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Examples of weakly compact sets in Orlicz spaces
This paper provides a number of examples of relatively weakly compact sets in Orlicz spaces. We show
some results arising from these examples. Particularly, we provide a criterion which ensures that some
Orlicz function is increasing more rapidly than another (in a sense of T. Ando). In addition, we point out
that if a bounded subset K of the Orlicz space LΦ is not bounded by the modular Φ, then it is possible
for a set K to remain unbounded under any modular Ψ increasing more rapidly than Φ.

Keywords: conjugate (complementary) functions, relative weak compactness, Orlicz spaces, N−functions.

Introduction

We provide a number of examples of relatively weakly compact sets in Orlicz spaces based mainly
on criteria obtained by a classical work of T. Ando from 1962 (see [1]). It should be noted that there
is a shortage of such examples in the literature. Some (maybe the most important) examples may be
found in the classical book by M.M. Rao and Z.D. Ren [2]. Another paper, devoted to the study of
weak compactness in Orlicz spaces that we use extensively in this paper is by J. Alexopoulos [3].

On the contrary, weak compactness criteria in both Orlicz function and sequence spaces have been
stidied by many researchers, see, for example [1–14], and references therein.

In particular, T. Ando see [1] obtained weak compactness criteria in Orlicz (function) spaces from
the perspective of Köthe duality. The study results of T. Ando were extended (with some restrictive
condition) from the setting of finite measure spaces to the setting of σ-finite measure spaces in the work
of M. Nowak in 1986 [11]. The objective of this paper is to study such criteria and provide examples
that satisfy these criteria. We also prove some related propositions (see Propositions 2.13 and 2.17).

1 Preliminaries

Initially, the study provides the definition of anN -function (as in [1]), which will be used throughout
the text.

Definition 1.1. A convex function Φ : [0,∞)→ [0,∞) is called an N -function if
(i) Φ(0) = 0,
(ii) Φ(λ)

λ →∞ as λ→∞.

We note that in the above definition by T. Ando, it is not necessarily true that Φ(λ)
λ → 0 as λ→ 0+,

unlike in many other classical works (e.g., [15, formulae 1.12 and 1.15], [2; 13], [3, Proposition 1.1]).
The following two definitions specify some important classes of N -functions.
Definition 1.2. ([2, Definition 1] and [3, Definition 1.5]) An N−function Φ is said to satisfy the 42

condition (Φ ∈ 42) if lim supx→∞
Φ(2x)
Φ(x) < ∞. That is, there is a K > 0 so that Φ(2x) ≤ K · Φ(x) for

large values of x.
Definition 1.3. ([2, Definition 2] and [3, Definition 1.8]) An N−function Φ is said to satisfy the ∇2

condition (Φ ∈ ∇2) if there is a K > 0 so that (Φ(x))2 ≤ Φ(Kx) for large values of x.
∗Corresponding author.
E-mail: yerlan.nessipbayev@gmail.com
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1.1 Decreasing rearrangement

Let (I,m) denote the measure space, where I = (0,∞) (resp. (0, 1)), equipped with Lebesgue
measure m. Let L(I,m) be the space of all measurable real-valued functions on I equipped with
Lebesgue measure m. Define S(I,m) to be the subset of L(I,m), which consists of all functions f such
that m({t : |f(t)| > s}) <∞ for some s > 0. Note that if I = (0, 1), then S(I,m) = L(I,m).

For f ∈ S(I,m), we denote by µ(f) the decreasing rearrangement of the function |f |. That is,

µ(t, f) = inf{s ≥ 0 : m({|f | > s}) ≤ t}, t > 0.

1.2 Orlicz spaces

Definition 1.4. A function G : [0,∞)→ [0,∞] is said to be an Orlicz function if [9; 258]
(i) G(0) = 0,
(ii) G is not identically equal to zero,
(iii) G is convex,
(iv) G is continuous at zero.

It follows from the definitions that not every N−function is an Orlicz function (e.g., an N -function
may be discontinuous at zero). The converse also does not hold. For example, the function G(t) = t is
an Orlicz function but not an N−function. For an Orlicz function (or N -function) G we shall consider
an (extended) real-valued function G(f) (also called the modular defined by an N -function G) defined
on the class of all measurable functions f on I, by

G(f) =

∫
I
G(|f(t)|)dt.

