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On the convergence of difference schemes of high accuracy for the
equation of ion-acoustic waves in a magnetized plasma

Multiparametric difference schemes of the finite element method of a high order of accuracy for the Sobolev-
type equation of the fourth-order in time are studied. In particular, the first boundary value problem for the
equation of ion-acoustic waves in a magnetized plasma is considered. A high-order accuracy of the scheme
is achieved due to the special discretization of time and space variables. The presence of parameters in
the scheme makes it possible to regularize the accuracy of the schemes and optimize the implementation
algorithm. An a priori estimate in a weak norm is obtained by the method of energy inequality. Based on
this estimate and the Bramble-Hilbert lemma, the convergence of the constructed algorithms in classes of
generalized solutions is proved. An algorithm for implementing the difference scheme is proposed.

Keywords: Sobolev type equation, difference schemes, finite difference method, finite element method,
stability, convergence, accuracy.

Introduction

As is known, the solution of complex applied problems requires the creation of more accurate
numerical algorithms or the improvement of existing ones. This is especially seen in the study of complex
non-stationary processes, for example, in boundary value problems for high-order partial differential
equations. The study of such equations began with the research works of S.L.. Sobolev. They are applied
in solving problems of geophysics, oceanology, atmospheric physics, physics of magnetically ordered
structures related to the propagation of waves in media with a strong dispersion, and many other
problems [1-3]. For example, the equation of ion-acoustic waves in a magnetized plasma [3]
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(z,t) € Qr = QU I, Q:{x\ $=(£1,x2,$3),0<$a<l,a:m},

refers to such equations. Here u = (x,t) is the motion velocity, Az = 9%u/0x? + 0%u/0z% + 0*u /03,
rd =T2/ (47r62n0) is the Debye radius, wp, = eBy/(Mc) is the ion gyrofrequency, wf,i = 4me?ng /M
is the Langmuir frequency for ions, M is the mass, c is the speed of light in vacuum, By is the external
constant magnetic field, ng is the unperturbed particle density, e is the absolute value of the electron
charge, T, is the temperature of the electrons. In addition, similar equations appear in the mathematical
modeling of internal waves in the ocean and atmosphere [4-6].

The study in [3]| is devoted to analytical methods for solving problems of this type, where the
problems of global and local solvability of initial-boundary value problems for linear and nonlinear
equations are considered. Numerical methods for solving equations unresolved with respect to the
time derivative are also considered. Non-stationary equations of the second order in time and pseudo-
parabolic equations are considered. Here and in [7], these equations are reduced by some substitution
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to two equations (one contains differentiation with respect to time, the other - with respect to space
only); then, these equations are solved by the finite difference method on quasi-uniform grids. The
second order of approximation in both variables is proved.

The studies in [8,9] are devoted to numerical methods for solving initial-boundary value problems
for equation (1). In [8], a mathematical model of ion-acoustic waves in plasma is considered in an
external magnetic field. Issues of unique solvability of the Cauchy-Dirichlet problem are considered.
Based on the theoretical results, an algorithm was developed for the numerical solution of the problem
based on the modified Galerkin method. An implementation algorithm is given. A problem similar to
an optimal control problem for the mathematical model (1), was considered in 9], where an algorithm
for a numerical solution based on the modified Galerkin method and the Ritz method was developed.

In this article, the authors consider the issues of constructing and investigating difference schemes
of high accuracy of initial-boundary value problems for the non-stationary equation of ion-acoustic
waves in a magnetized plasma (1). First, we approximate the space variables, and the time variable is
stored in differential form. As a result, we obtain a system of ordinary differential equations of large
dimensions, solved by the difference scheme of the finite element method of the fourth-order accuracy.
To obtain an accuracy estimate, a special technique for obtaining a priori estimates was used since
the classical approach to studying the convergence of difference schemes based on the Taylor formula
places high demands on the smoothness of the sought-for solution. Therefore, a number of results have
recently been obtained on estimating the rate of convergence of difference schemes for equations of
mathematical physics based on the Bramble-Hilbert lemma [10]. Such studies for various stationary
and nonstationary problems were conducted in [11-15]|. The notation from [16] is used in this article.

