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On the nonlocal problems in time for subdiffusion equations
with the Riemann-Liouville derivatives

Initial boundary value problems with a time-nonlocal condition for a subdiffusion equation with the
Riemann-Liouville time-fractional derivatives are considered. The elliptical part of the equation is the
Laplace operator, defined in an arbitrary N− dimensional domain Ω with a sufficiently smooth boundary
∂Ω. The existence and uniqueness of the solution to the considered problems are proved. Inverse problems
are studied for determining the right-hand side of the equation and a function in a time-nonlocal condition.
The main research tool is the Fourier method, so the obtained results can be extended to subdiffusion
equations with a more general elliptic operator.
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Introduction

Let β < 0, 0 < ρ < 1 and a function q(t) be defined on [0,∞). Denote by Jβt q(t) and ∂ρt q(t) the
fractional integrals and the Riemann-Liouville derivatives, respectively, defined as (see, e.g. [1; 14]):

Jβt q(t) =
1

Γ(−β)

t∫
0

q(ξ)

(t− ξ)β+1
dξ, ∂ρt q(t) =

d

dt
Jρ−1
t q(t), t > 0.

Let Ω be an arbitrary N – dimensional domain with a sufficiently smooth boundary ∂Ω.
Consider the following time-nonlocal problem:

∂ρt u(x, t)−4u(x, t) = f(x, t), x ∈ Ω, 0 < t ≤ T ; (1)

u(x, t)
∣∣
∂Ω

= 0; (2)

Jρ−1
t u(x, t)

∣∣
t=ξ

= α lim
t→0

Jρ−1
t u(x, t) + ϕ(x), 0 < ξ ≤ T, x ∈ Ω, (3)

where f(x, t), ϕ(x) are given functions, α is a constant, ξ is a fixed point and 4 =
N∑
k=1

∂2

∂x2k
is the

Laplace operator. This problem is also called the forward problem.
We note the following property of the Riemann-Liouville integrals, which simplifies the verification

of the initial condition (3) (see, e.g. [1; 104]):

lim
t→+0

Jρ−1
t u(x, t) = Γ(ρ) lim

t→+0
t1−ρu(x, t).
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On the nonlocal problems...

From here, in particular, it follows that the solution to the forward problem can have a singularity
at zero t = 0 of order tρ−1.

When solving the forward problem, we will first solve various auxiliary problems for equations with
the Riemann-Liouville derivative. We will also consider inverse problems. The definition of a classical
solution in all these cases is exactly the same. As an example, we present the definition of the classical
solution to the forward problem (1)–(3).

Definition 1. A function u(x, t) with the properties

1 t1−ρu(x, t) ∈ C(Ω× [0, T ]),

2 ∂ρt u(x, t), 4u(x, t) ∈ C(Ω× (0, T ])

and satisfying conditions (1)–(3) is called the solution to the forward problem.
The main goal of this work is to study the influence of parameter α on the correctness of problem

(1)–(3). In this regard, we will apply the Fourier method, which ensures the consideration of the
following spectral problem {

−4v(x) = λv(x), x ∈ Ω;

v(x)
∣∣
∂Ω

= 0.
(4)

Since the boundary ∂Ω is sufficiently smooth, this problem has a complete in L2(Ω) set of orthonormal
eigenfunctions {vk(x)}, k ≥ 1, and a countable set of positive eigenvalues {λk}, (see, e.g., [2–4]). It is
convenient to assume that 0 < λ1 ≤ λ2 · ·· → +∞.

We note that the method proposed here, based on the Fourier method, is applicable to equation
(1) with an arbitrary elliptic differential operator A(x,D), if only the corresponding spectral problem
has a complete system of orthonormal eigenfunctions in L2(Ω).

We also note that if α = 0, then the considering forward problem passes to the backward problem,
which is well-studied in work [5]. The backward problem for equation (1) with the Caputo derivative
was studied in [6–8]. Therefore, further we assume that α 6= 0. About backward problems, we note
only the following: These problems are not well-posed in the sense of Hadamard, i.e., a small change
in function ϕ in condition (3) leads to a large change in the solution.

