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On the nonlocal problems in time for subdiffusion equations
with the Riemann-Liouville derivatives

Initial boundary value problems with a time-nonlocal condition for a subdiffusion equation with the
Riemann-Liouville time-fractional derivatives are considered. The elliptical part of the equation is the
Laplace operator, defined in an arbitrary N— dimensional domain €2 with a sufficiently smooth boundary
0. The existence and uniqueness of the solution to the considered problems are proved. Inverse problems
are studied for determining the right-hand side of the equation and a function in a time-nonlocal condition.
The main research tool is the Fourier method, so the obtained results can be extended to subdiffusion
equations with a more general elliptic operator.
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Introduction

Let 8 < 0,0 < p <1 and a function ¢(¢) be defined on [0, 00). Denote by Jtﬁq(t) and 0/q(t) the
fractional integrals and the Riemann-Liouville derivatives, respectively, defined as (see, e.g. [1; 14]):

Ity = W) _ge, gty = Lo a(w), t>0.
r(—mo/ o i

Let Q be an arbitrary N — dimensional domain with a sufficiently smooth boundary 0.
Consider the following time-nonlocal problem:

Hu(z,t) — Au(z,t) = f(z,t), z€Q, 0<t<T; (1)
u(xat)‘ag =0; (2)
Jtp_lu(x,t)‘t:g = a%i_{% JP u(z )+ o(z), 0<E<T, zel (3)

N
where f(x,t), p(z) are given functions, « is a constant, £ is a fixed point and A = > % is the
k=1 "k

Laplace operator. This problem is also called the forward problem.
We note the following property of the Riemann-Liouville integrals, which simplifies the verification
of the initial condition (3) (see, e.g. [1; 104]):

. p—1 _ . 1—p
t1—1>I—I|-10Jt u(x,t) F(p)tl_lg_lot u(x,t).
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On the nonlocal problems...

From here, in particular, it follows that the solution to the forward problem can have a singularity
at zero t = 0 of order t*7!.

When solving the forward problem, we will first solve various auxiliary problems for equations with
the Riemann-Liouville derivative. We will also consider inverse problems. The definition of a classical
solution in all these cases is exactly the same. As an example, we present the definition of the classical
solution to the forward problem (1)-(3).

Definition 1. A function u(x,t) with the properties

1 ti=Pu(z,t) € C(Q x [0,T)),
2 u(z,t), Nu(x,t) € C(Q x (0,T))

and satisfying conditions (1)-(3) is called the solution to the forward problem.

The main goal of this work is to study the influence of parameter o on the correctness of problem
(1)—(3). In this regard, we will apply the Fourier method, which ensures the consideration of the
following spectral problem

{ — Av(x) = w(x), =z )

v(:z)bﬂ = 0.

Since the boundary 02 is sufficiently smooth, this problem has a complete in Ly (2) set of orthonormal
eigenfunctions {vg(x)}, £ > 1, and a countable set of positive eigenvalues {\;}, (see, e.g., [2-4]). It is
convenient to assume that 0 < Ay < Ay - -+ — +00.

We note that the method proposed here, based on the Fourier method, is applicable to equation
(1) with an arbitrary elliptic differential operator A(x, D), if only the corresponding spectral problem
has a complete system of orthonormal eigenfunctions in La(€2).

We also note that if a = 0, then the considering forward problem passes to the backward problem,
which is well-studied in work [5]. The backward problem for equation (1) with the Caputo derivative
was studied in [6-8|. Therefore, further we assume that a # 0. About backward problems, we note
only the following: These problems are not well-posed in the sense of Hadamard, i.e., a small change
in function ¢ in condition (3) leads to a large change in the solution.

As will be shown below, if « ¢ [0,1), then, under standard conditions on the given functions f
and ¢, problem (1)—(3) is unconditionally solvable and has a unique solution. If @ € (0,1), then the
solvability of the problem depends on whether there exists an eigenvalue Ay, of the spectral problem
(4) such that E,(—Ag,t”) = o and what is the multiplicity py of this eigenvalue Ay, (here E, is the
Mittag-Leffler function, see the definition below). If such an eigenvalue exists, then for the solution
to the problem to exist, it is necessary that each function f and ¢ satisfy pg additional orthogonality
conditions. Moreover, the solution of the problem will not be unique. If there is no eigenvalue Ay, for
which E,(—\g,t”) = a, then problem (1)-(3) is again unconditionally solvable.

