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Integro-differential equations with bounded operators
in Banach spaces

The paper investigates integro-differential equations in Banach spaces with operators, which are a composi-
tion of convolution and differentiation operators. Depending on the order of action of these two operators, we
talk about integro-differential operators of the Riemann—Liouville type, when the convolution operator acts
first, and integro-differential operators of the Gerasimov type otherwise. Special cases of the operators under
consideration are the fractional derivatives of Riemann—Liouville and Gerasimov, respectively. The classes
of integro-differential operators under study also include those in which the convolution has an integral
kernel without singularities. The conditions of the unique solvability of the Cauchy type problem for a linear
integro-differential equation of the Riemann—Liouville type and the Cauchy problem for a linear integro-
differential equation of the Gerasimov type with a bounded operator at the unknown function are obtained.
These results are used in the study of similar equations with a degenerate operator at an integro-differential
operator under the condition of relative boundedness of the pair of operators from the equation. Abstract
results are applied to the study of initial boundary value problems for partial differential equations with
an integro-differential operator, the convolution in which is given by the Mittag-Leffler function multiplied
by a power function.

Keywords: integro-differential equation, integro-differential operator, convolution, Cauchy problem, Cauchy
type problem, degenerate evolution integro-differential equation, initial boundary value problem.

Introduction

In recent decades, the importance of fractional integro-differential calculus has grown markedly in
solving both theoretical and applied problems in many areas of mathematical modeling: In continuum
mechanics, in mathematical biology, in finance theory, etc. [1-4]. At the same time, over the past few
years, works have appeared containing the construction of new fractional derivatives, which in most
cases are compositions of a convolution operator and the operator of an integer order differentiation,
but unlike classical fractional derivatives, the kernel in the convolution operator has no singularities
[5, 6].

This paper considerers abstract integro-differential operators of the form of composition of a
convolution and an integer order differentiation and equations in Banach spaces with them. Using
the methods of the Laplace transform theory, we investigate the initial problems for such equations are
formulated and the issues of the unique solvability of such problems are investigated. If m — 1 < a <
m € N, the kernel in the convolution is a power function s™~%/I'(«) at the differentiation operator
of the order m, the integro-differential operator is the Riemann—Liouville or Gerasimov fractional
derivative, depending on the order of action of the convolution and the integer order differentiation.
In other cases, we obtain other integro-differential operators of Riemann—Liouville or Gerasimov type.
Note also that the kernel in the convolution is supposed to be operator-valued. This makes it possible
to study some systems of equations within the framework of the studied equations in Banach spaces,
for example, with fractional derivatives of various orders.
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The first section contains the Cauchy type problem for the linear equation in a Banach space with
an integro-differential operator of Riemann—Liouville type, when the convolution operator acts on the
function first, and with a bounded operator at the unknown function. A unique solvability theorem
was proved for the problem, the solution is presented in the form of a sum of the Dunford—Taylor
integrals. In the second section, the Cauchy problem is studied for the equation with an integro-
differential operator of Gerasimov type, when the convolution operator acts after the differentiation
operator. We show that there exists a unique solution to such problem, and present the solution in the
similar form as in the previous section. In the third and fourth sections, initial problems for analogous
linear equations with a degenerate operator at an integro-differential operator are studied under the
condition of relative boudedness of the pair of operators from the equation. The last section contains an
application of abstract results to initial boundary value problems with an integro-differential operator
of Atangana—Baleanu type [6] with singular kernel (with the Mittag-Leffler function multiplied by
a negative power as the kernel of the convolution) with respect to time and with some differential
operators in spatial variables.

Note that, by similar methods, various fractional differential equations in Banach spaces, including
degenerate ones, were researched in the works [7-10], see the references therein also. In this sense, it is
necessary to mention the monograph by J. Priiss [11] on evolution integral equations in Banach spaces.

1 Integro-differential equation of Riemann—Liouville type

Let X be a Banach space, E(:\i') be the Banach space of all linear bounded operators on X,
Ae LX), Ry ={aeR:a>0} Ry :={0} UR;, K € C(Ry; L(X)). Define the convolution

Kl’ = t — S|\ S S
(52 (1) /OKa Ja(s)d

and integro-differential operator of the Riemann—Liouville type

t
(D™ E ) (t) == D™ (JEz)(t) == Dm/ K(t — s)x(s)ds,
0
where D™ is a usual derivative of the order m. Consider the Cauchy type problem

JE)® () =2, e X, k=0,1,...,m—1, (1)

for the equation

(D™ z)(t) = Az(t), t > 0. (2)

A solution of problem (1), (2) is called a function = : R, — X, such that JXx € C™ 1(R,; X) N
C™(R4; X), conditions (1) and equality (2) for t € R are satisfied.