1 Statement of the problem

Let us rewrite equation (1) in the following form:

o (Asu —rp*u) + o (W, + w2, ) Agu — wh,rp*u] + wi w, O%u = f(x,t), (2)
ot ot? 9x2
(x,t) € Q={x = (v1,22,23) : 0 <xp <, k=1,2,3}.
The initial and boundary conditions have the following form:

—u(x,t) =up,, v=0,3, r€Q=QUN, (3)
ot =0 ’

uw(z,t)]ygq =0, t € (0,T]. (4)

The existence and uniqueness of solutions to such problems are considered in [1-3].
In our case, we will assume that r% ¢ o(A) = ) is the set of eigenvalues of the homogeneous
Dirichlet problem for the Laplace operator in domain ).
Let us formulate a generalized statement of problem (2)—(4). Function u(x,t), which for each
€ (0,7T] belongs to H = {u EW3(Q), u=0, z € 9Q} is called the generalized solution to the
problem; it has derivative 2 at4 € W1(Q), and satisfies the following relations almost everywhere for all
€ (0,77:

4U 2u

as (ddtgt)719> + ay (ddtgt)719> +ay(u(t),9) = (f(£),9), (5)
k

(2;(0) - uo,mﬁ) =0, k=0,3, V¥(z) € H. (6)
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Here

3
ai(u,v) = wgiw%i / (UgyVsy)dz, az(u,?) :/ [Z (w?gi —i—w%i)uxkﬁwk — w?girl_)?uz? dz,
Q o L=l

3
asz(u,¥) = / [Z Uz, V), — rD2u19] dx.

We denote |ul,, = \/am(u,u), m = 1,3, the energy seminorms in H, corresponding to bilinear

[¢]
forms a,y, (u, ¥). The energy space H4,,, generated by seminorm |u/,,, is equivalent to space H = W Q)
[17], therefore, the following estimates 0 < ay, (u,u) < Cp, |ull? , m = 1,3, are true, where O, are the
positive constants depending on w, rp.

2 Discretization in space

We discretize the problem in terms of space variables using the finite element method. Let Hy, C H

M
be the set of elements of the form 9, = 3. ;@ (2). Here {®,, = &,,(2)})_, is the basis of piecewise

m=1
polynomial functions that are a degree p polynomial on each finite element [18,19].

Let us give an example of a basis based on third degree polynomials. Let us introduce a partition
of domain ) into M = Nj * Ny * N3 parallelepipeds:

Qij = {0 = 1)hy < x1 <ihy, (j —1)he <2 < jho, (k—1)hg < a3 < khs},

i=1,N1, j=1,Ny, k=1,N3, hy=1s/Ns, s=1,2,3.

We choose a system of basis functions:

I
E
I
z
=~
I
z

Qi (z1, 22, 23) = @i(r1)p;(z2)pr(r3), @

where ¢;(z) is the basis function built on the basis of the Bs-spline [18|. In this case p = 3.
Let us put the semidiscrete problem for ¢ € [0,7] in correspondence with (5), (6):

4 2
as <d2?4(t)719h> + as (d Z:Q(ﬁ,'ﬁh) + a1 (up,9y) = (f(t), %), (7)
(ddug,h (0) — uo,mﬁh> =0,v=0,3,V9(x) € Hp. (8)

Problem (7), (8) corresponds to the following Cauchy problem:

d"up (t) N T un(t)

D
dt* dt?

(0) =upp, v=0,3. 9)

M
I,m=1>

Operators D, B, A operate from H}, to Hy. They correspond to stiffness matrices D = a3(¢;, om)
B = ag(gpl,gom)%n:l, A= al(gol,gpm)%n:l. Besides, ur, = Ppug(x), k = 0,3, where P, is the
projection operator P,H = Hy,.

The boundary conditions are approximated exactly.
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8 Discretization in time

Following [20], problem (9) is approximated by the finite element method. Its generalized solution
is defined as a continuous function u(t) € C?[0, T satisfying the following integral identity for arbitrary
function 9(t) € C%(tp, t1)

ty ty
. . . t
/ (Disd — Bid + Aud)de + [0~ Diid + B[ = / (. 9) dt, (10)
b
tp tp

where 0 <t <ty <T, i =du/dt, ii = d*u/dt?, & = d>u/dt>.
On the segment [0,7], we introduce uniform grid w, = {t, =n7, n=0,1,...; 7 > 0}. On each
of intervals (¢,,tn+1), we seek an approximate solution to problem (9) in the form of fifth degree

polynomials
t:ntn ntn—l-l nt-n nt-n—l-l n n+1 11
y(t) = w0 ()y" + o1 )y + @)™ + T (07" 4+ @b ()™ + 03 (1§, (11)
where y" = y(tn), y"' = y(tns1), ¥" = dy(tn)/dt, 5" = dy(tnq)/dt, §° = d*y(tn)/dt?,
Gl = Py(tag)/dt?, of(t) = —665 + 1561 4+ 66° — 1083 + 1, ¢ (t) = 6£° — 15¢* + 10€3,

Plot) = 7(=38 + 86 — 66 +¢), ¢y(t) = 7(=36" + 7€ — 4€7), ohy(t) = T3(=€>/2 + 3¢%/2
=38%/2+ €2/2), ¢hi(t) =7(/2 -1+ €7/2), €= (t—tn)/T.