We will also study two inverse problems for determining the right-hand side of the equation and
function ¢ in the nonlocal condition (3), respectively. In this case, for both inverse problems, as an
additional condition, we take the condition

u(z,0) =¥(z), 0<O<T, 0+#E z€. (5)

Here, to avoid the uniqueness problem, we will assume that o > 1. In the case of the inverse problem
of determining the right-hand side of the equation, we will assume that f depends only on the spatial
variables z: f = f(z).

Note that all these problems for equation (1) with the fractional Caputo derivative were considered
in [9]. However, in this work, the existence of a generalized solution to the problems is proved. The
convenience of studying the generalized solution by the Fourier method lies in the fact that when
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proving the convergence of the corresponding series, one can use the Parseval equality and reduce the
question of the convergence of functional series to the study of the convergence of numerical series.
When proving uniform convergence, this approach does not work. Therefore, in the present paper, we
apply the lemma of Krasnoselskii et al. [10], which reduces the study of uniform convergence to the
study of convergence in Ly(€2).

Usually, to determine the solution of non-stationary differential equations uniquely, an initial
condition is specified. However, in some cases, non-local conditions are used, for example, in the form
of an integral over time (see [11], in the case of diffusion equations, [12] for fractional-order equations),
or in the form of a relationship between the value of the solution at the initial and final times (see [13],
[14]). We also note papers [15], [16], where boundary value problems given with fractional derivatives
are studied.

As for the inverse problem of determining the function ¢, we point that such a problem was studied
only in the work [17] (with the exception of work [9], which was mentioned above). The authors of [17]
considered this problem for the subdiffusion equation, which includes the fractional Caputo derivative,
the elliptic part of which is a differential expression with two variables and constant coefficients.

The inverse problems of determining the right-hand side (the heat source density) of various
subdiffusion equations have been considered by many researchers (see, e.g., [18]). We note that the
inverse problem of determining the right-hand side of the equation given in an abstract form f(x,t)
has not yet been studied. The obtained results deal with the separated source term s(t)f(z). The
appropriate choice of the overdetermination depends on the choice whether the unknown is s(t) or
f(z). It should be noted that studies of inverse problems, where the function s(¢) is the unknown,
are relatively few (see, e.g., [18] in the case of fractional order equations and [19]-[21] in the case of
equations of integer order).

Many authors have considered an equation in which s(t) = 1 and f(z) is unknown (see, e.g., [22]-
[40]). Let us mention just a few of these works. The case of subdiffusion equations whose elliptic part
is an ordinary differential expression is considered in [22]-[28|. The authors of the papers [29]-[33]
studied subdiffusion equations in which the elliptic part is either a Laplace operator or a second-order
operator. The article [34] examined the inverse problem for an abstract subdiffusion equation with the
Cauchy condition. In article [34] and in most other articles, including [29]-[32], the Caputo derivative
is used as a fractional derivative. Recent articles [35]-36] are devoted to the inverse problem for the
subdiffusion equation with the Riemann-Liouville derivative.

In [33], [38], [39], non-self-adjoint differential operators (with non-local boundary conditions) were
taken as the elliptical part of a subdiffusion equation, and solutions to the inverse problem were found
in the form of bioorthagonal series.

In our previous work [40], we examined the inverse problem for the simultanecous determination
of the order of the Riemann-Liouville fractional derivative and the source function in the subdiffusion
equations. Using the classical Fourier method, the authors proved the uniqueness and existence of a
solution to this inverse problem.

We also note works [41]-[44] close to the given topic in which inverse problems of determining
boundary functions in problems of control of heat propagation processes are studied.

1 Preliminaries

In this section, we formulate the lemma noted above from the study by Krasnoselskii et al. [10],
the fundamental result of V.A. Il'in [3] on the convergence of the Fourier coefficients and recall some
properties of the Mittag-Leffler function.

Let A stand for the operator acting in La(Q2) as Ag(x) = —Ag(x) with the domain of definition
D(A) ={g € C*() : g(z) = 0,z € dQ}. We denote the self-adjoint extension of A in Ly(Q) by A.

~

To formulate the indicated lemma, it is necessary to introduce the power of operator A.
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Let o be an arbitrary real number. The power of operator A, acting in L2(2) is defined as:

= ZAZ grvk(x),  gr = (9,vk),

and the domain of definition has the form

o

D(A%) = {g € Ly(®) : 3 A|gul? < o0}.
k=1

For elements of D(A?) we introduce the norm
gl = Z A gkl = [1A7g| .

