(x, 7), for the first time, from the equation (1), initial conditions (2), homogeneous boundary
conditions (3) and additional condition (4) under some regularity and consistency conditions.

The article is organized as following: in Section 2, we first present the eigenvalues and eigenfunctions
of the corresponding Sturm-Liouville spectral problem for equation (1), and two Banach spaces, which
are related to the eigenvalues and eigenfunctions of the auxiliary Sturm-Liouville spectral problem, are
introduced. Then, we transform the inverse problem into a system of Volterra integral equations by
using the eigenfunction expansion method. Under some consistency and regularity conditions on data,
the existence and uniqueness theorem of the solution of the inverse problem is proved via Banach fixed
point theorem for sufficiently small times.

1  Emistence and Uniqueness

In this section, we will set and prove the existence and uniqueness theorem of the solution of the
inverse initial-boundary value problem for the fourth order in time equation by using Banach fixed
point theorem.

The auxiliary spectral problem of the inverse problem (1)—(4) is

Y'(z)+ AY () =0, 0<x<1,

(5)
Y(0) = Y'(1) = 0.

The eigenvalues and corresponding eigenfunctions of these eigenvalues of the spectral problem (5) are
iy = (2”2—"'1#)2 and Y, (2) = v2sin(\/finz), n = 0,1,2, ..., respectively. The system of eigenfunctions
Y, (z) are biorthonormal on [0, 1], i.e.

1, m=n

/OlYn(x)Ym(x)d:z::{ 0 man

Also the system of eigenfunctions Yy, (z) = v/2sin(/finz), n = 0,1,2, ... forms a Riesz basis in L»[0, 1].

Definition 1. Let the pair of functions {u(z,7),a(r)} be from the class C%#(Dr) x C[0,T] and
satisfies the equation (1) and conditions (2)—(4). Then the pair {u(z,7),a(7)} is called the classical
solution of the inverse problem (1)—(4).

Now, let us introduce two Banach spaces that are connected with the eigenvalues and eigenfunctions
of the auxiliary spectral problem (5):
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Br = { Zun Yo (x) : u,(7) € C[0,T],

00 1/2
Jﬂw=<§mmwmwmww) <400y,

n=0

where uy, (T \[fo 7)sin(y/finz)dz, and Jr(u) = |lu(x, 7)[ g, is the norm of the function
u(z, 7).

II. E7 = Br x C|0,T] is a Banach space with the norm
lw (e, ) g = llw(@, Dl g, + a5
where w(z,7) = {u(x,7),a(7)} is a vector function.

These spaces are suitable to investigate the solution of the inverse problem (1)—(4).
After giving these preliminary results, we can set and prove the existence and uniqueness theorem
for the inverse problem (1)—(4):

Theorem 1. Let the assumptions

Ay &o(z) € CH0,1], §(2) € La[0,1], §(0) = §(1) =0,
Ay & (x) € CH0,1], &(7) € Lo[0,1], &(0) = £1(1) =0,
A &(z) € C0,1], §(x) € La[0,1], £(0) = &(1) =0,
Ay &3(x) € CH0,1], & (x) € Lo[0,1], £3(0) = &5(1) =0,

As E(1) € C*0,T), E(t) # 0 V7 € [0,T], ED(0) = fo &(z)de,i=0,1,2,3 and EO(r) = L E(7),

As f(x,7) € C(Dr), fo, fzw € C0,1], Y7 € [0,T], f(0,7) = fu(l,7) =0,

be satisfied, and A = (1 + p1,,)2 — 4p, > 0. Then, the inverse problem (1)—(4) has a unique solution for
small 7.

Proof. For arbitrary a(7) € C[0,T], to construct the formal solution of the inverse problem (1)—(4),
we will use the Fourier (Eigenfunction expansion) method. In accordance with this, let us consider

=3 (1) Ya(@), (6)
n=0

is a solution of the inverse problem (1)-(4), where Y, (z) = v2sin(\/inz), n = 0,1,2,... are the
eigenfunctions and p, = (@ﬂ'f ,n=0,1,2 ... are the eigenvalues of the corresponding spectral
problem.