Choosing weight functions (), in the form of linear combinations of interpolation functions and
substituting them into (10), we obtain the following parametric difference scheme

Dy — 2 Ayl%®) — D09 = oy,
Dy — Do3'%) + 72 Dijy = o, (12)
Dogi — Dpif ™ — nr? Ay(©®) = g,

where
tnt1 1
T 2
Dm - D —mTQB, m = 06,6777777 p1 = _8 / f(t)dt— 6/f tn‘i"f& dfv
tn 0
7 tn+1 7 2 1
T T
=1 / FOws @t = -1 / Fltn + 7€) 510 () + 5,09 (€],
tn 0
n+1 1
/ £(t) ﬁ(a,ﬂ n) 10/f tn + TE)] 3319 )+3419 d¢, v 8119;1) +8219é5)a
0
o) = (¢~ 1/2) 9 = 738" + 1554/2 =567 +€/2),51 =3 - 1207,50 = 14 - 840y,
93P = 5998 4 500 9P = r26(6—1)/2,95Y = r2€2(¢ — 1)?/4, 55 = 1400+ 15, 54 = 1400+ 140,

here o, B, v, 1 - are some constants.
The first initial condition is approximated exactly. The remaining initial conditions are approxima-
ted as in [16], by the fourth-order approximation, using the Taylor series and initial equations:

2 3

. T
9(0) = uo,1 + = (E — fD 1B> up,2 + EUOg + 24D [f(O) — AuO,g],
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. 2 ™o . .
4(0) = up2 + Tug 3 + 5D 1[£(0) — Buga — Augo] + VA L£(0) — Biiga — Atig o).

It is easy to check that the scheme has the fourth order of approximation error on smooth solutions,
Le. 11 = O(14), o = O(t1), 3 = O(7?) if the following conditions are met

a—pB=1/12, n=1/12, (13)
7 is an arbitrary constant.

4 Estimation of accuracy in space
Theorem 1. Let u(z,t), %1; (2,t) € Lo{[0,T); W1 (Q) N W }. If the narrowing of space Hj, to a

separate finite element is a k degree polynomial, then for solving problem uy(t) € Hy, (9) approximating
problem (2)—(4), the following accuracy estimate holds

t
+f]
0

Proof. We integrate identity (5) over ¢ from t,, to t,+1 = t, + 7, and applying the integration-by-
parts formula, we obtain:

ou auh

0%y,
E(az, t) — o —(z,t)

x,t') — (z,t)
6t2 ot .

+ [|u(z,t) —up(z, t)||; + dt’'+

1

8uh

ou ,
St = S

av |,

dt < Mh* /||um )7y dt'+ /H (z,t)

k+1

vVt €[0,T]), M = M(rp, w) > 0.

tntl
Jas(i(0), ) — ax(i(0), ) + aa(ut), 0)] ()t +as(i (), D)™ = as (e), D))"
t" - (14)
an(i(t), 9) [ = / (f(8), 9)dt, VW(z) € Hi.
tn
Likewise, from (7) we obtain
tnt1
(as(in, n) — az(in, On) + ar (wn, V)| (Ddt+ as (i (£), 9n) 2+ = as (iin, On) t:“
tn
tnt1
+ an(itn, 97 = / (F(t), 9n)dt, YOn(x) € Hp.
tn
Choosing ¥ = ¥, € Hy, C H from (14) and subtracting both obtained identities, we have:
tnt1
[a?)(éh, 19h) - a2(7§h,19h) + al(zh,ﬁh)] (t)dt —|—a3('2'h,19h)‘§ —as (Zh779h) t:H + (15)
tn

+az(Z, V)" = 0, VI, (x) € Hy,
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where zp, = u — up, e, = u —uy, &, = ur — up, ur = ur(x,t) is the solution interpolant u(z,t) in
[19]. Let us choose a test function

Ip(t) = — /gh(t')dt’ € Hy, t <s; 9(t) =0, t > s, O(t) = Ex(t), O(s) = Ip(s) = 0.