The following lemma plays an essential role in our reasoning (see, e.g., [10; 453]).
Lemma 1 . Let o > %. Then operator A~ continuously maps the space Lo(Q) into C(Q), and

moreover, the following estimate holds

IA~gllc@) < Cllgllz )

When proving the existence of solutions to forward and inverse problems, it is necessary to study
the convergence of series of the form

ZA el?, 7> 5 (

where hy, is the Fourier coefficient of function h(x). In the case of integers 7, the conditions for the
convergence of such series in terms of the membership of the function h(x) in classical Sobolev spaces
I/V2 (Q) were obtained in the work of V.A. Il'in [3]. To formulate these conditions, we introduce the class
W5 () as the closure in the W () norm of the set of all functions that are continuously differentiable
in 2 and vanish near the boundary of €.

So, if function h(z) satisfies the conditions

w\z
|z

h) e W Q) and k), AhG), - A K@) e @), (7)

then the number series (6) (we can take 7 = % + 1if N is even, and 7 = % if N is odd) converges.
Similarly, if in (6) we replace 7 by 7 + 2, then the convergence conditions will have the form:

w2

@) and @), Ah). . A ) i (@), 8)

h(z) € WQ[

Next, let us remind some properties of the Mittag-Lefller functions. For 0 < p < 1 and an arbitrary

complex number p, by E, ,(2) we denote the Mittag-Leffler function with two parameters (see, e.g. [1;
12]):

o

Ep,u(z) = nZ:;) m

Z’I’L

If the parameter p = 1, then we have the classical Mittag-LefHer function: E,(z) = E,1(2).

Mathematics series. Ne 2(106)/2022 21



R.R. Ashurov, Yu.E. Fayziev

In what follows, we need the asymptotic estimate of the Mittag-Leffler function with a sufficiently
large negative argument. The estimate has the form (see, e.g. [45; 136])

C
1+t
where p is an arbitrary complex number. This estimate essentially follows from the following asymptotic
estimate (see, e.g. [45; 134]):

[Epu(=t)] < t>0, (9)

t_l

E,u(—t) = —— +0(t72). 10
We will also use a coarser estimate with a positive number A and 0 < € < 1:
Ctr1
tP B, (=) < <OXThEeTl 11
‘ ool )|_1+)\tp_0 ) >0, (11)

which is easy to verify. Indeed, let t?A < 1, then t < A™/? and
tp—l — tp—sptep—l < )\e—ltsp—l‘
I[ftPA > 1, then A7 < t°° and
)\fltfl _ )\71+€>\75t71 < )\sfltspfl'
Proposition 1. The Mittag-Leffler function of negative argument £,(—x) is monotonically decreasing

function for all 0 < p < 1 and
0< E,(—z) <1 (12)

Proof of this proposition can be found, for example, in [9].
Proposition 2. Let p > 0 and A\ € C. Then for all positive ¢ one has
¢
/ 1P Epp(M)P)dn =t Ep 41 (XF), (13)
0

and
JP (tﬂlEp,p(AtP)> = E,(\t"). (14)

Proof of this proposition can be found, for example, in [45; 120].
2 Well-posedness of the forward problem

First, we consider the problem for the homogeneous equation:
Hw(z,t) — Aw(z,t) =0, z€Q 0<t<T;
w(x,t)’aﬂ = 0; (15)
Jf*lw(:n,t)’t_5 = a%ir% JP w(a t) + (), 0<E<T, zel,
= —

where () is a given function.

Theorem 1. Let function v (z) satisfy conditions (7).

If « ¢ [0,1) or a € (0,1), but E,(—A\x&”) # « for all & > 1, then problem (15) has a unique
solution, which has the form

w(z,t) = Z Ep(—AiZP) — Oétp_lEp’p(*)\ktp)/Uk‘(x)v (16)

where v, is the Fourier coefficient of function v (x).
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If o € (0,1) and E,(—A,&”) = o for some eigenvalue Ay, with the multiplicity pg, then we assume
that the orthogonality conditions

Y = (Qﬁ,vk) =0, ke Ky= {ko,k‘o +1,...., kg4 po— 1} (17)

are satisfied. Then solutions to problem (15) have the form

w(z,t) = ) e ;ﬁ’gp) _atp—lEp,p(—Aktp)vk(a;)+ D btP By p(— Mt )ug(x),  (18)
k¢ Ko ke Ko

with arbitrary coefficients by, k € K.
Proof. In accordance with the Fourier method, we will look for a solution to problem (15) in the
form of a series:

w(z,t) =Y Tp(t)ve(x),
k=1

where Ty (t), k > 1, are solutions to the nonlocal problems:

85Tk(t) + )\ka(t) =0, 0<t<T, (19)
-1 . -1
J? Tk(t)‘tzg = alim U™ Ti(t) + Uy (20)
Let us denote
lim J~ T (t) = by. (21)
t—0

Then, the unique solution of the equation (19), that satisfies the condition (21) has the form Tj(t) =
bitP " E, ,(—Akt?) (see, e.g. [46; 173], [1; 16], and [47]).
Equality (14) implies

T = By (—AiEP).
t=¢
Therefore, from the nonlocal condition (20) we obtain
b (Ep(=Mg") — @) = . (22)

By virtue of property (12) of the Mittag-Leffler function, E,(=Ax£”) # a for all « > 1 and oo < 0
(note, & > 0 and A; > 0). Therefore, from (22) we have

g,

b, =
T E (A —a

bkl < Caltnl, k>1, (23)

where C,, is a constant.