For a function h : Ry — X we denote its Laplace transform by 71\, or £[h], if the expression for h
is too long.

Suppose that Kisa single-valued analytic operator-function in the region

Qr, ={p € C:|u|l > Ry, |argu| < 7}

for some Ry > 0 and define the operators

1 ~
X(t) = 5 /(AmK()\) —A)TIANmIRAGN D >0, k=0,1,...,m—1,
v
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where v := YR Uyr4+ U~gr_ is a positively oriented contour, ~g := {Re®” : p € (—m,m)},
YR+ = {re™ :r € [R,00)}, yg,— = {re”™ :r € [R,00)}, R > Ry.

Theorem 1. Let A € L(X), K € C(Ry;L(X)), there exist K, which be single-valued analytic
operator-function in Qp, for some Ry > 0, and

>0 >0 YAEQR, KON gy > AN (3)

Suppose that for all A € Qp, there exists IA(()\)_I € L(X). Then for all xg,z1,...,Tm-1 € X there
exists an unique solution to problem (1), (2). It has the form

[y

m—
Xy ()
k=0
Proof. Due to condition (3) there exists 0 > Ry > 0 such that for all A € Qs H)\*ml?()\)*lHﬁ(X) <
cTHAPTXT™ < (2]|All£x)) ! Hence, there exists the inverse operator (AMK(A) — A)~ and

[e.e]

IAmE ) = A) gy = |)\\_m(”+1)\|f?()\)_1||2ﬁ)HAHZ(X) <
n=0
o —n— —x—m)(n n 2
<Y e A memED AR ) < AT

n=0

Here we obtain the inequality [|(] — )\_mAI?()\)_l)_lﬂﬂ(X) < 2 also. Besides,

IATE ) = A) A gy = (1= A EN) A TR TN g < 2e7T A TRX

and there exists the Laplace transform )?k fork=1,2,...,m—1and for £k =0, if y > 1. For k = 0,
X € (0,1) we have by the definition

o
2RIXeRt 9 QRIXeBE o7 (1 — )X 1
[ Xo(®)[| < U L2 ety = ° 4 (1=x)
C e C e
R

for k =0, x = 1, choosing R > 1, obtain

2eftt N o0 (1/2)t~1/2

C e

< Ct7 126l ¢ > 0.

There exists the Laplace transform )?0.
Take R > ¢ in the definition of . We have for [ € {0,1,...,m — 1}

TEX,(\) = KO)X ) = KO AR () — A)~Iam=1= = \=1={(1 — \mm AR (\) 1)L,

consequently,

1
JEX(t) 2/A U= A AK (W)Y teMdr, >0,
Y
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1 .
7 / N XM ARKR (V)Y T eMdN, >0,
e
ol

for k,l =0,1,...,m—1. Forevery k=0,1,...,0—1

(X)) W) =

1 g D=1y — 2
INTEHT = AT AR () ) gz < B

hence, (JXX;)®)(0) = 0. For k =1

1 ~
()00 = o / AT = ATMAR ()" LeMan =
T
J

L[S ko ren - [ S ko

27
¥ n=0 ¥

ST e AT AR gy =
L(X) n=1
AT Ay _ Al
AL = AP Al ggay) el A X
Therefore, (JXX;)D(0) = 1.
Now let k=1+1,14+2,...,m —1, then

A7 i ATTAK (A) "

n=1

1 .
(JEX) B (t) = zm/)\k_l_l_m(l—)\_mAK()\)_l) AR\ 'eMdN, t>0,
Y
eiem g B L1 A By 2||All
”)\k 1-1 ([—)\ AK()\) 1) IAK(/\) 1HE(X)§WXJ£1)

due to (3). Hence, (J¥X;)®)(0) = 0 and all conditions (1) are satisfied.

We have

1

D™(JEX))(t) = 5 Z/Am T = A AK (W)~ leMdn =
T

)
1 .
=5 A== RO WPK (N) — A) 7 eMdh = AX (1), >0,
T
)

hence, equality (2) holds.

If there exist two solutions y; and y, to problem (1), (2), then y := y; —y2 is a solution to the same
problem with zp = z1 = -+ = 1 = 0. Define y on (T, +0o0) at some T > 0 by zero. Then there
exists ¥, and due to (1), (2) ()\mK()\) A)y(A) = 0 for ReA > 0. Under the conditions of this theorem
y(\) = 0, therefore, y(t) = 0 for t € (0,T). Since we can choose an arbitrary T' > 0, then y(¢) = 0 and
y1(t) = y2(t) for all t > 0.