As will be shown below, if α /∈ [0, 1), then, under standard conditions on the given functions f
and ϕ, problem (1)–(3) is unconditionally solvable and has a unique solution. If α ∈ (0, 1), then the
solvability of the problem depends on whether there exists an eigenvalue λk0 of the spectral problem
(4) such that Eρ(−λk0tρ) = α and what is the multiplicity p0 of this eigenvalue λk0 (here Eρ is the
Mittag-Leffler function, see the definition below). If such an eigenvalue exists, then for the solution
to the problem to exist, it is necessary that each function f and ϕ satisfy p0 additional orthogonality
conditions. Moreover, the solution of the problem will not be unique. If there is no eigenvalue λk0 for
which Eρ(−λk0tρ) = α, then problem (1)–(3) is again unconditionally solvable.

We will also study two inverse problems for determining the right-hand side of the equation and
function ϕ in the nonlocal condition (3), respectively. In this case, for both inverse problems, as an
additional condition, we take the condition

u(x, θ) = Ψ(x), 0 < θ ≤ T, θ 6= ξ, x ∈ Ω. (5)

Here, to avoid the uniqueness problem, we will assume that α ≥ 1. In the case of the inverse problem
of determining the right-hand side of the equation, we will assume that f depends only on the spatial
variables x: f = f(x).

Note that all these problems for equation (1) with the fractional Caputo derivative were considered
in [9]. However, in this work, the existence of a generalized solution to the problems is proved. The
convenience of studying the generalized solution by the Fourier method lies in the fact that when
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proving the convergence of the corresponding series, one can use the Parseval equality and reduce the
question of the convergence of functional series to the study of the convergence of numerical series.
When proving uniform convergence, this approach does not work. Therefore, in the present paper, we
apply the lemma of Krasnoselskii et al. [10], which reduces the study of uniform convergence to the
study of convergence in L2(Ω).

Usually, to determine the solution of non-stationary differential equations uniquely, an initial
condition is specified. However, in some cases, non-local conditions are used, for example, in the form
of an integral over time (see [11], in the case of diffusion equations, [12] for fractional-order equations),
or in the form of a relationship between the value of the solution at the initial and final times (see [13],
[14]). We also note papers [15], [16], where boundary value problems given with fractional derivatives
are studied.

As for the inverse problem of determining the function ϕ, we point that such a problem was studied
only in the work [17] (with the exception of work [9], which was mentioned above). The authors of [17]
considered this problem for the subdiffusion equation, which includes the fractional Caputo derivative,
the elliptic part of which is a differential expression with two variables and constant coefficients.

The inverse problems of determining the right-hand side (the heat source density) of various
subdiffusion equations have been considered by many researchers (see, e.g., [18]). We note that the
inverse problem of determining the right-hand side of the equation given in an abstract form f(x, t)
has not yet been studied. The obtained results deal with the separated source term s(t)f(x). The
appropriate choice of the overdetermination depends on the choice whether the unknown is s(t) or
f(x). It should be noted that studies of inverse problems, where the function s(t) is the unknown,
are relatively few (see, e.g., [18] in the case of fractional order equations and [19]–[21] in the case of
equations of integer order).

Many authors have considered an equation in which s(t) ≡ 1 and f(x) is unknown (see, e.g., [22]–
[40]). Let us mention just a few of these works. The case of subdiffusion equations whose elliptic part
is an ordinary differential expression is considered in [22]–[28]. The authors of the papers [29]–[33]
studied subdiffusion equations in which the elliptic part is either a Laplace operator or a second-order
operator. The article [34] examined the inverse problem for an abstract subdiffusion equation with the
Cauchy condition. In article [34] and in most other articles, including [29]–[32], the Caputo derivative
is used as a fractional derivative. Recent articles [35]–[36] are devoted to the inverse problem for the
subdiffusion equation with the Riemann-Liouville derivative.

In [33], [38], [39], non-self-adjoint differential operators (with non-local boundary conditions) were
taken as the elliptical part of a subdiffusion equation, and solutions to the inverse problem were found
in the form of bioorthagonal series.

In our previous work [40], we examined the inverse problem for the simultaneous determination
of the order of the Riemann-Liouville fractional derivative and the source function in the subdiffusion
equations. Using the classical Fourier method, the authors proved the uniqueness and existence of a
solution to this inverse problem.

We also note works [41]–[44] close to the given topic in which inverse problems of determining
boundary functions in problems of control of heat propagation processes are studied.

1 Preliminaries

In this section, we formulate the lemma noted above from the study by Krasnoselskii et al. [10],
the fundamental result of V.A. Il’in [3] on the convergence of the Fourier coefficients and recall some
properties of the Mittag-Leffler function.