Let 0 < o < 1. Then according to Proposition 1, there is a unique A\g > 0 such that E,(—Ao&”) = a.
If there is no eigenvalue equal to \g , then the estimate in (23) holds with some constant Cy, > 0.

Thus, if a ¢ [0,1) or o € (0, 1), but A\p # Ag for all k£ > 1, then the formal solution of problem (15)
has the form (16).

Finally, let 0 < o < 1 and there is an eigenvalue equal to \g, having the multiplicity po: A\ = Ao
for k = ko, ko + 1, ..., ko + po — 1. Then the nonlocal problem (19), (20) has a solution if the boundary
function ¢ (x) satisfies the orthogonality conditions (17). Since ¥ = 0, then arbitrary numbers by are
solutions of equation (22). For all other k we have

Py,
Ep(—)\kfp) —a’

b = bk] < Calte|, k¢ Ko.
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Thus, the formal solution to problem (15) in this case has the form (18).

Let us show that the operators A = —A and 9/ can be applied term-by-term to series (16) and the
resulting series converges uniformly in (x,t) € Q x (0, T7; for series (18), this question is considered in
a similar way.

Let S;(z,t) be the partial sum of series (16). Then

J
—ASj(z,t) = Z )\kE (_)\wzp) — tp’lEp,p(—)\kt”)vk(m).
k=1 P k

Using the equality
Ao (@) = Agun(a),

with o > % and applying Lemma 1 for g(z) = —AS;(x,t), we have

J 2
— AS; (@, )2y < €S A2 LZ: VB, (= Mt?)| Lt > 0.
=28 Ol < O N | gy gy =at BoeM)] o 0>
Here, to estimate the Ly(€2) norm, we applied the Parseval’s equality.
Apply estimates (9) and (23) to obtain
AS 2 <C 2p—2 d )\2(U+1) ¢k -2 AT 2 _ N
| = ASj(x, V)|l < Cat Z k m < Cat Z AL e

k=1

Therefore, if ¢)(z) satisfies conditions (7), then —Awu(x,t) € C(Q x (0,T]). From equation (15) one has
O u(x,t) = Au(z,t), t >0, and the above estimates imply

|0f w(z, t)HC(Q <C, t_QZ)\ [xl?, ¢ >0,
k=1

which means 9/w(z,t) € C(2 x (0,T7)).
For S;(z,t), taking into account estimate (9), we obtain

J

[t S (e, 1) HC Z M lgwl?, 7>

k=1

Hence t!~Pw(z,t) € C( x [0,T]), which was required by the definition of the solution to problem (15).
The uniqueness of the solution to problem (15) is proved in exactly the same way as in work [9].
For the convenience of the reader, we present this proof.
It is sufficient to show that the solution to the problem:

Hw(z,t) — Aw(z,t) =0, z€Q, 0<t<T;
t)’anzo?

Jtpflwzvt :a%in(l)Jfflw(:L‘,t), 0<EST, zeQ,
%

Mize

is identically equal to zero.
Let w(t) = (w(x,t), vk(x)). Since operator A = —A is self-adjoint, one has

Ofwi(t) = (Ofw(z, ), vi(@)) = (Aw(z, 1), vi(x)) = (w(@,t), Avp(z)) = —Awi(t)
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or
afwk(t) = —\pwi(t) (24)
and the nonlocal condition implies
p—1 _ . p—1
Ji wk(t)‘tzg = 04%1_>0 JP T w(t). (25)