Consider the inhomogeneous equation

(D™ E2)(t) = Ax(t) + f(t), t € (0,T), (4)
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with f:(0,7] — X.

Lemma 1. Let A € L£(X), K € C(Ry;L(X)), there exist K, which be single-valued analytic
operator- function in Qp, for some Ry > 0, and condition (3) hold. Suppose that for all A € Qp, there
exists K(A\)™! € L(X), f € C((0,T); X)NL1(0,T; X). Then there exists an unique solution to problem
(1), (4) with g = 21 = ... = zyp—1 = 0. It has the form

Proof. We have Z¢(\) = X1V FN) = AWK () — A)_lf()\), therefore,
TKzp(\) = RO)A"E () = A) 7T, T8t = / X(t - 5)f(s)ds,
0

where

Hence, | X ()| zx) < Ot F L forallt € (0,T), k=0,1,...,m—1; X®(0) =0,k =0,1,...,m—2,
and

t
(JEz ) ( /X f(s)ds, k=0,1,...,m—1,
0

t
I1(T52 )P (O 2y < C / 1f()lcyds,  (TFzp)®(0)=0, k=0,1,....m—1.
0

Finally,
Sl p)™] = AME N A"E(N) — A7) = AAME(A) — A) TN + FV),

therefore, equality (4) is fulfilled. Hence, x is a solution to problem (1), (4). The uniqueness of a
solution can be proved in the same way, as for the homogeneous equation.
The assertions follow immediately from Theorem 1 and Lemma 1 due to the linearity of equation (4).
Theorem 2. Let A € L£(X), K € C(Ry;L(X)), there exist K, which be single-valued analytic
operator- functlon in Qp, for some Ry > 0, and condition (3) hold. Suppose that for all A € Qp, there
exists K(\) ™t € L£(X), f € C((0,T); X) N Ly(0,T; X). Then for all zg,x1,...,%m_1 € X there exists
an unique solution of problem (1), (4). It has the form

—_

- t
X (t)zp, —l—/Xm 1(t —s)f(s)ds.

2 Integro-differential equation of Gerasimov type

Consider the integro-differential operator of Gerasimov type

(DE™g)(t) := JE(D™z)(t) == / K(t — s)z'™(s)ds.
0
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Consider the Cauchy problem
P =a,eX, k=0,1,...,m—1, (5)

for the equation
(DE™z)(t) = Az(t), t > 0. (6)

A solution to problem (5), (6) is called a function z € C™ 1(Ry;X) N C™(Ry; X), such that
JEz(m) ¢ C(Ry; X), conditions (5) and equality (6) for t € Ry are satisfied.

Theorem 3. Let A € L(X), K € C(R4+;L(X)), there exist IA(, which be single-valued analytic
operator-function in Qpg, for some Ry > 0, and condition (3) hold. Suppose that for all A € Qp, there

exists K(\)~! € £(X). Then for all 29, x1,...,2Zm_1 € X there exists an unique solution to problem
(5), (6). It has the form

m—1
z(t) = ) Yi(t)wg,
k=0
where .
Yilt) = 5 /(Amff()\) —A)TTKWAT IR AN B =0,1,...,m— 1.
T

Y

The contour -y is defined as in the previous section.
Proof. We have

[ATE ) — AR A E ey = ([ = AR L) IR oy < 20 7FL

So, there exists the Laplace transform lA/k fork=1,2,....m—1. For k=0

_ L -1 = —mn( 7o —1 g\n At
Yo(t)_I+2m,/)\ ;A (K(\)"TA)meMd,
) _

ST e AT A R g =
£(x) n=1
_ AT Al £ 2[|All £ (x)
IAN[(1 = A Al £ x)) — c|AP™

A i AT(E(N) A"
n=1

Thus, there exists the Laplace transform )?0.
For large enough R > 0 in the definition of v, k,l € {0,1,...,m — 1}

1 ~
v =5~ / M= AR ()T A) ey, > 0.
Y

By repeating the reasoning from Theorem 1, we get the fulfillment of conditions (5) with arbitrary
xz € X, x =0 for every k € {0,1,...,m — 1} \ {l}.
Further, we have

o — —

JEY, () = RY, ™ (A) = RN Ti(A) = Xm=11),

JEY (1) = = / AR (AL = AR (M) TTA) T - TeMdA =
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1 ~
= A AT = AR (W) TTA) TteMaN = AY(t), t> 0.
T
v

The uniqueness of a solution can be proved in the same way as in Theorem 1.
Consider the inhomogeneous equation with f: [0,7T] — X

(DFma)(t) = Ax(t) + f(t), t €[0,T). (7)