Let A stand for the operator acting in L2(Ω) as Ag(x) = −4g(x) with the domain of definition
D(A) = {g ∈ C2(Ω) : g(x) = 0, x ∈ ∂Ω}. We denote the self-adjoint extension of A in L2(Ω) by Â.

To formulate the indicated lemma, it is necessary to introduce the power of operator Â.
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Let σ be an arbitrary real number. The power of operator A, acting in L2(Ω) is defined as:

Âσg(x) =

∞∑
k=1

λσk gk vk(x), gk = (g, vk),

and the domain of definition has the form

D(Âσ) = {g ∈ L2(Ω) :
∞∑
k=1

λ2σ
k |gk|2 <∞}.

For elements of D(Âσ) we introduce the norm

||g||2σ =
∞∑
k=1

λ2σ
k |gk|2 = ||Âσg||2.

The following lemma plays an essential role in our reasoning (see, e.g., [10; 453]).
Lemma 1 . Let σ > N

4 . Then operator Â−σ continuously maps the space L2(Ω) into C(Ω), and
moreover, the following estimate holds

‖Â−σg‖C(Ω) ≤ C‖g‖L2(Ω).

When proving the existence of solutions to forward and inverse problems, it is necessary to study
the convergence of series of the form

∞∑
k=1

λτk|hk|2, τ >
N

2
, (6)

where hk is the Fourier coefficient of function h(x). In the case of integers τ , the conditions for the
convergence of such series in terms of the membership of the function h(x) in classical Sobolev spaces
W k

2 (Ω) were obtained in the work of V.A. Il’in [3]. To formulate these conditions, we introduce the class
Ẇ 1

2 (Ω) as the closure in the W 1
2 (Ω) norm of the set of all functions that are continuously differentiable

in Ω and vanish near the boundary of Ω.
So, if function h(x) satisfies the conditions

h(x) ∈W
[
N
2

]
+1

2 (Ω), and h(x), 4h(x), · · ·, 4
[
N
4

]
h(x) ∈ Ẇ 1

2 (Ω), (7)

then the number series (6) (we can take τ = N
2 + 1 if N is even, and τ = N+1

2 if N is odd) converges.
Similarly, if in (6) we replace τ by τ + 2, then the convergence conditions will have the form:

h(x) ∈W
[
N
2

]
+3

2 (Ω), and h(x), 4h(x), · · ·, 4
[
N
4

]
+1h(x) ∈ Ẇ 1

2 (Ω). (8)

Next, let us remind some properties of the Mittag-Leffler functions. For 0 < ρ < 1 and an arbitrary
complex number µ, by Eρ,µ(z) we denote the Mittag-Leffler function with two parameters (see, e.g. [1;
12]):

Eρ,µ(z) =
∞∑
n=0

zn

Γ(ρn+ µ)
.

If the parameter µ = 1, then we have the classical Mittag-Leffler function: Eρ(z) = Eρ,1(z).
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In what follows, we need the asymptotic estimate of the Mittag-Leffler function with a sufficiently
large negative argument. The estimate has the form (see, e.g. [45; 136])

|Eρ,µ(−t)| ≤ C

1 + t
, t > 0, (9)

where µ is an arbitrary complex number. This estimate essentially follows from the following asymptotic
estimate (see, e.g. [45; 134]):

Eρ,µ(−t) =
t−1

Γ(µ− ρ)
+O

(
t−2
)
. (10)

We will also use a coarser estimate with a positive number λ and 0 < ε < 1:

|tρ−1Eρ,ρ(−λtρ)| ≤
Ctρ−1

1 + λtρ
≤ Cλε−1tερ−1, t > 0, (11)

which is easy to verify. Indeed, let tρλ < 1, then t < λ−1/ρ and

tρ−1 = tρ−ερtερ−1 < λε−1tερ−1.

If tρλ ≥ 1, then λ−ε ≤ tερ and

λ−1t−1 = λ−1+ελ−εt−1 ≤ λε−1tερ−1.

Proposition 1. The Mittag-Leffler function of negative argument Eρ(−x) is monotonically decreasing
function for all 0 < ρ < 1 and

0 < Eρ(−x) < 1. (12)

Proof of this proposition can be found, for example, in [9].
Proposition 2. Let ρ > 0 and λ ∈ C. Then for all positive t one has

t∫
0

ηρ−1Eρ,ρ(λη
ρ)dη = tρEρ,ρ+1(λtρ), (13)

and
Jρ−1
t

(
tρ−1Eρ,ρ(λt

ρ)

)
= Eρ(λt

ρ). (14)

Proof of this proposition can be found, for example, in [45; 120].