Since u(z,7) is the formal solution of the inverse problem (1)-(4), we get the following Cauchy
problems with respect to u,(7) from the equation (1) and initial conditions (2);

ul) (1) (14 ) Ul (7) + pntin(7) = Fu(rs0,u),

(7)
UH(O) = £0n7 U{n(O) = glna un( ) €2n7 /H( ) = £3na n=0,1,2,...
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Here F,(7;a,u) = a() ()+fn(7), Un ( \ffo 7) sin(y/tnx)dz, fo(T \ffo 7) sin(y/inx)dx,

and &, = ffo &(z) sin( /) de, i = 0, 1,2,3,n = 0, 1,2,....
These Cauchy problems have the quartic characteristic polynomial

Py(k) = k' + (14 pn )k + pin.
If we convert this quartic equation to a quadratic equation by changing the variable s = k2, we obtain
Pa(s) = 82+ (L + pn)s + fin.

It is easy to see that A = (1+ pn)% — 4, = (un — 1)* and that is always positive. Then P»(s) = 0 has
two real roots
s1=—1, s = —pp.

Thus Py(k) = 0 has four complex conjugate roots
]ﬁ,g = :ti, k374 = iz\/,un.
Solving (7) by using the these roots of the characteristic polynomial, we obtain

tn, c08(T) — cos(\/finT) N MZ/Q sin(7) — sin(y/in7)

5071,
pin — 1 TN

p Sin(T) — sin(y /1, T)

un (1) = §int

+cos(7) — cos(y/IinT)

[ — 1 §2n M?/Q \//Tn €3n+
T VEnsin((T = s)) = sin(\/fa(T = 5))
+/O qu/z T F,(s;a,u)ds. (8)

Substitute the expression (8) into (6) to determine u(z, 7). Then we get

u(wﬂ_) :Zoo [,uncos(r) cos \/;an)€ 4 Mn mn(r) sin \//ET)g n

n=0 tn—1

12—/
cos(T)—cos(y/fnT) n sin(7)—sin(y/nT)
+Mn—,1‘u£2n + LD ,ui/Q*\/lTn\/lT Eant (9)

e ynsm«rﬁ?g %Mﬁ DE (s;a u)dS} n(T).

Let us derive the equation of a(7). If we integrate the equation (1) from x = 0 to x = 1 with respect
to z, and consider the additional condition (4), then we have:

EW(r) + E"(7) = fim(r +Z\/;Tn n(T) + un(T ))], (10)

where fint(T fo x, 7)dz. If we consider u, (7) which is defined in (8) and its second derivative into
the last equatlon we get

a(r) = 77 [ED() + B'(7) = font(7) + S50 /m (cos(y/imm)6on + S Te, +
(11)
+ cos(y/IinT)E2n + M&m + /s Fsm(\//Tn( —5))F,(s;a, u)ds)} .
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We convert the inverse problem (1)—(4) into the system of Volterra integral equations (9)—(10) with
respect to u(z, 7) and a(7) by considering

1
Un,(7) :/0 u(z, 7)Y (x)dx, n=0,1,2,...

is the solution of the system of differential equations (7). Analogously, we can prove that if {u(x, 7),a(7)}
is a solution of the inverse problem (1)—(4), then u,(7), n =0,1,2,...satisfy the system of differential
equations (7). For proof of this assertion please see [18]. From this assertion we can conclude that
proving the uniqueness of the solution of the inverse problem (1)—(4), it suffices to prove the uniqueness
of the solution of the system (9) and (11).

To prove the existence of a unique solution of the system (9) and (11) we need to rewrite this
system into operator form and to show that this operator a contraction operator. To this end let us
denote w(xz, 7) = [u(x, 7),a(r)]” is a 2 x 1 vector function and rewrite the system of equations (9) and
(11) in the following operator equation

w = I(w), (12)
where II(w) = [II1, Il]" and II; and I, are equal to the right hand sides of (9) and (11), respectively.