Lemma 2. Let A € L(X), K € C(Ry;L(X)), there exist K, which be single-valued analytic
operator- functlon in Qp, for some Ry > 0, and condition (3) hold. Suppose that for all A € Qp, there
exists K(\)™! € £(X), f € C([0,T]; X). Then there exists an unique solution to problem (5), (7) with
T0=21=...= Tm—1 = 0. It has the form

t
/Xm 1(t — s)f(s)ds.
0

Proof. For k =0,1,...,m — 2 we have X,S’f)_l(O) = 0, hence,

Since

2

IR = A ey = INTRO)H =X ARN ™) Me < gy

we have ||X£:Z1(t)“,c(x) < Ct™=*=24X consequently,
129 (D)l 22y < Cillfleqorpat™ %, e ) =0, k=0,1,....m 1.
Further,
S = AR (AWK (V) — A)TLF) = AQ™R (V) — AL + T,

hence, z ¢ is a solution to problem (5), (7). The proof of the uniqueness of a solution is the same as in
Theorem 1.

Theorem 4. Let A € L£(X), K € C(Ry;L(X)), there exist K, which be single-valued analytic
operator-function in g, for some Ry > 0, and condition (3) hold. Suppose that for all A € Qp, there
exists K(A)™! € L(X), f € C([0,T); X). Then for all o, x1,...,Zm_1 € X there exists an unique
solution to problem (5), (7). It has the form

m—1 t
Y5 (t)xy +/Xm 1(t —s)f(s)ds.
Example 1. Take m — 1 < a < m € N, K,(s) := F( )I then J%e := J is the operator of the
fractional Riemann—Liouville integration of the order o, D™®m-a := RL Do i5 the operator of the

fractional Riemann—Liouville differentiation of the order a, D¥m-am .= GC D ig the operator of the
fractional Gerasimov—Caputo differentiation of the order c.
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Example 2. Take X = R?, aij bi; € R, mi; —1 < aj; <my; €N, 4,7 =1,2,m:= ir]njlfiz mij,

m—aq1—1

ai; a2 b1 & b12fﬂmia127l
A:=(a " ) K(s)=(, afaptl | =g
21 22 21 T(m—az1) 22 T(m—a22)

then
Dm,K

< bllRLDOtn blzRLDal2 )

RL poo: RL a2

bo1 bao

for Gerasimov—Caputo derivatives similar construction case is possible in the general, if m1; = mio =
ma1 = Maz. S0, equation (2) has the form of the system of equations

by BED gy (1) 4 b Pl D229 () = agg21(t) + ar22(t),
leRLDOQlZL’l(t) + bQQRLDa22$2 (t) = azl.l‘l(t) + ag2x2 (t)

Note that

= by A= pg \¥2—m
K(Q\) = < bog NO2L=T oo \X22—M > )

therefore, condition (3) is fulfilled with some x € (0, + 1 —m), and the condition of reversibility of
K () for large enough |A| is not too restrictive. Indeed, K ()) is invertible, only if the matrix, consisting
of b;;, does not contain zero rows and zero columns, and ajia22 # a120i21, or biibaa # biabay in the
case (x11(x92 = (120217 .

3 Degenerate equation of Riemann—Liouville type

Assume that X and ) are Banach spaces, L € L£(X;)), i.e., it is a linear bounded operator from
X to Y, M € Cl(X;)), i.e., it is a linear closed operator with a dense domain Dj; in X, acting to
Y. Introduce the denotations p”(M) := {u € C: (uL — M)~' € L(Y; &)}, Rﬁ(M) = (uL — M)7'L,
Lﬁ := L(uL — M)~t. We will suppose that ker L # {0}, in other words, the operator L is degenerate.
An operator M is called (L, 0)-bounded, if

Ja>0 YpeC (lul>a)= (uept(M).

In [12; 89, 90|, it was shown that if an operator M is (L,o)-bounded, 7, := {u € C: |u| =r > a},
then the operators

p=_bt RY(M)dp € L(X), Q 1/L5(M) du € L(Y)

27 27
r r

are projections. Put X0 := ker P, X! := imP, )° := ker@Q, V! := imQ. Denote by L; (M) the
restriction of the operator L (M) on X* (Dyy, = Dy N X*), k=0, 1.

Theorem 5 |12; 91]. Let an operator M be (L, o)-bounded. Then

(i) My € L(XY; YY), Mo € CL(X0;)°), Ly € L(X%VF), k=0,1;

(ii) there exist operators Mgl € E(yo; Xo), Lfl € £(y1; Xl).

Denote G := M, 'Lo. For p € Ny := NU {0} operator M is called (L, p)-bounded, if it is (L, o)-
bounded, G? # 0, GPT! = 0.