2 Well-posedness of the forward problem

First, we consider the problem for the homogeneous equation:
∂ρt w(x, t)−4w(x, t) = 0, x ∈ Ω 0 < t ≤ T ;

w(x, t)
∣∣
∂Ω

= 0;

Jρ−1
t w(x, t)

∣∣
t=ξ

= α lim
t→0

Jρ−1
t w(x, t) + ψ(x), 0 < ξ ≤ T, x ∈ Ω,

(15)

where ψ(x) is a given function.
Theorem 1. Let function ψ(x) satisfy conditions (7).
If α /∈ [0, 1) or α ∈ (0, 1), but Eρ(−λkξρ) 6= α for all k ≥ 1, then problem (15) has a unique

solution, which has the form

w(x, t) =

∞∑
k=1

ψk
Eρ(−λkξρ)− α

tρ−1Eρ,ρ(−λktρ)vk(x), (16)

where ψk is the Fourier coefficient of function ψ(x).
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If α ∈ (0, 1) and Eρ(−λk0ξρ) = α for some eigenvalue λk0 with the multiplicity p0, then we assume
that the orthogonality conditions

ψk = (ψ, vk) = 0, k ∈ K0 = {k0, k0 + 1, ...., k0 + p0 − 1} (17)

are satisfied. Then solutions to problem (15) have the form

w(x, t) =
∑
k/∈K0

ψk
Eρ(−λkξρ)− α

tρ−1Eρ,ρ(−λktρ)vk(x) +
∑
k∈K0

bkt
ρ−1Eρ,ρ(−λktρ)vk(x), (18)

with arbitrary coefficients bk, k ∈ K0.
Proof. In accordance with the Fourier method, we will look for a solution to problem (15) in the

form of a series:

w(x, t) =
∞∑
k=1

Tk(t)vk(x),

where Tk(t), k ≥ 1, are solutions to the nonlocal problems:

∂ρt Tk(t) + λkTk(t) = 0, 0 < t ≤ T, (19)

Jρ−1
t Tk(t)

∣∣
t=ξ

= α lim
t→0

Jρ−1
t Tk(t) + ψk. (20)

Let us denote
lim
t→0

Jρ−1
t Tk(t) = bk. (21)

Then, the unique solution of the equation (19), that satisfies the condition (21) has the form Tk(t) =
bkt

ρ−1Eρ,ρ(−λktρ) (see, e.g. [46; 173], [1; 16], and [47]).
Equality (14) implies

Jρ−1
t Tk(t)

∣∣∣∣
t=ξ

= bkEρ(−λkξρ).

Therefore, from the nonlocal condition (20) we obtain

bk
(
Eρ(−λkξρ)− α

)
= ψk. (22)

By virtue of property (12) of the Mittag-Leffler function, Eρ(−λkξρ) 6= α for all α ≥ 1 and α < 0
(note, ξ > 0 and λk > 0). Therefore, from (22) we have

bk =
ψk

Eρ(−λkξρ)− α
, |bk| ≤ Cα|ψk|, k ≥ 1, (23)

where Cα is a constant.
Let 0 < α < 1. Then according to Proposition 1, there is a unique λ0 > 0 such that Eρ(−λ0ξ

ρ) = α.
If there is no eigenvalue equal to λ0 , then the estimate in (23) holds with some constant Cα > 0.

Thus, if α /∈ [0, 1) or α ∈ (0, 1), but λk 6= λ0 for all k ≥ 1, then the formal solution of problem (15)
has the form (16).

Finally, let 0 < α < 1 and there is an eigenvalue equal to λ0, having the multiplicity p0: λk = λ0

for k = k0, k0 + 1, ..., k0 + p0 − 1. Then the nonlocal problem (19), (20) has a solution if the boundary
function ψ(x) satisfies the orthogonality conditions (17). Since ψk = 0, then arbitrary numbers bk are
solutions of equation (22). For all other k we have

bk =
ψk

Eρ(−λkξρ)− α
, |bk| ≤ Cα|ψk|, k /∈ K0.
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Thus, the formal solution to problem (15) in this case has the form (18).
Let us show that the operators A = −4 and ∂ρt can be applied term-by-term to series (16) and the

resulting series converges uniformly in (x, t) ∈ Ω× (0, T ]; for series (18), this question is considered in
a similar way.