The set
LG = {f ∈ S(I,m) : ‖f‖LG <∞},

where

‖f‖LG = inf

{
c > 0 :

∫
I
G

(
|f |
c

)
dm ≤ 1

}
is called an Orlicz space defined by the Orlicz function (or N -function) G (equipped with Orlicz norm).

In fact, we have the following ([2, Chapter 3.5, Theorem 1]):

Proposition 1.5. If an N -function Φ ∈ 42, then LΦ is separable (provided the measure space is
separable).

It should be stated that notions of N -functions and Orlicz functions used interchangeably in many
situations. However, in this text we will denote N -functions by Greek letters Φ,Ψ and Orlicz functions
by Latin letters G,F to distinguish between them.

Using various (partial) order relations on Orlicz functions one may define the corresponding relations
in the Orlicz spaces. We also note that since (in this paper) Orlicz (function) spaces are defined on
finite measure spaces we only need local order relations. However, some results will be also stated for
Orlicz spaces on positive half-line (with small differences on local relations).

We define the notion of majorization for Orlicz functions (for σ-finite measure spaces). Let G1 and
G2 be two Orlicz functions.

Definition 1.6. (e.g., [16, Definition 16.1.1]) We say that
(1) G1 majorises G2 at 0 (G1 �0 G2) if there exist positive numbers a, b, x0 such that

G2(x) ≤ bG1(ax) for all 0 ≤ x ≤ x0.
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(2) G1 majorises G2 at ∞ (G1 �∞ G2) if there exist positive numbers a, b, x0 such that

G2(x) ≤ bG1(ax) for all x ≥ x0.

(3) G1 majorises G2 (G1 � G2) if G1 �0 G2 and G1 �∞ G2.

Moreover, one can set b = 1 in the above definition (see [16, Proposition 16.1.2]). Also, the condition
G1 � G2 may be checked via the following (see [16, Proposition 16.1.3]):

Proposition 1.7. G1 � G2 if and only if

G2(x) ≤ bG1(ax), x ≥ 0

for some b > 0 and a > 0.

Also, we provide a definition of equivalent Orlicz functions on σ−finite measure space (see [16,
Definition 16.3.1]):

Definition 1.8. Two Orlicz functions G1 and G2 are called equivalent, denoted G1 ≈ G2, if G1 � G2

and G2 � G1.

The following definition for equivalence of N -functions on finite measure space may be found in [3,
Definition 1.3]:

Definition 1.9. For N−functions Φ1,Φ2 we write Φ1 ≺ Φ2 if there is a K > 0 so that Φ1(x) ≤
Φ2(Kx) for large values of x. If Φ1 ≺ Φ2 and Φ2 ≺ Φ1 then we say that Φ1 and Φ2 are equivalent.

Note for finite measure space, the notion of majorisation is slightly different as we do not care
about majorisation at zero.

We will denote by Ψ the function complementary (or conjugate) to an N−function Φ in the sense
of Young (with the condition Φ(t)

t → 0+ as t→ 0), defined by ([15; 11])

Ψ(t) = sup{s|t| − Φ(s) : s ≥ 0}.

We notice that Ψ is again an N−function (see [9; 258]).

2 Weakly compact sets in Orlicz spaces

In this section, we recall known criteria of relative weak compactness in Orlicz spaces and provide
examples of such sets. We will also state some concluding remarks and prove related propositions.

The following theorem was proved by T. Ando in [1, Theorem 1].
Theorem 2.1. Let Φ be an N -function and let (Ω,Σ, µ) be a finite measure space. A subset K of

LΦ is relatively σ(LΦ, LΨ)−compact if and only if

Φ(λf)

λ
→ α

∫
Ω
|f(t)|dµ as λ ↓ 0

uniformly with respect to f(t) ∈ K, where α = limλ→0+ Φ(λ)/λ.

It is worthwhile to note that Theorem 2.1 (unlike many others) is valid for any N−function (in
the sense of Ando), that is, α is not necessarily zero by definition. We note that the extension of this
Theorem to the σ-finite case was given by M. Nowak [14, Theorem 1.1] only in the case α = 0.