Consider the initial problem

DFE(P2)(0) =z, k=0,1,...,m—1, (8)
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for a linear inhomogeneous integro-differential equation of Riemann—Liouville type
LD™ Ry (t) = Mx(t) + g(t), te (0,7, (9)

in which g € C((0,77;Y). This equation is called degenerate, since it contains degenerate operator L
at the integro-differential operator.

A solution to problem (8), (9) is called a function z : (0,7] — Dy, for which Mz € C((0,7];)),
JEPz € C1([0,T);Y), J5x € C™((0,T]; ), equality (9) is valid for all ¢ € (0, 7] and conditions
(8) are true.

Lemma 3. Let K € C(Ry;L(X)), H € L(X) be a nilpotent operator with a power p € Ny, a
function h : (0,7] — X be such that for [ = 0,1,...,p (D™FH)'h € C((0,T]; X), D™X(D™KH)!h €
C((0,T]; X). Then there exists a unique solution to the equation

D™ K Ha(t) = x(t) + h(t). (10)
It has the form )
2(t) ==Y _(D™FH)'h(t). (11)
=0

Proof. Let z = z(t) be a solution of (10). Act by the operator H on the both parts of (10) and obtain
the equality HD™® Hz(t) = Hz(t) + Hh(t). Under the theorem conditions there exists a continuous
derivative D™ for the the right-hand side of this equality. Acting by D% on the both parts of this
equality, we will get

Continuing such arguing, we obtain that
P
2+ Z(Dm,KH)lh — (Dm,KH)p+lz — (Dm,K)p+1Hp+1Z =0
=0

due to the continuity and nilpotency of the operator H. The existence of a solution can be checked by
the substitution of (11) into (10).

The difference of two solutions is a solution of equation (10) with A = 0, then (11) implies that the
difference is identically equal to zero.

Define

1
Uk(t) = 5 — /()\mK(A) LMy I ImkeMay >0, k=0,1,...,m— 1.
ol

Theorem 6. Let an operator M be (L,p)-bounded, K € C(Ry;L(X)), there exist K, which be
single-valued analytic operator- functlon in Qp, for some Ry > 0, and condition (3) hold. Suppose that
for all A € Qpg, there exists K(A\)™ € £(X), g € C(0,T);Y) N L1(0,T; ), (D™EG M T - Q)g,
DR (DMEGY My NI — Q)g € C((0,T); X) for I = 0,1,...,p, a1, € Xl, kE=0,1,...,m — 1. Then
there exists a unique solution to problem (8), (9), it has the form

—

m—

k=0 =0

Ust)as + [ Unes(t = )L Qals)ds = Y (D" G) M5 (I - Qo)
0

Proof. Acting on the both sides of (9) by L7'Q € L(Y'; &), obtain
D™ Fo(t) = Ly Myo(t) + Ly Qg(1), (12)
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where v(t) = Pz(t). Act by the operator My (I — Q) € £(Y°; X°) on (9) and get
D™ R Gu(t) = w(t) + My (I - Q)g(t), (13)

w(t) = (I — P)x(t). Here we use the evident equalities LP = QL, MP = QM and Theorem 5.

Conditions (8) can be rewritten in the form
DREyp(0) =2y, k=0,1,...,m — 1. (14)

By Theorem 2, problem (12), (14) has an unique solution, and it has the form

3
L

B
Il

o) = S Up(t)ag + / Ui (t — )L Qg(s)ds.
0 0

Due to Lemma 3, equation (13) has an unique solution
P
w(t) ==Y (D™FG) My (I - Q)g(t).
0

=

Remark 1. It is not difficult to make sure that for p = 0 we have Ly = 0, hence, initial conditions
(8) are equivalent to the conditions

D™ ELx(0) =ye, k=0,1,...,m—1, (15)

where y, = Lzy, or xp = Lflyk, k=0,1,...,m—1.
Remark 2. Tt follows from the proof of Theorem 6 that if we consider the Cauchy type problem

D™ (0) =2, k=0,1,...,m—1,

for equation (9), we obtain the necessity of conditions

p
(I - P)‘Tk = _Z(DWMKG)ZMO?l(I - Q)g(O), k= 07 17 cees M — ]-a
=0

for the problem solvability.
4 Degenerate equation of Gerasimov type
Now consider the initial problem
(Pz)®)(0) =z, k=0,1,...,m—1, (16)
for a degenerate linear inhomogeneous integro-differential equation of Gerasimov type
LD5™g(t) = Ma(t) +g(t), tel0,T], (17)
in which g € C(]0,T]; ).
A solution to problem (16), (17) is called a function x : [0, 7] — Dy, for which Mz € C([0,T];)),
Pz c ¢ 1([0,T);Y), LI%z™ € C([0,T];Y), equality (17) is valid for all ¢ € [0, 7] and conditions