Then, with z;, = &, + ey, identity (15) can be written in the following form:

bttt
/ [as(éhfh) + as(&n, &) + a1 (Vn, 29h)] (t)dt + [az(£h,On) — az(Zn, On) + az(Zn, 9p)] |7 =
tn
tn+1
=— / [CLB(éhvéh> + az(ép, &n) + ar(en, Vp) | (t)dt.
tn

Hence, given the following relations:

.. 1d . . 1d . 1d
az(&n, &) = 5%613(&“ &)y a2(&n, &) = 5%612(&“ &n), a1(Vn, Up) = §£G1(19h, Up),

az(én, &) = %%(éh, &n) — as(én, &), az(én, &) = %az(eh, &) — as(en, &),

we obtain

tn+1 _
tn -

En(tns1) + 0.5a1 (0, 93) (tns1) + [az(En, On) — az(Zn, 95) + az(2n, 9p)]

= Ep(tn) + 0.5a1 (U1, ) (tn) — [as(én, En) (tns1) — as(én, &) (tn) + az(en, &) (tns1)—

—az(en, &n)(tn)] + / [GS(éhaéh)+a2(€haéh)+al(ehaﬁh)} (t)dt,

where Ej,(t) = 0.5]as(&nh, &n) + aa(&n, &r)]. Now let us sum this equation over n = 1,m — 1, where m
corresponds to the time point s = m7:

En(s) + 0.5a1 (0, 9p)(s) + [az(Fn, 0n) — az(Zn, On) + a2 (zn, 9p)] |5 =

= Ep(0) + 0.5a1 (9, 9)(0) — [az(én, €n) () — az(én, €)(0) + az(en, &) (s)—

~an(en&n)(O)]+ [laa(en ) + anlen, ) + ar(ens D)) (B0
0
Taking into account the properties of functions ¥ (t) and initial conditions 2;(0) = 2,(0) = Z4(0)
= Z3(0) =0, &,(0) =& (0) = &(0) = £,(0) =0, from (16) we obtain

tn+1

Ep(s) + 0.5a1 (9, 91)(0) = / [as(én, &n) + az(en, &) + a1(en, 95)](t)dt. (17)

tn
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Let us introduce one more function
t
wp(t) = /gh(t’)dt’ € Hp, t <s;wp(t)=0,t>s.
0

Then, U5 (t) = wi(t) — wp(s) and from (17) we have the energy identity:
Ei(s) + 0.501 (wp, wi) () = / [as(éns én) + as(en, €n) + ar(en, wn(t) — wn(s)ldt.  (18)
0
Let us estimate the terms on the right-hand side of (18):

S S S

/a3 (én, &p)dt < 61/ az(En, &n)dt + 4;/ az(ép, ép)dt,

0 0 0

/ L A ; 17 ;

/az(eh,fh) t_€2/ az(&n, &n) t+4?2 az(en, ep)dt,

0 0 0
S S 1 S
/a1(€h7wh(t)—wh(8))dt§€3/ al(wh(t)awh(t))dt+553al(wh(3)>wh(5))+253/ a1(en, ep)dt.
0 0 0

Choosing £1 = &3 = 1/2, and 3 from condition & + 37 < 2, from (18) we have the following
estimate:

S

Ez@>+/ﬁaaéméz>+(m<5ushn<wdt+¢n<wh,whxs>s

. ’ . (19)

<M /[al(wh, wp)(t)dt + /[a3(éh7éh) + az(en; en) +ai(en, en)l(t)dt | ,
0 0
where M — const. Applying the Gronwall lemma for inequality (19), we obtain the error estimate
S
En(s) + / [a3(€n, En) + aa(Ens n) J(£)dt + ar(wn, wp)(s) <

0

s

< / [ag(éh, éh) =+ ag(eh, €h) =+ al(eh, €h)](t)dt,

0
It is evident that ko [|wp(s)||7 < a(wn,wr)(s) < ki wa(s)[5, alén, &) (s) = [€n(s)17, alénsEn)(s)
= Héh(s)

2
v alen, en)(s) = len(s)1?, a(én, €r)(s) = ||én(s)|1?, so for the error we have the final estimate:

o]+ ez + [ (ol + o] ae < ar [ frencon + pescon] . c2o)
0 0

The following estimates hold for solution u(z,t) € WET1(Q), vt € [0,T] [18], [19]:
len(lly < MA*|[a() s len(®)ly < MAJu®)]ljys-

Therefore, based on (20) and triangle inequality ||zp|| < |len|| + ||&n]|, the assertion of the theorem
holds.
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5 Estimation of accuracy in time

Let us now proceed to estimate the discretization error of problem (9) with respect to time. To
approximate problem (9), scheme (12) is used, and to estimate the accuracy with respect to time
variable, the Bramble-Hilbert lemma is used. Note that solution wuy(t) of the semidiscrete problem (9)
for each ¢ is an element of the discrete subspace up(t) € Hp,.

Let us denote subspace H;, of functions of argument ¢, which are Hermitian splines of the form
(11) on interval [t,,t,+1] , n = 0,1,2,.... Solution of scheme (12) is y(t) € H,. y(t) is an element of
subspace Hj, for each t simultaneously. Actually y(z,t) € H] = Hp ® H.