Below we provide examples of relatively weakly compact sets in LΦ[0, 1] by using Theorem 2.1.
Later we will provide another criteria of weak compactness in Orlicz spaces and apply these criteria to
the following examples.
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Example 2.2. (i) Let Φ(x) = ex − 1. Then the subset K = {fp(x) = xp : p ≥ 1} of LΦ[0, 1] is
relatively weakly compact. Indeed, K is bounded and since α = limλ→0

eλ−1
λ = 1, it is enough to show

(by Theorem 2.1) that ∫ 1
0 e

λtpdt− 1

λ
→
∫ 1

0
tpdt =

1

p+ 1

uniformly with respect to p ≥ 1 as λ ↓ 0.
Applying the L’Hopital’s rule, we get

0 ≤ lim
λ↓0

∫ 1
0

(
eλt

p − λtp − 1
)
dt

λ
= lim

λ↓0

∫ 1
0

(
tpeλt

p − tp
)
dt

1
=

≤ lim
λ↓0

∫ 1

0

(
eλt

p − 1
)
dt ≤ lim

λ↓0

∫ 1

0

(
eλt − 1

)
dt =

eλ − 1

λ
− 1→ 0

as λ→ 0 uniformly with respect to f ∈ K (independent of p).
For example, when p = 1, then ∫ 1

0 e
λtdt− 1

λ
=
eλ − 1− λ

λ2
→ 1

2

as λ ↓ 0 as desired.
However, when p > 1, the integral

∫ 1
0 e

λtpdt is not expressed in terms of elementary functions.
(ii) Let Φ(x) = ex − x − 1 and the subset K as in (i). Note in this case α = 0 (so Φ is an

N−function). Obviously ∫ 1
0

(
eλt

p − λtp − 1
)
dt

λ
→ 0

uniformly with respect to p as λ ↓ 0 as it is reduced to case (i). For example, when p = 1

Φ(λf)

λ
=

∫ 1
0 (eλt − λ · t− 1)dt

λ
=

2eλ − 2− λ2 − 2λ

2λ2
→ 0

as λ ↓ 0. As in (i), The uniform convergence holds for every p > 1, however, as in example (i), the
integral is not expressed in terms of elementary functions either.

We note that in the statement of Theorem 2.1 the uniform convergence is crucial as the following
example illustrates, i.e., pointwise convergent is not sufficient.

Example 2.3. Let Φ(x) = x · ln(x + 1) and K = {fp(x) = epx : p > 0} be a subset of LΦ[0, 1].
Note that Φ is an N−function with α = 0. Now we check the condition of uniform convergence as in
Theorem 2.1:

Φ(λf)

λ
=

∫ 1
0 λe

px · ln(λepx + 1)dx

λ
=

=
λep · ln(λep + 1)− λ · ln(λ+ 1)− λep + λ+ ln(λep + 1)− ln(λ+ 1)

p · λ

≈ (λep)2 − λ2

p · λ
=
λ(e2p − 1)

p
→ 0

as λ ↓ 0. However, it is easy to see that the convergence is not uniform with respect to p since

sup
p>0

Φ(λf)

λ
=∞

for all λ > 0. Hence, by Theorem 2.1, the subset K is not relatively weakly compact in LΦ[0, 1].
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Note, however, if 0 < p ≤ 1, that is K = {fp(x) = epx : 0 < p ≤ 1}, then K is relatively weakly
compact in LΦ[0, 1]. We also note that the set K in Example 2.3 is not bounded (in norm) in LΦ[0, 1].
Hence, this fact clearly implies that K is not relatively weakly compact. In general, norm boundedness
does not imply weak compactness.

Also note that LΦ[0, 1] is separable since Φ ∈ 42 by Proposition 1.5. Indeed, Φ(2x) ≤ K ·Φ(x) for
large x since ln(2x+ 1) ≤ 3 ln(x+ 1) = ln(x+ 1)3 or equivalently, 2x+ 1 ≤ (x+ 1)3 for large x.

Below we state another two criteria of weak compactness criteria in Orlicz spaces due to T. Ando.

Lemma 2.4. (see [1; 171]) A subset K of LΦ[0, 1] is (relatively) weakly compact if and only if it is
weakly bounded and equi continuous in the following sense:

sup
f∈K

∫
E
|f(t) · g(t)|dµ→ 0 as µ(E)→ 0, E ⊂ [0, 1], g(t) ∈ LΨ[0, 1].

Lemma 2.5. ([1; 172]) Let B be a σ-algebra of subsets of (0, 1). When B is atomless, boundedness
by modular Φ(f) implies (relative) weak compactness, if and only if Φ(λ) has (∇2), i.e.

lim inf
λ→∞

Φ(ηλ)

Φ(λ)
≥ 2η for some η > 0.