Using integration by parts under the assumptions (A;) — (Ag), we obtain following equalities

1

§0n = #%040717 fln = H%alm §2n = #%042717 €3n = H%CVSm fn(T> = Ewn(T)u

where wy,(7) = —\/ﬁfol foe(x, 7) sin(\/unz)de, oy = —\/§f01 & (x) sin(y/pnx)de, i = 0,1,2,3. Since
V2sin(,/finx) forms a biorthonormal system of functions on [0, 1], by using Bessel’s inequality we get

00 00

2 2 . 2 2
Z ‘am«’ < Hé.Z{IHLg[OJ] y L= 07 172737 Z |wn(7—)’ < Hfﬂﬂiﬂ('77—)HL2[0,l] : (13)
n=0 n=0

Before showing that ® is a contraction operator, let us find the estimates for the coefficients arising
in the operator equations (9) and (11):

fn €0S(T) — cos(\/tnT) fn + 1 1 ,11,731/2 sin(7) — sin(\/tnT) u;q’/Q +1 9
1 = 1 I 3/2 = 32 = dy,
cos(7) — cos(y/IinT) < 2 B[ Vn sin(7) — sin(\/in) Vi +1 4
= - = ns -~ - — ne
= 1 = 1 i = /i i = i
Since the sequences di,, i = 1,2, 3,4 are convergent, they are bounded. Consider that
dfl < m;, for each i = 1,2, 3,4, (14)

where m; are real constants.

Now we can show in two steps that II is a contraction operator by considering the assumptions
and estimates are given above.

I) First let us demonstrate that IT is a continuous map which maps the space Ep onto itself
continuously. That is to say, our aim is to show II;(z) € Br and Ilx(z) € C[0,T] for arbitrary w =
[u(z,7),a(r)]" such that u(z,7) € By, a(r) € C[0,T).

Let us start with showing that I (z) € Br, i.e. we need to verify

o0

1/2
Jr(In) = (Zmn |rn17n<r>uc[0,ﬂ>2> < +o0,

n=0
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where 3/2
tn, €OS(T) — cos(y/fnT) i sin( ) — sin(y/fnT)
Hn Mn — VHn
cos(T) — cos nT nSin(7) — sin nT
| cos(7) (VFnT) fin Sin(T) (u)&m+

fn — 1 fon TN
+ /OT L sin( (7 _;/)2> — sin(y/in(7 — 5)) Fy(s;a, u)ds.

Un = /HUn

After some manipulations under the assumptions (A;) — (4g), using the estimates (14) we obtain

o0

(Jr(1)* = (i (D) cpo.17)* <

n=0

2 2
<6Zmz+12\am\ Jr6m211223(0[37&2( |wn )\) + 67 [la(r HC[OT]Z(MnHun HC[OT) :

Since u(z, T) a(7) belong to the spaces By, and C0,T], respectively, the series at the right hand
side of (Jr(II1))? are convergent from the Bessel’s inequality (considering the estimates (13)). Jp(IT;)
is convergent (i.e. Jp(II}) < 400) because (Jp(II}))* is bounded above. Thus we can conclude that

I, (z) belongs to the space Br.

Now let us verify Ih(w) € C[0,T]. From the equation (10) we have

1

min_|E(7)
0<r<T

[z (w)] <

]E<4><T>] + B ()| + it (1) + D VA (Jun(7)] + |un<r>r)] :
n=0

Using the Cauchy-Schwartz inequality and the estimates are given in (13) and (14) we obtain

(2)| < 5By
B ) < e |,

(o) (St (Solan) }+ (S0 ) { (Sotenal?) 4

max [EW(r)| + max [E"(r)| + max |fone(7)] +

1/2

1/2
F(Solos?) v T (zn 0 <Oga§xT \wn<r>|)2> + T lla() 0.1 (foo (110 ||un<r>||c[o,ﬂ)2)
(15)

Considering the estimates (13) and > 7 un Y ;2 are convergent, the majorizing series (15) are
also convergent. According to Weierstrass M-test, ITo(z) is continuous and belongs to the space C[0, T].
Therefore, we show that II maps Er onto itself continuously.