The following theorem holds.

Theorem 2. Let D* = D >0, B*= B >0, A* = A > 0. In addition, let the approximation
conditions (13) and stability conditions be met

D—pur*A>eD, Vee (0,1), p=max{a,B,7,1}. (21)

Then, for the solution of scheme (12) approximating the solution to problem (9) such that a (1) €
C'[0,T] , the following accuracy estimate holds

lin(t) — 9Ol + lun(t) — y(B)], /nuh I di+

d Up
/|Uh H1dt<M7 /H dt4 (t')

Proof. Difference scheme (12) corresponds to the weak statement

dt’, M — const.

03301, 7) = ax(30),92) + a2 (1,9 di a5 (50, 0" = aie) )|+
" tni1 (22)
+az(§(t), 0| = / (f(t),9;)dt, VO, (x) € H,

where y(t) is the Hermitian spline (11). Choosing ¥ = ¥, in (14) and subtracting the identity (22), we
have the following identity for error: ¢, (t) = wup(t) — y(¢):

tn+1
tn+1

|:a3(é:77 197) - a2(é77797) +a (C7—7Q97—):| (t)dt + a3 ('C”r(t)a 7) EZH - a3(57779T) . (23)
i " 23

. tn+1
+ao(Cr90)| T =0, V9, € HI.

Let us represent (;(t) as (- (t) = up(t) —y(t) = up(t) —uj(t)+uf(t)—y(t), where uj(¢) is interpolant
up(t), i.e. uj(t), as well as y(t), is the Hermitian spline, such that u}(t,) = up(tn), @7 (tn) = p(tn),
n = 0,1,.... The scheme error is (;(t) = & (t) + e-(t), where e, = up, — u}, & = uj —y. We choose

test function 9, (t) = — f&- t)ydt', t <s; 9.(t) =0, t>s. Then identity (23) can be written as:

tn+1

/ |:a3(é:‘r> gT) + CLQ(éTa g‘r) + a/l(?é”l'? 797-) dt + [a3(.é-q—> 197') - a3(é;‘ry 797—) + a2(é7—, 797)] i2+1 =

t’ll

Mathematics series. Ne 4(108)/2022 11
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tnt1
= - / [a3(é7a£‘r) + a2(é7'a€‘r) + al(eﬁﬁr)]dt'
tn

Hence, given the following relations:

1d 1d 1d

GS(gT’ g‘r) = gaa?)(éﬁ S‘r)a ag(é.,-, 57') = §%a2(€ra é-T)a al(’léTa 797') = iﬁal(ﬁn 197')’
. d . . d :
a3(é7’7 gT) = aa?)(é‘m 57') - a3(é7—7 gT)? a2(é77 gT) = %CLQ(GT) g‘r) - a2(eTa 67')’

from the last identity we obtain
Er(tn+1) +0.5a1 (9, 97) (tnr1) + [a3(’<'_'7—’ 197) - a3(é¢: 197) + GQ(éT7 Vr)] izﬂ =

= Er(tn) +0.5a1 (9, 97)(tn) — [GS(éraé‘r)(thrl) - QS(éTaST)(tn) + az(er, &) (tnt1) — az(er, &) (tn)]+

tn+1

b [ foater) + aaer &) + anlen )] (ra
tn

where E.(t) = 0.5[az(&r, &) + az(&r, &-)]- Now let us sum this equation over n = 1,m — 1, where m
corresponds to the time point s = m7:

Ex(s) + 0.5a1 (97, 97)(s) + a3 ({7, 97) — as (G, 0r) + a2(Gr, 90)] [§ =

= ET(O) + 0.5(11(7975 197)(0) - [a3(é77 gT)(S) - a3(éTa 57)(0) + a2(€‘r> gT)(S) - (12(67., 57)(0)]—1_ (24)

+ / [a(6r. &)+ aner. &) + arer, )] (),
0

_Taking into account the properties of functions ¥ (¢) and initial conditions ((0) = ¢(0) = ¢-(0)
= (,(0) =0, &(0) =&-(0) = &(0) = £,.(0) =0, we obtain from (24)

tn+1

E.(s) + 0.5a1(9,,9,)(0) = / [ag(éﬂg;) + asler, &) + ai(er, 9,) | (t)dt. (25)

tn

We introduce one more function
t

wy(t) = /&(t’)dt’ € H,, t<s; wi(t)=0, t>s.
0
Then, ¥, (t) = w,(t) — w,(s) and finally, from (25) we have the energy identity:

s

E;(s) + 0.5a1 (wr, w;)(s) = /[ag(éT,gT) + az(er, &) + a1(er, wy(t) — we(s))](t)dt. (26)
0

Let us estimate the terms on the right-hand side of (26):

S S S

/G3(éq—,é7—)dt§€1/a3 (éT?éT)dt""Zél/ a3(é7'7é7')dta
0

0 0
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S S

/a2(6‘r’£7’)dt§52/ a?(éTaéT)dt_’_ééz/ a2(6T76T)dt7
0

0 0

/ ay(er, wr(t) — wr(s))dt <
0

S S

§53/al(wT(t),wT(t))dt—}—ssgal(w.r(s),w.r(s))—|— ! /al(eT,eT)dt.