Remark. Note that Lemma 2.5 may also be applied to show that the set K in Example 2.2 (both (i)
and (ii)) is relatively weakly compact in LΦ[0, 1]. Indeed, as for (i), the boundedness by the modular
Φ(f) is obvious. Also, (with η = 2)

lim inf
λ→∞

Φ(2λ)

Φ(λ)
= lim inf

λ→∞

e2λ − 1

eλ − 1
≥ 2 · 2 = 4.

As for (ii), we have∫ 1

0
Φ(xp)dx =

∫ 1

0
(ex

p − xp − 1)dx ≤
∫ 1

0
ex

p
dx ≤ 3, for all p > 0.

Taking supremum over all p > 0, we obtain boundedness of a set K by modular Φ. Also, by setting
η = 2, we obtain

lim inf
λ→∞

e2λ − 2λ− 1

eλ − λ− 1
≥ 2 · 2 = 4.

Recall that a set K in Example 2.3 is not relatively weakly compact, which may not be proved via
using Lemma 2.5 since a set K is not bounded by the modular Φ(f). Indeed,

Φ(f) =

∫ 1

0
Φ(epx)dx =

∫ 1

0
epx ln(epx + 1)dx =

=
1

p
[ep ln(ep + 1)− 2 ln 2− ep + 1 + ln(ep + 1)]→∞ as p→∞.

Though Φ(λ) fails (∇2),

lim inf
λ→∞

Φ(ηλ)

Φ(λ)
= lim inf

λ→∞

ηλ ln(ηλ+ 1)

λ ln(λ+ 1)
= η < 2η for all η > 0.

Note that in general, if K is not relatively weakly compact, then it is not necessarily true that K
is not bounded by the modular Φ(f).

Now we provide an example of a set K such that K is bounded by modular Φ and Φ(λ) that does
not have (∇2).
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Example 2.6. Let Φ(x) = x · ln(x+ 1) and K = {fp(x) = xp : p > 0}. Note K is bounded by the
modular Φ(f). Indeed,

sup
p>0

∫ 1

0
xp · ln(xp + 1)dx ≤ 1.

However, since Φ(x) fails (∇2), we conclude that K is not relatively weakly compact by Lemma 2.5.
Now we state the relation between conjugate N -functions in terms of 42,∇2 relations (see [2,

Chapter 2.3, Theorem 3]).
Remark 2.7. Φ(x) has ∇2 if and only if its conjugate Ψ(x) has 42.
For example, let Φ(x) = ex − x − 1, x ≥ 0. Then it is easy to see that Φ ∈ ∇2. Its conjugate

function Ψ(x) = x · ln(x+ 1)− x+ ln(x+ 1), x ≥ 0 has 42.
The following definition may be found in [17, Definition 53.1], [2, Chapter 1.3].
Definition 2.8. A function Φ : R→ R is called a Young function if and only if:
(i) Φ(x) =

∫ |x|
0 φ(s)ds for all x ∈ R;

(ii) φ : R+ → R+ is continuous and strictly increasing;
(iii) φ(0) = 0 and φ(s)→∞ as s→∞.
Throughout this paper, however, we restrict our attention to Young functions Φ : R+ → R+. It

is noted that every Young function is not an N−function (in the sense of Ando). However, in most
papers the definition of a Young function coincides with the definition of an N−function (with the
condition limx→0+

Φ(x)
x = 0), for example, [3, Definition 1.1]. Clearly, not every Orlicz function is a

Young (or N -)function. For example, Φ(x) = x arctanx is such a function.
The notion of Orlicz functions (as well as of N−functions or Young functions) is known since 1940s.

Nonetheless, for the sake of convenience, we provide a list of Orlicz functions below. We note that some
of them are not N−functions, and some are not Young functions.

Examples of Orlicz functions Φ : R+ → R+ are:
Φ(x) = xp, p ≥ 1 (corresponding to Lebesgue spaces Lp. If p > 1, then it is also both an

N−function and a Young function);

Φ(x) =

{
0 if 0 ≤ x ≤ 1,

∞ if x > 1;
(corresponding to the Lebesgue space L∞, neither Young nor N -

function).
Φ(x) = ex − 1 (neither Young nor N−function);
Φ(x) = ex − x− 1 (both Young and N−function);
Φ(x) = ex − x2