IT) Since IT maps Ep onto itself continuously, let us show that IT is contraction mapping operator.
Assume that let w; and we be any two elements of Ep such that w;(z,7) = [u(i) (z,7),a® (T)]T,
i = 1,2. From the definition of the space Er, we have |[II(w1) — IX(ws)|| . = [[Il1(w1) — Il (w2)|| g, +
[ 1I2(w1) — 2 (w2)| o - For the convenience of this norm, let us consider the following differences:

[ﬁ(uq)——[h(wg)—-

= Ofo Tam sin(( i/)i’):jl:fi\/m“_s» (Fn(s al,ul) — Fyo(s;a?,u )) dsY, ()
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Il (wy) — Iz (w2) Z/o rsm V(T —5)) (Fn(s;al,ul) — Fn(s;a2,u2)) ds.

After some manipulations in last equations under the assumptions (A;)—(Ag) and using the estimates
(13)—(14), we obtain

111 (21) — Ih(22)|| B, < V2myT [H 1)HC[0T Hu(l) - u(Z)’ B + Hu@)‘ B al) — a(Q)HC[OyT]] )
1H2(21) = 2 (22) || cpo,m <
< T (i 1) v [H <1>H H 1 >_u(2>‘ N Hu@)‘ e _a<2>H } ‘
0r<1f1t1<nT |E(t)] = in C[0,T] Br Br clo,T)

From the last inequalities it follows that

ITL(21) = H(22)l|p,, < O(T, 0™, u®) [|21 — 22|,

1/2
where C(T, oM, u®) = T(Hamucm + Hu@)HBT) (fm4+ o |E( ; (z;;‘;o #A) )
Since E(1) € C*0,T], E(r) # 0 Vr € [0,T], (>(T) € C[O,T], u®(z,7) € Br and my is

a finite constant, (Ha(l)HC[O,T] + HU(Q)HBT) <\fm4 + i |E( 31 (ZZOZO /’Ll’ﬂ>1/2> is bounded above.

Thus C(T,a™,u®) tends to zero as T — 0. In other WOI"db, for sufficiently small 7" we have 0 <
C(T, a, u(2)) < 1. This means that the operator II is a contraction mapping operator.

From the first and second steps, the operator Il is contraction mapping operator that is a continuous
and onto map on Ep. Then according to Banach fixed point theorem the solution of the operator
equation (12) exists and it is unique.

2 Conclusion

The paper considers the inverse problem of determining the time dependent lowest term coefficient
in fourth order in time partial differential equation with initial and boundary conditions from an
additional observation. The unique solvability of the solution of the inverse problem on a sufficiently
small time interval has been proved by using of the contraction principle. The proposed work is a
novel and has never been solved theoretically nor numerically before. Our results shed light on the
methodology for the existence and uniqueness of the inverse problem for the fourth order in time
PDEs in two dimensions.
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M./ Ix. Xynrynt, U. Texun?

1 .
Jorcazan ynusepcumemi, owcazan, Cayd Apabusco;
2 Anadoun Ketixybam amumdaen Aaarnva yrusepcumemi, Awmanvsa, Typrus

NuTerpaaapik TypaeHAIPyi 6ap yaKbIT OOUbIHINIA JiepOec TybIHIbLIbI
TOPTIiHII peTTi nuddepeHnTnaIabIK TeHAey YHIiH Ko3dpuiimeHTTi
Kepi ecebi