Let Sj(x, t) be the partial sum of series (16). Then

−4Sj(x, t) =

j∑
k=1

λk
ψk

Eρ(−λkξρ)− α
tρ−1Eρ,ρ(−λktρ)vk(x).

Using the equality
Â−σvk(x) = λ−σk vk(x),

with σ > N
4 and applying Lemma 1 for g(x) = −4Sj(x, t), we have

|| − 4Sj(x, t)||2C(Ω) ≤ C
j∑

k=1

λ
2(σ+1)
k

∣∣∣∣ ψk
Eρ(−λkξρ)− α

tρ−1Eρ,ρ(−λktρ)
∣∣∣∣2 , t > 0.

Here, to estimate the L2(Ω) norm, we applied the Parseval’s equality.
Apply estimates (9) and (23) to obtain

|| − 4Sj(x, t)||2C(Ω) ≤ Cαt
2ρ−2

j∑
k=1

λ
2(σ+1)
k

∣∣∣∣ ψk
1 + λktρ

∣∣∣∣2 ≤ Cαt−2
j∑

k=1

λτk|ψk|2, τ = 2σ >
N

2
.

Therefore, if ψ(x) satisfies conditions (7), then −4u(x, t) ∈ C(Ω× (0, T ]). From equation (15) one has
∂ρt u(x, t) = 4u(x, t), t > 0, and the above estimates imply

||∂ρt w(x, t)||2C(Ω) ≤ Cαt
−2

j∑
k=1

λτk|ψk|2, t > 0,

which means ∂ρt w(x, t) ∈ C(Ω× (0, T ]).
For Sj(x, t), taking into account estimate (9), we obtain

||t1−ρSj(x, t)||2C(Ω) ≤ Cα
j∑

k=1

λτk|ψk|2, τ >
N

2
.

Hence t1−ρw(x, t) ∈ C(Ω× [0, T ]), which was required by the definition of the solution to problem (15).
The uniqueness of the solution to problem (15) is proved in exactly the same way as in work [9].

For the convenience of the reader, we present this proof.
It is sufficient to show that the solution to the problem:

∂ρt w(x, t)−4w(x, t) = 0, x ∈ Ω, 0 < t ≤ T ;

w(x, t)
∣∣
∂Ω

= 0;

Jρ−1
t w(x, t)

∣∣
t=ξ

= α lim
t→0

Jρ−1
t w(x, t), 0 < ξ ≤ T, x ∈ Ω,

is identically equal to zero.
Let wk(t) = (w(x, t), vk(x)). Since operator A = −4 is self-adjoint, one has

∂ρt wk(t) = (∂ρt w(x, t), vk(x)) = (Aw(x, t), vk(x)) = (w(x, t), Avk(x)) = −λkwk(t)
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or
∂ρt wk(t) = −λkwk(t) (24)

and the nonlocal condition implies

Jρ−1
t wk(t)

∣∣
t=ξ

= α lim
t→0

Jρ−1
t wk(t). (25)

Let us denote lim
t→0

Jρ−1
t wk(t) = bk. Then the unique solution to the differential equation (24) with

this initial condition has the form wk(t) = bkt
ρ−1Eρ,ρ(−λktρ) (see, e.g.[46; 174]). From equality (14)

and the nonlocal conditions of (25) we obtain the following equation to find the unknown numbers bk:

bk
(
Eρ(−λkξρ)− α

)
= 0. (26)

If α /∈ [0, 1), then by virtue of the Proposition 1 we obtain bk = 0 for all k ≥ 1. If α ∈ (0, 1), but
λk 6= λ0 for all k, then Eρ(−λkξρ) 6= α and therefore bk = 0. Hence, if α /∈ [0, 1) or α ∈ (0, 1), but
λk 6= λ0 for all k, we have all bk are equal to zero, therefore wk(t) = 0. By virtue of completeness of
the set of eigenfunctions {vk(x)}, we conclude that w(x, t) ≡ 0. Thus, problem (15) in this case has a
unique solution.

Now, suppose that α ∈ (0, 1) and λk = λ0, k ∈ K0. Then Eρ(−λkξρ) = α, k ∈ K0 and therefore
equation (26) has the following solution: bk = 0 if k /∈ K0 and bk is an arbitrary number for k ∈ K0.
Thus, in this case, there is no uniqueness of the solution to problem (15). Theorem 1 is completely
proved.