0 0

Choosing €1 = €2 = 1/2, and €3 from condition 5 +&37" < %, we have the following estimate from
(26):

S

Er(s) + / [afﬂ(éﬁé’) + a2(€n£7’)} (t)dt + ar(wr, wr)(s) <

0

S

<M /[al(wT, wT)(t)dt—f—/ laz(ér, é7) + az(er, er)+ar(er, e-)|(t)dt | ,
0 0

where M — const. Hence, applying the Gronwall lemma, we obtain the error estimate

Bo(s) + [ [aatenin) + aaer,€)] @t + axwr, wr)(s) <
0

/ CL3 €r,Er —|—CL2(€7—,€T)—|—CL1(€7—,€7—)]dt
0

Obviously, ko w-(s)ll; < a(wr,wr)(s) < kifw(s)llf, a(ér,&)(s) = & ()7 alér, &)(s)
= & 6)3, aler,er)(s) = ||eT(s)||f, a(ér,ér)(s) = HéT(s)H%, so, we have the final estimate for
the error:

S S

G w1+ [ e+ Jeol]a<ar | [ e eore) . e

0 0

Linear bounded functionals e, (t), é,(t) vanish on polynomials up to the third degree inclusive with
respect to variable t. Then, based on the Bramble-Hilbert lemma, the following estimate holds [10],

[13]:
2 S
He N dt’ =M d“h dt, | ||e-(t)]? dt < D75
T 1 dt4 ) I T 1 — T
0

Consequently, estimates (27), (28) imply the assertion of the theorem.

d4 u h
dt4

(28)
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6 On convergence of the scheme

Note that in the estimate of Theorem 2, the error depends on solution wuy(t) of the semidiscrete
problem (9), while it is desirable to have smoothness conditions for the solution of original problem
(2)—(4). To do this, we use the following estimate [18], [19]:

unllp = llu —w+unlly < lJully + lu = unlly, < llully + Chluli,, < Cllullyyy, k=0,1.

Constant C' does not depend on h.
Consequently, the estimate in Theorem 2 takes the following form

a6 lewi+ [ |
0

On the basis of Theorems 1 and 2, the following assertion holds.
Theorem 3. Let the conditions of Theorem 2 be satisfied. Then for the solution of scheme (12)
approximating the solution of problem (2)—(4) such that u(zx,t), %‘t‘(x t) € Lo { 0,T]; WEH(Q)

dt’.

£t Mdt<M7 /th/

. 2
&) +

ﬁVVQI(Q)}7 St (x,t) € C{[0,T] ; WH()}, the following accuracy estimate is true:

0%uy,

au (‘9 Up, / / /
H i @) = @)l t) — e )l + /H 5 (n:1) = St | '+
t 5 P t
+/ —u(x,t’) —ﬂ(x,t’) dt' < M { h* /Hu(gc,t')nﬁ+1 dt’ + / —(z,t) at’ | +
ot ot 1 k1
0 0

xt/

6t4 dt’ Ve [0,T],M = M(rp, w) > 0.

When choosing a degree k = 3 polynomial on each finite element in space, we have the third-order
accuracy in space steps h.

Let us verify the stability condition (21). We represent the operators of scheme (12) in the following
form

D=A+ Ay + A3 — TBQE, A= (w%i + ng)(Al + Ag + A3) — w%irng + wﬁiw%iAg,

where operators A > 0 correspond to stiffness matrices Ay = (bk(gol,gom))%n:l with bilinear form

bi(u,9) = [ (ug, Vg, ) dz. Condition (21) takes the following form
Q

(1 —¢)(A1 + As + A3 — TBZ)E > ,uTQ(w%i + wii)(Al + Ag + As) — w%irBQE + wﬁiw?giAg,
or with
HAl + Az + Az — TBQEH / H(wél + wzi)(Al + Az + A3) — w%iTE)2E + wﬁiw%iA;;H <1

we obtain 72 < %, where 0 < e < 1.