Let us denote %ir% J? g (t) = bg. Then the unique solution to the differential equation (24) with
—

this initial condition has the form wg(t) = bytP~1E, ,(—At?) (see, e.g.[46; 174]). From equality (14)
and the nonlocal conditions of (25) we obtain the following equation to find the unknown numbers by:
b (Ep(—Ak€P) — a) = 0. (26)
If o ¢ [0,1), then by virtue of the Proposition 1 we obtain by = 0 for all £ > 1. If a € (0,1), but
Ak # Ao for all k, then E,(=Ay£”) # o and therefore by, = 0. Hence, if o ¢ [0,1) or o € (0,1), but
A # Ao for all &k, we have all by are equal to zero, therefore wy(t) = 0. By virtue of completeness of
the set of eigenfunctions {vi(x)}, we conclude that w(x,t) = 0. Thus, problem (15) in this case has a
unique solution.
Now, suppose that a € (0,1) and A\, = Ao, k € Ko. Then E,(—A\;&”) = a, k € Ky and therefore
equation (26) has the following solution: by = 0 if k ¢ Ky and by, is an arbitrary number for k € K.
Thus, in this case, there is no uniqueness of the solution to problem (15). Theorem 1 is completely

proved.
Now consider the following auxiliary initial-boundary value problem:

Rw(z,t) — Aw(z,t) = f(z,t), z€Q, 0<t<T;

w(ac,t)|89 =0; (27)
lim J? 'w(z,t) =0, zeq.
t—0

We have the following theorem for this problem:
Theorem 2. Let t1=° f(z,t) as a function of x satisfy conditions (7) for all ¢ € [0, T]. Then problem
(27) has a unique solution and this solution has the representation

0o t

wie, ) =3 / P B (M) filt — )i | vi(), (25)

k=1 |

where fi(t) are the Fourier coefficients of function f(x,t): fx(t) = (f(-, 1), vk)-

Proof. It is known that the formal solution of the problem (27) has the form (28) (see, e.g. [46; 173],
[47]). In order to prove that function (28) is actually a solution to the problem, it remains to substantiate
this formal statement, i.e., to show that the operators A = —/A and 9/ can be applied term-by-term
to series (28) and the resulting series converges uniformly in (x,t) € Q x (0; T).

Let S;(z,t) be the partial sum of series (28). Then

» ¢
J
~08w0) = Y | [ 07 Byt — ndn| M),
Let 0 > %. Repeating the above reasoning based on Lemma 1, we arrive at
j ! ?
= 885 )2 < || 477 DA (@) / W By (~ M) filt = mdn|| <
= 0 c@
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. ¢ 2
j
S At unte) [0 BNVl | <
P 0 L2(®)
(apply Parseval’s equality to obtain)
j p 2
<O N | [ B Ve = mdn| >0,

Then, by inequality (11) with 0 < € < 1 one has

t

J 2
| = AS(@, )80 <CD Un‘”‘l(t — )P TIATEE (=) P St — n)ldn] ,
k=1

0
or, by the generalized Minkowski inequality,

1

t
2 2 N
|—Asj<x,t>|\%m)sc[/n€pl 0 1<Z|m— it~ >|2) dn] r=oses
0

Since t!77 f(x,t) as a function of z satisfies conditions (7) for all ¢ € [0, T], then
| = A8j(, 1)) < C, t>0.
Hence —Aw(z,t) € C(Q x [0,T]) and in particular w(z,t) € C(Q x [0,T7]).
J
Further, from equation (1) one has 9/'S;(t) = AS;(z,t)+ > fe(t)vg(x), t > 0. Therefore, from the
k=1

above reasoning, we have 0/w(z,t) € C’(ﬁ x (0, T])

The uniqueness of the solution can be proved by the standard technique based on completeness in
L2(Q2) of the set of eigenfunctions {vi(z)} (see, e.g. [5]).

Theorem 2 is completely proved.

Now let us move on to solving the main problem (1)—(3). Let () and t!=° f(x, ) (for all t € [0,T7])

satisfy conditions (7). If we put ¥ (z) = p(z)— JI~ Lz, t)‘ and w(z,t) and w(z,t) are the solutions

of problems (27) and (15) correspondingly, then function u(x,t) = w(z,t) + w(z,t) is a solution to
problem (1)—(3). Therefore, we can use the already proven assertions.
Thus, if a ¢ [0,1) or a € (0,1), but A # Ao for all £ > 1, then

u(z, 1) = ,; [Eﬁ’“_ ;k?,i)({_) ~ T B (= Met”) + wk@)} o (), (20)

where
t

wi(t) = / P By (M) it — ).
0

The uniqueness of the function u(z,t) follows from the uniqueness of the solutions w(z,t) and w(z,t).
If « € (0,1) and A\ = N\o, k € K, then

or — wi(€) VB, (—Mit?) + wk(t)] opl(z) + Z bit? B, o (—M\t?)ug(z). (30)

u(z,t) = E,(—M\elP) — 5

k¢ Ko [
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The orthogonality conditions (17) have the form

(o, 1) = (Jtpilw(%t) e k), k€ Koy Ko ={ko,ko+1,.....ko +po — 1}.