(16) are fulfilled.
Analogously to Lemma 3 the next assertion can be proved.
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Lemma 4. Let K € C(Ry;L(X)), H € L(X) be a nilpotent operator with a power p € Ny, a
function h : [0,T] — X be such that for I = 0,1,...,p (DX™H)!h € C([0,T); X), DX™(DE™H)!h €
C([0,T]; X). Then there exists an unique solution to the equation

DEM™Hx(t) = x(t) + h(t).
And it has the form ,
— ey
1=0

Define

1 . .
Vilt) = 5 /()\mK(A) — L7 M) IR )N RGN >0, k=0,1,...,m —1,

~

Theorem 7. Let an operator M be (L,p)-bounded, K € C(R4;L(X)), there exist K, which be
single-valued analytic operator-function in {2g, for some Ry > 0, and condltlon (3) hold. Suppose that
for all A € Qp, there exists K(\) ™1 € £(X), g € C(0,T); D), (DKmG)lM YT —Q)g e C(0,T); x),
DEm(DEmGY M (T — Q)g € C([0,T); &) for I = 0,1,...,p, 2 € X', k = 0,1,...,m — 1. Then
there exists an unique solution to problem (16), (17), it has the form

3
L

B
Il

t
z(t) = ) Vi(t)zy +/Um—1(t —s)Ly ' Qy(s) z”: DEmG) MG (T - Q)g(t).
0 0 1=0
Proof. As in the proof of Theorem 6, reduce the problem to the system
Df™u(t) = Ly Mu(t) + Ly 'Qq(t),  DM™Gu(t) = w(t) + My (I — Q)g(t),
where v(t) = Px(t), w(t) = (I — P)z(t), endowed by the initial conditions
v®(0) = x4, k=0,1,...,m—1.

By Theorem 4 and Lemma 4 we get the required.
Remark 3. For p = 0 initial conditions (16) are equivalent to the conditions

D™ ELx(0) =y, k=0,1,...,m—1,

where yp, = Lz, k=0,1,...,m — 1.
Remark 4. For the Cauchy problem

e®0) =z, k=0,1,...,m—1,

to equation (17) the conditions

p

(I - Pz =—Y (DG My (I-Q)g(0), k=0,1,...,m—1,
=0

are necessary for the problem solvability.
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5 Application to initial boundary value problems

Take a € R, a > 0, B € (0,1), K(s) = s PE,1_p(as¥)I, then

R NotB-1
K\ = S

satisfies condition (3) with y € (0,8), and it is invertible for all |\| > a'/®. Here E, s is the Mittag-
Leffler function. Note that the kernel K (s) is singular at zero.
0 . 4 .
Let Py(A) = > N, Qp(N) = > djN, ¢5,dj € C, j = 0,1,...,0 € N, ¢, # 0. Suppose that
=0 =0
Q c R? is a bounded region with a smooth boundary 9,

lalqy( s _
(Au)(s) i= 3 ay(9) gl e c@),

0s1'9s® ... 9gld’
lq|<2r L =e2 d

dlaly(s)
(B b , b, € C°00N),1=1,2,...,1,
) ng:r, ta(s 83’{18352 .08k la (09) "
q=(q1,q2,---,4q2) €N& |g| = @1 + -+ qa, the operator pencil A, By, Bo, ..., B, is regularly elliptical

[13]. Define an operator A € Cl(L2(£)), acting on the domain
Dy, = Hip () :={v € H(Q) : Bio(s) =0,1=1,2,...,7, s € 00}

by the rule Aju := Au. Let A; be a self-adjoint operator, then the spectrum o(A;) of the operator Ay
is real, discrete, with finite multiplicity [13]. Suppose, in addition, that the spectrum o (A1) is bounded
from the right and does not contain zero, denote by {¢y : & € N} an orthonormal in Lo (2) system
of eigenfunctions of the operator A;, numbered in the order of non-increasing of the corresponding
eigenvalues {\; : k € N}, taking into account their multiplicity.

Consider the initial boundary value problem

t
k

gtk /(t —8) PEai-plat — s)*)u(&, s)ds|i—o = ur(§), k=0,1,...,m—1, £ € Q, (18)
0
BAFu(ét) =0, k=0,1,...,0—1, 1=1,2,...,r, (£t)€dQx (0,T], (19)

om |
PQ(A)aTm /(t —5) P Ean-p(a(t — s)*)ul(, s)ds = Qu(M)u(&,t) + h(¢, 1) (20)
0

in Q x (0,7]. Here

Kue.t) = [(6= ) Earalalt = 5)ulg.5)ds
0

is the Atangana—Baleanu type integral [6], but with a singular kernel, A : Q x [0,7] — R. Take
X ={ve H?(Q): BA*v(s) =0,k =0,1,...,0-1,1=1,2,...,7, s € 0N}, Y = La(Q), L = P,(A),
M = Q,(A) € L(X;)).