This condition is interesting because the time step is not related to the space step and is determined
by the scheme parameters. For the parameters of scheme (12), for example, for « = 1/10, § = 1/60,
v =1/40, n =1/12 we have p = 1/10. So finally 7 < /10(1 — ¢).
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7 Algorithm for implementing the scheme

Consider one of the possible algorithms for implementing scheme (12). We rewrite it in the following
form
miy + m12@2 + m13i:J =&,
ma1y + mazy +mazy = Pa, (29)
m31y + m32y + maszj = Ps.

Here
3

T T T
myp = —77514, mi2 = Dy, mi3 = —§D7 ma1 = D, mas = —§D7, mag = 07D,

7'3 T T3 . T ..
ma1 = —77514, m32 = Do, m33 = —§D5, O =791 + U;Ay + Dyy + §Dy,

3
T . . T . T .
¢z=mm+Dw+§Dw+nﬁD%®3=ﬂ%+ngﬂy+ﬂw+§Dw-

Assuming the mutual commutability of operators D, B and A, we exclude 3 from the system of
equations (29). As a result, we obtain the following system of equations

911y + 912,72 = 0y, (30)
9219 + 922y = Po,
where
g11 = Ma3mi1 — M131MmMa1, gi2 = M231M12 — 1M13M22, g21 = MM33mMi1 — 1M131Ma31,
g22 = M33mia — Mizmaa, P1 = moz®; — myzPy, Oy = m3z®; — my3P3.
Further, excluding ¢ from (30), we obtain
Cy=F (31)

where C' = ga2g11 — 912921, F' = 921‘i)1 - 912‘?2-
After determining ¢ from (31), we find y from one of equations (30), for example, from the first
equation

Chy = Fi,

where Cy = goag12, F1 = ggﬁn — g22911%- Then, the value ofﬁ is found from system (29), for example,
also from the first equation C’gg’} = Fy, where Cy = my3, Fo = &1 — m19 — mlggj.

As is known, problems (5), (6) were obtained as a result of approximation of space variables, so, the
matrices corresponding to operators D, B, A are ill-conditioned and sparse. Then, the conditionality
of matrix C also worsens. Therefore, the implementation of the scheme by directly solving equation (31)
is not desirable, so, in the numerical modeling of problems with specific data, it is better to factorize
operator C. In addition, operators D, B, A may turn out to be degenerate. Then, to eliminate the
problem of operator degeneracy, the regularization principle is applied, which allows applying the
spectrum of shift-operators: D=D+¢cE ) B=B+¢cE , A= A+c¢E for self-adjoint operators. Here,
€ > 0 is a small parameter setting the value of the spectrum of shift-operators. As a result, scheme
(12) is replaced by a regularized scheme with operators 15, B , A.
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8 Conclusions

A boundary value problem for the equation of ion-acoustic waves in a magnetized plasma was
considered. On the basis of the finite element method, parametric difference schemes of high-order
accuracy were constructed and investigated. A high-order accuracy of the scheme was achieved due to
the special discretization of time and space variables. In addition, the presence of parameters in the
scheme makes it possible to regularize the schemes in order to optimize the implementation algorithm
and the accuracy of the scheme. The corresponding a priori estimates were obtained and, on their basis,
theorems on the rate of convergence and accuracy of the constructed algorithms on the smoothness
of solutions to the original differential problem were proved under weak assumptions. An algorithm
for the implementation of these schemes was proposed. These schemes have certain advantages over
other schemes — they are two-layer schemes of high-order accuracy, except the solution itself, its
derivative (velocity) is determined with the same accuracy; using the interpolation representation
(11), if necessary, a solution can be obtained at any time. In addition, to achieve a certain accuracy, it
allows us to select large time steps, etc.

Based on these advantages, it is possible to study other boundary value problems, including nonlocal
boundary value problems. Besides, these results can be transferred to loaded equations with local and
nonlocal boundary conditions.
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M.M. Apunos!, 1I. Orebaes?, 2K.A. Hypyrtaes!

M. Yamxber amomodazs: Osbexcman yammows yrusepcumemi, Tawwkenm, O36excman;
2 Bepdax amwimdaen. Kapakasnax, memaexemmir yHusepcumems, Hywic, O36excman