Instead of these conditions, we can take orthogonality conditions that is easy to verify:
(np,vk) =0, (f(-,t),vk) =0, forall t € [O,T], ke Ky, Ko = {ko, ko+1,.....ko+po — 1}. (31)

Thus, we have proved the main result of this section:

Theorem 3. Let o(x) and 1= f(x,t) (for all ¢t € [0,7]) satisfy conditions (7). If a ¢ [0,1) or
a € (0,1), but A\g # Ao for all £ > 1, then problem (1)-(3) has a unique solution and this solution has
the form (29).

If « € (0,1) and A\ = Ao, k € Kp, then we assume that the orthogonality conditions (31) are
satisfied. The solution of problem (1)—(3) has the form (30) with arbitrary coefficients by, k € K.

3 Inverse problem of determining the right-hand side of the equation

Let us consider the inverse problem
Hu(x,t) — Au(x,t) = f(z), 0<t<T; z€

u(m,t)|8Q = 0; (32)
Jtpflu(:ﬁ,t)}t_5 = oz}in% JP  u(z, ) +o(z), 0<E<T, zeQ,
= —

with the additional condition
w(x,0) =¥(z), 0<O<T, 0#¢ z€Q, (33)

where the unknown function f(z), characterizing the action of heat sources, does not depend on ¢ and
U(z),¢(x) are given functions, o > 1, £ and 6 are fixed points of (0, 7.

Note that if § = &, then the nonlocal condition in (32) coincides with the Cauchy condition
%LH[l) JP u(z, t) = @1 with some ;. In this case, this inverse problem was studied in [35].

Theorem 4. Let functions ¢(x), U(x) satisfy conditions (8). Then the inverse problem (32), (33) has
a unique solution {u(z,t), f(x)} and this solution has the following form

B a— E,(—=A\&P)
o= k:Z:l [ep_lEp,p(_)\kep)ngp,pH(_)\kf’)) T O0PEp p1(=A0P) [ — Ep(=Aré?)] it

. 071, (—~\b°)
0P=LE, (= A0P)EPE ) pi1 (= AREP) + 0P B oy 1 (—Ap0P) [ — Ep(—=Aip&P)] ok

]vkm, (34)

u(z,t) = ; [Eipf)(\k_éﬁti)a " ok — [ Eppi1 (—AEP)] + fktpEp,pH(—)\ktp)} vg(z).  (35)

Proof. Let us first show that the series (34) and (35) are formal solutions to the inverse problem.
Then we show the uniform convergence and differentiability of these series.

Suppose f(z) is known. Then the unique solution to problem (32) has the form (29). Since f(z)
does not depend on ¢, then, owing to formulas

t

wi(t) = fk/nplEp,p(—/\knp)dn
0

and (13), it is easy to verify that the formal solution of problem (32) has the form of (35).
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Due to the additional condition (33) and completeness of the system {vi(z)} we obtain:

Ep,p(_)‘kep)
Ep(_)\kfp) -«

After simple calculations, we get

ep_l[Sok - fképEp,erl(—)\kgp)] + fkepEp,erl(_)\kep) = \Ijk

a— E,(—A&P)
ep_lEp,p(_)‘kep)prp,p+l(_)‘kfp) + apEp,p—l-l(_/\kep)[O‘ - Ep(_)\kfp)]
" 0P~ 1E, ,(—\i0°)

0p = Ep p(=Ak0P)EP Ep i1 (= AkP) + 0P By i1 (= A0P) [ — Ep (= AkP)]
Therefore, series (34) is a formal solution of the inverse problem.

Let us prove the convergence of this series uniformly in 2 € €.
If Fj(z) is the partial sums of series (34), then by applying Lemma 1 as above, we have

fk = \I/k—l-

Ok = fr1 + fro-

||Fj(x )HC(Q)<Z)‘I€ [feq + fr2l® <QZAQUfmﬂLQZ)\%ka:2f1j+212], (36)
= k=1 k=1

where o > %. Since & > 0, then 0P~ E, ,(=\t0P)EPE, i1 (—Ap&P) > 0. Therefore,

J
I; < Z
k

1 or Epp+1

2 J 20 2
e\
)\ia‘\yk’Z: § : k ’ k’| 3
k=1 |9pEp,p+1(—)\k9p)|

a — Ey(— &)
(=Ak0°) e = By (=AkP)]

Apply the asymptotic estimate (10) to get

Ild < Z

Since 6 > 0 and « > 1, then 6°E, ,11(=Ap0”)[oc — E,(=Ap&”)] > 0. Therefore,

J
I < Z

By virtue of (10),

j
N
<CY N0 7 =20> —.
1+0 (—Mb?)~1))? kzl’“ 2

9p YE, o(—A\i0”) ? g AZTD | |2

0P 1E, (= A0P)EPE) pr1(—AiP)

Flaf =Y .
2 6P B o1 (—iéP) [

k=1

1
U+ o

J
SC )\T“!‘Q‘SO |2’ >
1+O (“Aetr) 1)) ; koYK 2

IQ]SZ

Thus, if p(x), ¥(z) satisfy conditions (8), then from estimates of I; ; and (36) we obtain f(z) €
@)

Further, the fact that function u(z,t) given by the series (35) is a solution to the inverse problem
is proved exactly as in Theorem 1.