2 − x− 1, and in general ex −
∑n

k=0
xk

k! for any n ∈ N;
Φ(x) = x ln(x+ 1) (not Young but N−function);
Φ(x) = (x+ 1) ln(x+ 1) (neither Young nor N−function);
Φ(x) = x ln(x2 + 1) (both Young and N−function);
Φ(x) = xex

p
, where p ≥ 1 (neither Young nor N−function);

Φ(x) = (x+ e) ln(x+ e)− (x+ e) (neither Young nor N−function);
Φ(x) = x arctanx (not Young but N−function);

Φ(x) =

{
x2 if 0 ≤ x < 1,

x3 if x ≥ 1;

Φ(x) =

{
x2 if 0 ≤ x < 1/2,

x− 1/4 if x ≥ 1/2; etc.
While discussing relative weak compactness in Orlicz space LΦ1 , it is natural to ask whether there

is another Orlicz function Φ2 6= Φ1 such that LΦ2 coincides with LΦ1 . The following theorem shows
equivalent conditions when two Orlicz spaces LΦ1 and LΦ2 coincide on (0,∞) (as sets), see, for example
[16, Theorem 16.3.2].
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Theorem 2.9. Let Φ1 and Φ2 be two Orlicz functions. The following are equivalent:
(1) Φ1 ≈ Φ2 (i.e., Φ1 � Φ2 and Φ2 � Φ1 as in Definition 1.6) ;
(2) LΦ1(0,∞) = LΦ2(0,∞) as sets;
(3) || · ||LΦ1

and || · ||LΦ2
are equivalent, i.e.,

a1||f ||LΦ1
≤ ||f ||LΦ2

≤ a2||f ||LΦ1

for all f and some a1 > 0, a2 > 0;
(4) a1ϕLΦ1

(x) ≤ ϕLΦ2
(x) ≤ a2ϕLΦ1

(x) for all x ≥ 0 and some a1 > 0, a2 > 0;
(5) Φ1(a1x) ≤ Φ2(x) ≤ Φ1(a2x) for all x ≥ 0 and some a1 > 0, a2 > 0.

In condition (4) above, ϕLΦ
(x) stands for the fundamental function of an Orlicz space LΦ, and is

defined as follows:
ϕLΦ

(x) = ‖1[0,x]‖LΦ
.

Note that constants a1 and a2 in the above conditions (3), (4), and (5) may be chosen the same.
However, if we consider LΦ on a finite measure space, the notion of equivalent Orlicz functions is

slightly different (compare Definitions 1.6 and 1.9), which entails the corresponding changes in Theorem
2.9. For example, let

Φ(x) =

{
x2 if 0 ≤ x < 1/2,

x− 1/4 if x ≥ 1/2.

Then LΦ(0, 1) = L1(0, 1) while LΦ(0,∞) 6= L1(0,∞). Indeed, Φ(x) ≈ x as in Definition 1.9,
thus LΦ(0, 1) = L1(0, 1). To show that LΦ(0,∞) 6= L1(0,∞), one may consider a function
f(x) = x−1/2χ(0,1/2)(x), which belongs to L1(0,∞) and does not belong to LΦ(0,∞). Or, on the other
hand, this is easily checked since one cannot have x ≤ bΦ(ax) for all large x and some positive a and
b. Therefore, Φ(x) is not equivalent to x on (0,∞).

Now we state Theorem 2.9 for LΦ(0, 1).

Theorem 2.10. Let Φ1 and Φ2 be two Orlicz functions. The following are equivalent:
(1) Φ1 ≈ Φ2 (i.e., Φ1 � Φ2 and Φ2 � Φ1 as in Definition 1.9);
(2) LΦ1(0, 1) = LΦ2(0, 1) as sets;
(3) || · ||LΦ1

and || · ||LΦ2
are equivalent, i.e.,

a1||f ||LΦ1
≤ ||f ||LΦ2

≤ a2||f ||LΦ1

for all f and some a1 > 0, a2 > 0;
(4) a1ϕLΦ1

(x) ≤ ϕLΦ2
(x) ≤ a2ϕLΦ1

(x) for all x ≥ x0 and some a1 > 0, a2 > 0, x0 > 0;
(5) Φ1(a1x) ≤ Φ2(x) ≤ Φ1(a2x) for all x ≥ x0 and some a1 > 0, a2 > 0, x0 > 0.

The following definition will be needed to state another weak compactness criterion in Orlicz spaces.