VYaxkpIT GofibIHIIA 2KOFAPBI PETT] (€K1/IEH KOII) TyBIHABLIAD AKYCTHKA, MEJAUIUHAJIBIK YIbTPaIbIOBICTA, TYTKBIP-
JIBIK, 7KOHE JKBITY CEPIIMILIIr CuaKTHI opTYpJIi cananapa maiina 6omamel. KosddunmenTti Kanmnbiaa Ker-
Tipyre OallIaHBICTBI YaKbIT OOWBIHINIA TEHJEyJIep/eri >Korapbl TYBIHJbLIAD YIIIH Kepi ecenrep a3 »KoHE
KOCBIMITIa, Kapaylbl KaxkeT eremi. Makasiama auddepeHnmnaablk TeHIeYIeri YaKbITKa TOYeJ Il Kilm Ko-
3 PUNMEHTKE KOCBIMIIIA WHTErpaJiibl OaKbLIay KYPrisil, yakbIT OOWBLIHINA OacCTalKbl YKOHE IIEKapaJIbIK
mapTrapbl 6ap TOPTIHII peTTi Jepbec TYBIHIALLIBI aHBIKTAyIbIH Kepi ecebi KapacThIpblaraH. ChIFBIMIAY
MPUHITATIH KOJIJAHA OTBIPHII, IIAPTTAP/IBIH PEryJISIPJIBIFLI, KapaMa-KAUIIbl OOJIMaybl KOHE OPTOTOHAJIIBI-
JIBIFBIHBIH, KeHOIp KarmaiiapbliHIa KOI(DOUIUEHTTEP 1] »KETKUTKTI a3 yaKbIT apaJblFbIHIa aHBIKTay eceOiH
HmIentyais 6ip MOHII MIENTiMIITIIr 19/1es I IeH /],

Kiam cesdep: nepbec TybIHIBLIBI qubdepeHITNAIBIK, TEHIEYIep YIIIiH Kepi ecenTep, YaKbIT OONBIHINA TOP-
TiHII peTTi Jepbec TYBIHABLIBL TuddepeHIInaIbIK TeHeyIep, 6ap OOTyhl JKOHE YKAJFBI3/IBIFHI.

M.Ix. Xynurynt, U. Texun?

1 .
Jorcasanckut ynusepcumem, owcasan, Caydoscras Apasus;
2 Viusepcumem Aaarmuu umeru Anadduna Ketivybama, Anmanva, Typuyus

Ob6parHaga koadduiineHTHaAsA 3aaa4a aJisd AuddepeHImaIbHOTO
ypaBHEHNsI B YaCTHBLIX IPOU3BOAHBIX YE€TBEPTOrO MOPIAIKA II0
BpPEeMEHH C MHTerpaJibHbIM Iepeonpeae/ieHueM

IIponsBo/Hble 110 BpeMeHH 60Jiee BBICOKOIO IOpsiiKa (GoJIblie BYX) BOSHUKAIOT B PA3JIMUHBIX 0OJIACTSX, Ta-
KPX KaK aKyCTHKa, MEIUIMHCKUH yIbTPa3BYK, BI3KOYIPYTOCTb U TePMOYIPYyroctb. OOpaTHbIe 3318491 JJIs
BBICIIIIX IIPOM3BOJIHBIX B YPABHEHUSX 110 BPEMEHM, CBsI3aHHBIE C BOCCTAHOBJIEHNEM K03(bduIeHTa, HEMHO-
TOYNCJIEHHBI X TPEOYIOT JIOMOJHUTEILHOIO paccMOTpeHust. B crarbe paccMoTpena obpaTHas 3a/ada OIpe-
JleJIEHUsI, 3aBUACSINAs OT BPeMeHH, Miiamrero koddgdunuenta B guddepeHnajlbHoM yPABHEHNN B YaCTHBIX
NIPOU3BOAHBIX YE€TBEPTOrO NOPAAKa 110 BPEMEHM C Ha4dabHBIMU M IDAHUYHBIMU YCJIOBUSAMH IO JOIOJIHU-
TEJILbHOMY HHTerpajibHOMY HabJoeHuio. [Ipr HEKOTOPBIX YCIOBHAX PErysIsipHOCTH, HEIPOTHBOPEYUBOCTH
U OPTOTOHAJIBHOCTHU JAHHBIX C UCIIOJB30BaHUEM IIPUHIUIA CXKATHA JT0KA3aHa OJHO3HAYHAA Pa3PEIIUMOCTDb
pellleHns 3aJavu OIpeieieHusI KO3 PUINEHTOB Ha JOCTATOYHO MaJIOM MHTEPBaJje BPEMEHHU.

Karouesvie crosa: obpatuble 3anaun qja YpUIl, YpUIl gyerBeproro nmopsika 1o BpeMeHH, CyIIeCTBOBAHHE
U eIUHCTBEHHOCTb.
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