The uniqueness of the solution follows from the completeness of the systems of eigenfunctions

{ve(z)} (see [9]).
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4 The inverse problem of determining function ¢ from the nonlocal condition

Let us assume that in forward problem (1)—(3) not only function u(x, t), but also function ¢(z) from
nonlocal condition (3) is unknown. As an additional condition for this inverse problem, we again take
condition (5). We note that if § = £ in this condition, then the nonlocal condition Jtp_lu(:v t)}t:5 =

a}ir% JP u(x, t) + o(x) passes to the Cauchy condition %ir% JP (e, t) = @1 (x) (with some @y (z)),
— —

which is investigated, for instance, in [35].

Theorem 5. Let t'=7 f(z,t) as a function of x satisfy conditions (7) for all ¢ € [0, 7] and let function
U(z) satisfy conditions (8). Then the inverse problem (1)—(3), (5) has a unique solution {u(x,t), ¢(x)}
and this solution has the form

- —\efP) —
; |:0p— )\kep) [\Ijk - wk(e)] + wk(£):| Uk(x)a (37)
Z [ - ;;g]; _)a 7 By p (=it + Wk(t)} vk (), (38)
=1
where .
) = [0 Bpal-Nerf )it = )i
0

Proof. The solution to problem (1)—(3) has the form (38) (see Theorem 3). Therefore, condition (5)
implies:

o - QOk—Wk(f) p—1 - P w ve(z) = T
u<x,e>_;[Ep(_Ak§p)_ae Enp=Xu8") +(0)| (o) = ¥(@).

Passing to the Fourier coefficients, we have

@k_wk(g) p—1 P
J— — >
PO g1, () + ) = s K2 L

or

o= 0 — 0]+ )

Thus, equality (37) is formally established. Now, we show that series (37) converges uniformly in z € €.
Let ®;(z) be the partial sum of series (37). Then applying Lemma 1 as above, we arrive at

! (—AkF) —a ’
19,601 ey < SN |5ty | B4~k )] <
< 3ZA2"[ pre EEM? )Akep) [\\Ifk!2+ !wk(e)!ﬂ + !wk(é)\z] = ol + 02+ 07, (39)

where o > &', Since |E,(—=\;&P) — a| < C, then by virtue of the asymptotic estimate (10) we obtain

A tDger2(q - g N
L) 2 < oY AT =20 >
(1+0((=M\07)71)) pot 2

¢}<Cz
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Similarly, by estimates (10) and (11) we have

0 2

J 20422712
/\ 0-1T4(1 —
( )2 /n”‘lEp,p(—Am”)fk(H—n)dn <
0

CZ —\p67)~1))

2

J C )\20+2
=2

0
n O — )P0 — )P fu (0 — n)|dn
= (14+O0((=Mb7)~ 20/

(by the generalized Minkowski inequality)

0 2
2
< C. /5" 16 —n)” (ZAT”SIQ ' P (0 — n)l) dn| <
0 k=1
j
<C AT-‘rQE tl—p t 2.
< Ce max E TP ()]
k=1
For CID;’-’, one has
. ¢ 2
J
<Y AT /n”‘lEp,p(—Akn”)fk(f—n)dn <
k=1 0
0 j 3 2
<C P — 160 —n)' =P (0 — dn| <cC AT|ttP
< / n)” (kz_: ' fi( n)\) n| < ﬁ%z P fi(t)
; —

Since functions ¥(x), f(z,t) satisfy conditions of the theorem, then by virtue of estimate (39), we
have p(x) € C(Q).

The fact that the function defined by equality (38) is a solution to problem (1)—(3) is proved
similarly to Theorem 3.

The uniqueness of the solution of the inverse problem follows from the completeness of the system
of eigenfunctions {vi(z)} in the space La(Q2) in the standard way.
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Amypos P.P. O noctpoennn perennit inmeitHoro mnddepeHmaaibHOr0 ypaBHEHUS ¢ IPOOHBIMI

IPOU3BOJHBIMU U OCTOsIHHBIMEI KO3 duimentamu / P.P. Amypos, F0.9. Qaiizues // YsMZK.
— 2017. — Ne 3. — C. 23-41.