Definition 2.11. (see [1; 173]) We say that Ψ(x) is increasing more rapidly than Φ(x), if for any
η > 0 there exist ρ, x0 > 0 such that

Ψ(ρx) ≥ ρ · η · Φ(x) for x ≥ x0.

Sometimes it is convenient to use the following equivalent definition.

Definition 2.12. (see [1; 173]) We say that Ψ(x) is increasing more rapidly than Φ(x), if for any
ε > 0 there exist δ, x0 > 0 such that

εΨ(x) ≥ Φ(δx)

δ
for x ≥ x0.
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We note that Ψ(λ) has (∇2) if and only if Ψ is increasing more rapidly than itself [1; 173]. If
Ψ(x) ≥ Φ(x) for all x ≥ 0, then it is not necessarily true that Ψ is increasing more rapidly than
Φ. Now we prove a result, which allows one to check whether one Orlicz function is increasing more
rapidly than another.

Proposition 2.13. Let Φ and Ψ be two Orlicz functions. If limx→∞
Ψ(x)
Φ(x) =∞, then Ψ is increasing

more rapidly than Φ.

Proof. If limx→∞
Ψ(x)
Φ(x) = ∞, then for any η > 1 there exists x1 > 0 such that Ψ(x) ≥ η · Φ(x) for

all x ≥ x1. Since Ψ is convex there exist ρ, x2 > 0 such that Ψ(ρx) ≥ ρ ·Ψ(x) for all x ≥ x2. Hence,

Ψ(x) ≥ ρ ·Ψ(x) ≥ ρ · η · Φ(x)

for all x ≥ x0, where x0 = max{x1, x2} (this is even stronger statement than required).
The following theorem is also due to T. Ando [1, Theorem 2].

Theorem 2.14. A subset K of LΦ[0, 1] is relatively weakly compact if and only if it is bounded by
the modular defined by an N−function (depending on K) Ψ(x) increasing more rapidly than Φ(x).

Example 2.15. Let Φ(x) = ex−1, then the Orlicz function Ψ(x) = ex
2−1 is increasing more rapidly

than Φ(x).
Indeed, fix any ε > 0 and choose δ = 1. Then we need to show that there exists x0 > 0 such

that ε · (ex2 − 1) ≥ ex − 1 for all x > x0. It is obvious that for any ε > 0 one can find such x0 > 0

since lim infx→∞
ex

2−1
ex−1 = ∞. Note Φ(x) = ex − 1 is an N−function (in the sense of Ando) with

α = limx→0
Φ(x)
x = 1, while Ψ is an N−function with α = 0.

Now using the Theorem 2.14 we prove that a set K in Example 2.2 (both (i) and (ii)) is relatively
weakly compact in LΦ[0, 1].

Example 2.16. Recall in Example 2.2 (i), Φ(x) = ex − 1. It has been shown that the subset
K = {fp(x) = xp : p ≥ 1} is relatively weakly compact in LΦ[0, 1].

Alternatively, by Theorem 2.14 and Example 2.15 it remains to show that a set K is bounded by
the modular defined by an N−function Ψ(x) = ex

2 − 1, that is, to show that supp≥1

∫ 1
0 Ψ(xp)dx <∞.

Indeed, ∫ 1

0
(ex

2p − 1)dx =

∫ 1

0
ex

2p
dx− 1 ≤

∫ 1

0
ex

2
dx− 1 < 1/2.

Taking supremum over all p ≥ 1, we obtain the desired result.
As for (ii), we note that Ψ(x) = ex

2 − 1 is also increasing more rapidly than Φ(x) = ex − x − 1,
since ex − x− 1 ≤ ex − 1 for all x ≥ 0. Thus, by the previous argument we may conclude that the set
K in Example 2.2 (ii) is also relatively weakly compact.

Now we show the following proposition.

Proposition 2.17. If a set K is not bounded by a modular Φ, defined by an Orlicz function Φ, then
it is not necessarily true that K is not bounded by the modular Ψ, defined by an Orlicz function Ψ,
increasing more rapidly than Φ.