MarauTTeJireH IJ1a3MaJarbl HOHABI-aKyCTUKAJIBIK TOJKBIHIAPIbIH

TeHJIeyl YIITiH »KOoFapbl AJIAIKTETl allbIpMaIIIbLIBIK, CXeMAaJIaPbIHbIH,

2KNHAKTBLJIbIT'bI TYPAJIbl

VakpiT GoiibiHIa TepTiHi perti CoboseB TUNTI TEHIEY YIIIH J9JIIr KOFAPhl aKbIPJIbI JIEMEHTTED 9IiCi-
HIH KeNmnapamMeTpJi afbIPbIMJIBIK, CXeMAJIAPhl 3ePTTEIreH. ATan afTKaH A, MATHUTTE/ITEeH [J1a3MaIarbl HOH-
JIbI-aKyCTUKAJIBIK, TOJIKBIHIAD/IbIH, TeHeyiHe apHaJFal OipiHii mekapaJblK ecen Kapacroipbuiran. Cxema-
HBIH >KOFapbl PETT] QI yakpIT [T€H KEHICTIK aifHbIMAJIbLIAPBIHBIH apHANDI JUCKPETH3AIUSCHIHBIH apKa-
CchIHITa KOJI KeTkizimemi. Cxemaa mapamMeTpiiepiiH OOybl CXeMaJlap/blH JOJIIITIH KOFAPFBI PETKE KeJi-
Tipyre >KoHe iCKe achIpy aJrOPUTMIH OHTAMIAHIALIPYFa MYMKIHJIK Gepesi. OJici3 HOpMaJarbl AIPUOPJIBIK,
OaraJiay HEpreTHKAaJbIK TEHCI3MIK oaiciMen asbiHaabl. Ocbl Garasayabis, koHe bpaMbi-I'uasbepT jieMma-
CBIHBIH HETI31H/e XKAINbIIAHFAH MIEITiM/Iep KJIACTAPBIH/IA KYPACTHIPBLIFAH aJITOPUTM/IEP/IIH Y KUHAKTHLIBIFBI
JIRJIEIIIEH Tl . ARBIPBIMIBIK, CXEMAHBI YKy3ere acblpy aJrOPUTMI YCHIHBLIFAH.

Kiam cesdep: CobGosieB TUNITI TeHJIEY, alibIPBIMIBIK, CXeMaJiap, aKbIPJIbl aflbIPBIMIAP 9J1iCi, aKbIPJIbI dJjIe-
MEHTTED 9iCi, TYPAKTBLIBIK, KUHAKTBLIBIK, JTOJITIK.

Mathematics series. Ne 4(108)/2022 17



M.M. Aripov, D. Utebaev, Zh.A. Nurullaev

M.M. Apwmnos!, JI. Yrebaes?, 2K.A. Hypysiaes!

! Hayuoranvnoui ynusepcumem Ysbexucmana umenu M. Yayebexa, Towsenm, Vabexucman;
2 Kapaxasnaxckud eocydapemsenmonl ynusepcumem umernu Bepdaza, Hyxye, Yabexucman

O CXOAMMOCTH PA3HOCTHBIX CXEeM MOBBINIEHHOI TOYHOCTU JJILL
YpaBHE€HNA MOHHO-3BYKOBbLIX BOJIH B 3aMarHn4eHHOol I1J1a3Me

HccnmenoBanbl MHOTOIIApaMETPUYECKNE PA3HOCTHBIE CXEMbI METO/a KOHEYUHBIX 3JIEMEHTOB BHICOKOT'O TTOPSIIKA
TOYHOCTH JIJIs1 yPABHEHHUsT COOOJIEBCKOTO THTIA, YETBEPTOTO MOPSIIKA IT0 BpeMeH!. B 9acTHOCTH, paCCMOTPEHBI
repBas KpaeBasd 33/1a4a JJIsi YPaBHEHUsI NOHHO-3BYKOBBIX BOJIH B 3aMarHWYeHHON 1s1a3Me. Bricoknmit mopsi-
JOK TOYHOCTHU CX€MBbI JOCTUTAETCS 38 CUeT CIIeIUaIbHON NUCKPETU3allUU BPEMEHHON U IPOCTPAHCTBEHHBIX
nepeMeHHbIX. Harmane mapaMeTpoB B CXeMe TIO3BOJISIET ITPOU3BECTH PETYJISPUIAINI0 TOTHOCTH CXEM, & TaK-
JK€ ONTHMMM3AIMIO ajropuTMa peaju3anuu. MeTomoM sHepreTmYecKnX HEPaBEHCTB IIOJIydeHa AIlpUOpPHAs
OIlCHKa B HEKOTOpPOIi caaboit nopme. Ha ocHoBe 910it onenku u jiemMmbl Bpambuia-I'uasbepra Jokasana cxo-
JUMOCTB ITOCTPOEHHBIX AJITOPUTMOB B Kjaccax 00OOIEHHbIX pemreHnii. [IpeokeH aaroputM peasn3anun
Pa3HOCTHOI CXEMBbI.

Karoueswie caosa: ypaBHEHHE CODOJIEBCKOIO THIIA, PA3HOCTHBIE CXEMBbI, METOJI, KOHEYHBIX Pa3HOCTEH, METO/
KOHEYHBIX JIEMEHTOB, YCTONYINBOCTD, CXOAUMOCTb, TOYHOCTb.
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