Let P,(\) # 0 for all k € N, then there exists an inverse operator L1 € £(); X) and problem (18)-
(20) is representable as problem (1), (4), where A = L™'M € L(Z), x1, = ui(-), k = coo,m—1,
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f(t) = L7'h(-,t). By Theorem 2 there exists a unique solution to problem (18)-(20) for any u; € X,
k=0,1,....,m—1,if h € C((0,T]; L2(2)) N L1(0,T; X).

Now assume that P,(Ax) = 0 for some k € N. If the polynomials P, and @, have no common roots
on the set {\;}, the operator M is (L,0)-bounded (see [14]), the projectors have the form

P = Z (o or)er, Q= Z (- @x) P,

Po(A)#0 Po(A)#0

where (-, @) is the inner product in Ly(€2). The initial conditions, taking into account Remark 1, can
be given in the form

¢
k
PQ(A)% /(t —8) PEy1_pla(t — s))u(&, s)ds|i=o = yr(s), k= 0,1,...,m — 1, s € Q. (21)
0

Then problem (19)-(21) is represented as (9), (15) with the spaces X, ) and the operators L, M
selected above. Theorem 6 implies the unique solvability of problem (19)—(21), if h € C([0,T7]; L2(12))
and yi € La(R2), k=0,1,...,m — 1, such that (yg, ;) =0 for all I € N, for which P,()\;) = 0.
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B.E. ®enopost, A.JI. Tonosal, B.T. Kuen?

Y Yepabunck memaexemmix yrusepcumemi, Yeanbunck, Peced;
2 Boemmam evavim scone merHoaoeus akademuacoimomy, Mamemamura uncmumymo, Xanot, Bovemmam

Banax keHICTiKTepiHeri 1meKTeJIreH ollepaTopJjapbl bap
nHTerpo-anddepeHIma abIK TeHaeysiep

Maxkanaza xkoHe quddepeHnmaigay KoHe YHIPTKI omepaTopIapblHBIH KypaMIapbl OOJIBIIT TAOBIIATHIH OIIe-
paropJsiapmen Banax kenicririazeri narerpaaapik-auddepeHnualiibk rergeysiep 3eprresred. Ockl exi ome-
PaTOPIBIH 9PEKET €Ty peTiHe 6ailIaHBICThI YilipTKi omtepaTopbl 6ipiHiii speker erkeHie Puman-J/Iuysuib Tu-
miggeri uaTerpo-auddepeHnnalIbK ornepaTopaap, aia backaiia ['epacuMoB TUIITI HHTErpo-audHepeHITnaIIbIK,
OomepaTopJsiap Typasbl alThLIaabl. KapacThIPBUIBIT OTHIPFAH OMEPATOPJIAPIBLIH JepOec Karaailaapbl Coii-
keciume Puman-JInyBuib xone ['epacumMoB 66JIIIIEK TYBIHIBLIAPEI OOJIBIT TAOBLIAIBI. 3€PTTEJIETIH HHTEIPO-
nudHepeHITIAIBIK, OTIePATOPJIAPABIH, KJIACTAPBIHA YHIPTKICI CHHTYJISIPJIBIKCHI3 WHTETPAJIIIBIK, IAPOCHL ap-
Jap na kipeai. Puman-JInyBuiis TUNTI CHI3BIKTHIK, HHTErPO-1nddepeHnuaabK Teqaey yiria Kommu taunrec
ecenTiy »KoHe i37esinal QYHKIMS YIIH HIeKTeIreH orneparopbl 6ap ['epaciMoB THITI CBI3BIKTBHIK, HHTEPO-
muddepeHmmanabk, TeHaey yirin Ko ecebinin 6ipereit memiMia Taby mapTTapbl aJablHALL. By HoTmxKe-
Jiep TEHAEYEH OIepaTopJiap KYOBIHBIH CAJIBICTBIPMAJIBI IIIEKTETY] ITaPTHIHAA UHTErPO-IuddepeHInaIbIK,
omepaTop YIIiH e3relle orepaTopbl 6ap YKCac TeHEeYIePl 3epTTey/ie KOJAaHbLIIbI. AGCTPAaKTIII HOTHKE-
sep Murrar-Jlepdaep dyarnmsceiMer GepiireH, ssFHU €PEKINEeTiKTeP] KOK, WHTErPOo-T1uddepeHIINaIbIK,
Y#ipTKi ortepaTopsl 6ap Jaepbec TYBIHIBLILI TEHIEYIEp YIINiH OaCTAlKbI-IIIEKTIK ecerTep/ii 3epTrey e maiiia-
JIAHBLIJIBIL.