Proof. Indeed, it suffices to find an N -function function Φ, another Orlicz function Ψ, which
increases more rapidly than Φ and a function f for which the inequality

∫ 1
0 Φ(f(x))dx ≤

∫ 1
0 Ψ(f(x))dx

fails. For such purposes, one may choose Φ(x) = x, Ψ(x) = x100 and f(x) = x.
Thus, recall that a set K in Example 2.3 was not bounded by the modular Φ, hence by Remark 2.17

it is not necessarily true that K is not bounded by the modular Ψ, defined by some Orlicz function Ψ,
increasing more rapidly than Φ. However, since a set K is not relatively weakly compact in LΦ[0, 1] we
conclude (by Theorem 2.14) that there is no such function Ψ such thatK is bounded by the modular Ψ.
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Recall that the complementary (or conjugate) function Ψ to Φ in the sense of Young, is defined by
(see [15; 11])

Ψ(t) = sup{s|t| − Φ(s) : s ≥ 0}. (1)

Since in this paper we work on positive half-line R+ (that is t ≥ 0), we may omit the modulus sign
in the formula (1).

The following constructive way of identifying a conjugate function to a given Young function is
given in [2, Theorem 3, Formula (14) and Corollary 2, p. 10].

Theorem 2.18. Let Φ : R+ → R+ be a Young function, that is

Φ(x) =

∫ x

0
φ(s)ds, x ≥ 0,

where φ(0) = 0, φ : R+ → R+ is nondecreasing and left continuous. Let ψ(·) be the (generalized)
inverse of φ. Then the conjugate function Ψ to Φ may be defined as follows:

Ψ(x) =

∫ x

0
ψ(s)ds, x ≥ 0.

Now we provide examples of pairs of mutually conjugate Orlicz functions.

Example 2.19. Let Φ(x) = ex − x − 1, x ≥ 0, then it is easy to find its conjugate function (via
Theorem 2.18) Ψ(x) = x · ln(x + 1) − x + ln(x + 1), x ≥ 0, which, by definition, is also an Orlicz
(moreover, both of them are N−functions) function.

Indeed, Φ
′
(x) = ex − 1 whose inverse is Ψ

′
(x) = ln(x + 1). Thus, integrating by parts we obtain

Ψ(x) =
∫ x

0 ln(t+ 1)dt = x · ln(x+ 1)− x+ ln(x+ 1). It is easy to see that this function coincides with
the one defined by formula (1).

We note that Φ is not equivalent to Ψ on (0,∞) (there is no C > 0 such that Φ(x) ≤ Ψ(Cx)).

Example 2.20. Let Φ(x) =

{
x2 if 0 ≤ x < 1,

x3 if x ≥ 1.

We note that Φ is an N−function and LΦ(0,∞) 6= Lp(0,∞) for any p ≥ 1. However, LΦ(0, 1) =
L3(0, 1). Its conjugate function is given by

Ψ(x) =

{
x2

4 if 0 ≤ x < 1,
2

3
√

3
x3/2 + 1

4 −
2

3
√

3
if x ≥ 1.
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Орлич кеңiстiктерiндегi әлсiз жинақы жиындардың мысалдары

Мақалада Орлич кеңiстiктерiндегi салыстырмалы әлсiз жинақы жиындардың кейбiр мысалдары кел-
тiрiлген. Сондай-ақ осы мысалдардан туындайтын кейбiр нәтижелер көрсетiлген. Атап айтқанда,
кейбiр Орлич функциясының екiншiсiне қарағанда жылдамырақ өсетiнiн қамтамасыз ететiн крите-
рийлер берiлген (Т. Андо мағынасында). Сонымен қатар, егер LΦ Орлич кеңiстiгiнiң K шектелген
iшкi жиыны модуляр Φ-мен шектелмеген болса, онда K жиынының Φ-ға ұшiн қарағанда жылдам
өсетiн кез келген Ψ модуляры шекелмеген күйiнде қалуы мүмкiн екенi анықталған.

Кiлт сөздер: түйiндес (толықтырғыш) функциялар, салыстырмалы әлсiз жинақылық, Орлич кеңiстiк-
терi, N−функциялар.
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Примеры слабо компактных множеств в пространствах Орлича

В статье мы приводим ряд примеров относительно слабо компактных множеств в пространствах
Орлича. Кроме того, получены некоторые результаты, вытекающие из этих примеров. В частности,
получен критерий, который гарантирует, что одна функция Орлича возрастает быстрее, чем другая
(в смысле Т. Андо). Кроме того, показано, что если ограниченное подмножество K пространства
Орлича LΦ не ограничено модуляром Φ, то множество K может оставаться неограниченным для
любого модуляра Ψ, растущим быстрее, чем Φ.

Ключевые слова: сопряженные (дополнительные) функции, относительная слабая компактность, про-
странства Орлича, N -функции.
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