P.P. Amypos!, 10.3. ®aiisues?

L @s6excman Pouavim akademuacorvry, Mamemamura unemumymuo, Tawxenm, Osbexcmar;
2 .
Osbexcman yammok yHusepcumemi, Tawkenm, O©36excman

Puman-JInyBunaab TybIHAbICH 0ap cyOoauddys3usa TeHjaeysiepi yoiiH

YaKBbIT OoiibIHIIIA JIOKaJIbJIbIEMEC €ecellTep TypaJibl

VaxkprT 60tibraITA Goutek perti Puman-JIluyBusas TybiHapLIaps! 6ap cydanddy3ust TeHIeyIepi YIITiH yaKbIT
OOMBIHIIIA JIOKAJIbIbIEMEC IapThl 6ap OacTANKBI-IETTIK ecernTep KapacThIpbLIFaH. TeHJIey iH 3JIIUIICTIK
Geutiri Jf) »KeTKimiKTi Teric mekapacbl 6ap ke3 keiaren N — esmemMi {2 oOJIBICBIHIA aHbIKTa FaH Jlamiac
onepaTopbia 6epei. KapacThIpbLIbIT OTBIPFaH €CemTep/IiH, menmiMiaiH 6ap 60Tybl MEH >KAJTFBI3IBIFI 1916
neuzi. Tengeymiy OH 2KarblH 2KOHE yaKbIT OOUBIHINA JIOKAJIbIbIEMEC MAPTTHl (DYHKIUSIHBI aHBIKTAY YIIiH
Kepi ecenrrep 3eprreiai. Oypbe d1ici 3epTTeyiH Herisri KypaJsbl O0JIbIT TaObLIAIbI, COHJIBIKTAH AJILIHFAH
HOTHUKEJIEP aHAFYPJIBIM YKAJIIIhI SJUIAIICTIK OmepaTopsl bap cybanddy3ns TeHaeyiepine Tapaiybl MyMKiH.
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Kiam cesdep: yakpT GOMBIHINIA JIOKaJIbIbIEMeC ecenTep, Puman-JInyBuiib TybIHABLIAPEI, CyOmuddy3ust
TeHeyi, Kepi ecenrep.

P.P. Amypos!, 10.3. ®aiizues?

L nemumym mamemamuru B.M. Pomanoscrozo Axademuu nayx Yabexucmana, Tawwenm, Yabexucman;
2 Hayuonarvrod yrusepcumem Yabexucmana, Tawsenm, Vabexucman

O HeJIOKAJIbHBIX 33J[avYax 110 BpeMeHU /JIJisi ypaBHEHUt
cyonnddy3un ¢ npousBoaubiMu Pumana—JInyBuiiasa

PaccMoTpennl HauabHO-KpaeBble 33/1a4n ¢ HEJIOKAJIbHBIM 110 BPEMEHU YCJIOBUEM Jjid ypaBHeHusi cyOud-
dy3un ¢ IpoGHBIME 110 BPEMEHM NpOomM3BOAHBIMU Pumana—JluyBuiuis. Dimnrudeckas 4acTb ypaBHEHUsI
npejicTaBiisieT coboit oneparop Jlamiaca, onpejeseHHbI B TPOU3BOIBHON N-pasMepHoit obiactu ¢ Jo-
CTaTOYHO IIaAKo# rpanuneit 0f2. JlokazaHbl CyNECTBOBAHNE U €JUHCTBEHHOCTD PEIIEHUsI PACCMATPUBAEMBIX
zagaq. VceenoBanbl 0OpaTHBIE 387141 JIJIsl ONIPEJIEIeHNs] TPABOH JacTh ypaBHeHHs U (DYHKIWUU B HEJIO-
KaJLHOM BO BpeMeHH ycjioBun. OCHOBHBIM WHCTPYMEHTOM UCCJIEIOBAHUS sABJIsieTcsi MeToj, Pypbe, 09ToMy
MOJTyYEeHHBbIE PE3YJIbTaThl MOTYT OBITH PACIPOCTPAHEHBI HA ypaBHeHUsi cyoauddysun ¢ 6osee oOIIUM 3J1-
JINTITAIECKUM OIIEPATOPOM.

Karoueswie caosa: HeJIOKAJIbHBIE 10 BPEMEHHU 3aJla4du, Ipou3Boianble Pumana-JIuyBumiuis, ypasuenue cy6-
muddysun, obpaTHBIE 3a1a9H.
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