Kiam ceadep: nurerpo-auddepeHIuaIblK, TeH ey, HHTerpo-uddepeHnuaiapk oneparop, yitiprki, Komn
ecebi, Ko Tunrec ecer, e3rerne nHTErpo-anddepeHnaaabk TeHIEY, OaCTANKbBI-IIIEKAPAJIBIK, €CEIl.

B.E. ®enopost, A JI. T'onosal, B.T. Kuen?

' Yenabunckuti ocydapcmeennoni yrusepcumem, Jeasbunck, Poccus;
2 Unemumym mamemamury Bvemmnamckot axademuu nayxu u mernosozuu, Xanot, Bvemmam

Nuarerpo-anddepenrmanbiubie ypaBHEHUS
C OrpaHMYEHHBIMHU OllepaTopaMy B 0aAHAXOBBIX IIPOCTPAHCTBAX

B crarbe ucciiejoBanbl nHTErpaIbHO- 1AM HepeHInaIbHbIe YpaBHEHNSI B OaHaAXOBBIX ITPOCTPAHCTBAX C OIle-
paTopamu, TPeACTABIISIONUMEA COO0 KOMITO3UIIUIO ONIEpPaTOpOB CBepTKU U audpepennuposanus. B 3aBu-
CAMOCTH OT TIOPSI/IKA JIEWCTBUSI ITUX JBYX OMEPATOPOB TOBOPHUTCS 00 MHTErpo-anddpepeHnnaaIbHbIX OIle-
paropax tuna Pumana-JlmyBuiuisa, korma mepBbIM JEHCTBYeT ONEpaToOp CBEPTKH, W HHTErpo-anddepen-
[UAJBHBIX OllepaTopax THUIlla l'epacMMoBa B IPOTHBHOM Cjiydae. JaCTHBIMH CJIYYasiMU PACCMATPUBAEMbIX
OIEPATOPOB SIBJISIIOTCST ApOOHBIE Mpon3BoaHble Pumana—/IuyBuias u 'epacumosa coorBercTBeHHO. B mc-
cJle/lyeMble KJIACChl HHTErpo-a1nddepeHnuaabHbIX OIePATOPOB BXOIAT U TaKue, B KOTOPBIX CBEPTKA MMeEeT
WHTErpaJibHOE sIApo 663 cuHTrysstpHOCcTel. [losydeHbl yCIoBusi OMHO3HAYHON Pa3peluMOCTH 33Ia49K THUIIA
Kot gt munetinoro waTerpo-auddepeHnuaabHOro ypapHeHus tuna Pumana-Jluysuiis u 3amagan Ko
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JUIsl JIMHEHOrO WHTErpo-anddepeHnaJbHoro ypaBHeHnusl Tuna [epacuMoBa C OPpAHUYEHHBIM OIEPATO-
POM TIPU UCKOMOM (DYHKIMHU. DTU PE3YIBTATHI UCIOJb30BAHbI IPYU UCCIETOBAHUY AHAJIOTUIHBIX yPABHEHU
C BBIPOXKIEHHBIM OIEPATOPOM IPHU MUHTErpo-AndHepeHInaIbHOM OepaTope MPU YCJIOBHU OTHOCUTEIBLHOMN
OrpaHMYEHHOCTH HAPbI OIIEPATOPOB U3 ypaBHeHUs. AGCTpaKTHbIE PE3yJIbTAThl UCIIOJIbL30BAHBI IIPU UCCJIE]I0-
BaHUM HAYAJIHLHO-KPAEBBIX 3384 JIJIsl YPABHEHU B YaCTHBIX MPOU3BOIHBIX C HHTETPO-IuddepEeHITHATBHBIM
OIEepaToOpoOM, CBEPTKa B KOTOpOM 3agaercs dyukimeit Murrtar-Jleddiepa, To ecth HEe nMeeT 0COOEHHOCTEIA.

Karouesvie caosa: naTerpo-auddepeHnuasbHoe ypaBHeHe, THTErpo-1rd depeHIuaabHbIi orepaTop, CBEpPT-

Ka, 3aga4a Komm, 3agaga Tuna Ko, BeipoxkieHHOE HHTErpo-auddepeHaabHoe ypaBHeHe, Ha9aIbHO-
KpaeBad 3a7ad4a.
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