Now consider the following auxiliary initial-boundary value problem:
∂ρt ω(x, t)−4ω(x, t) = f(x, t), x ∈ Ω, 0 < t ≤ T ;

ω(x, t)
∣∣
∂Ω

= 0;

lim
t→0

Jρ−1
t ω(x, t) = 0, x ∈ Ω.

(27)

We have the following theorem for this problem:
Theorem 2. Let t1−ρf(x, t) as a function of x satisfy conditions (7) for all t ∈ [0, T ]. Then problem

(27) has a unique solution and this solution has the representation

ω(x, t) =
∞∑
k=1

 t∫
0

ηρ−1Eρ,ρ(−λkηρ)fk(t− η)dη

 vk(x), (28)

where fk(t) are the Fourier coefficients of function f(x, t): fk(t) = (f(·, t), vk).
Proof. It is known that the formal solution of the problem (27) has the form (28) (see, e.g. [46; 173],

[47]). In order to prove that function (28) is actually a solution to the problem, it remains to substantiate
this formal statement, i.e., to show that the operators A = −4 and ∂ρt can be applied term-by-term
to series (28) and the resulting series converges uniformly in (x, t) ∈ Ω× (0;T ].

Let Sj(x, t) be the partial sum of series (28). Then

−4Sj(x, t) =

j∑
k=1

 t∫
0

ηρ−1Eρ,ρ(−λkηρ)fk(t− η)dη

λkvk(x).

Let σ > N
4 . Repeating the above reasoning based on Lemma 1, we arrive at

|| − 4Sj(x, t)||2C(Ω) ≤

∥∥∥∥∥∥Â−σ
j∑

k=1

λσ+1
k vk(x)

t∫
0

ηρ−1Eρ,ρ(−λkηρ)fk(t− η)dη

∥∥∥∥∥∥
2

C(Ω)

≤
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≤

∥∥∥∥∥∥
j∑

k=1

λσ+1
k vk(x)

t∫
0

ηρ−1Eρ,ρ(−λkηρ)fk(t− η)dη

∥∥∥∥∥∥
2

L2(Ω)

≤

(apply Parseval’s equality to obtain)

≤ C
j∑

k=1

λ
2(σ+1)
k

∣∣∣∣∣∣
t∫

0

ηρ−1Eρ,ρ(−λkηρ)fk(t− η)dη

∣∣∣∣∣∣
2

, t > 0.

Then, by inequality (11) with 0 < ε < 1 one has

|| − 4Sj(x, t)||2C(Ω) ≤ C
j∑

k=1

[ t∫
0

ηερ−1(t− η)ρ−1λσ+ε
k |(t− η)1−ρfk(t− η)|dη

]2

,

or, by the generalized Minkowski inequality,

|| − 4Sj(x, t)||2C(Ω) ≤ C
[ t∫

0

ηερ−1(t− η)ρ−1

( j∑
k=1

|λτk(t− η)1−ρfk(t− η)|2
) 1

2

dη

]2

, τ = σ + ε >
N

2
.

Since t1−ρf(x, t) as a function of x satisfies conditions (7) for all t ∈ [0, T ], then

|| − 4Sj(x, t)||2C(Ω) ≤ C, t ≥ 0.

Hence −4ω(x, t) ∈ C
(
Ω× [0, T ]

)
and in particular ω(x, t) ∈ C

(
Ω× [0, T ]

)
.

Further, from equation (1) one has ∂ρt Sj(t) = 4Sj(x, t) +
j∑

k=1

fk(t)vk(x), t > 0. Therefore, from the

above reasoning, we have ∂ρt ω(x, t) ∈ C
(
Ω× (0, T ]

)
.

The uniqueness of the solution can be proved by the standard technique based on completeness in
L2(Ω) of the set of eigenfunctions {vk(x)} (see, e.g. [5]).

Theorem 2 is completely proved.
Now let us move on to solving the main problem (1)–(3). Let ϕ(x) and t1−ρf(x, t) (for all t ∈ [0, T ])

satisfy conditions (7). If we put ψ(x) = ϕ(x)− Jρ−1
t ω(x, t)

∣∣∣
t=ξ

and ω(x, t) and w(x, t) are the solutions

of problems (27) and (15) correspondingly, then function u(x, t) = ω(x, t) + w(x, t) is a solution to
problem (1)–(3). Therefore, we can use the already proven assertions.

Thus, if α /∈ [0, 1) or α ∈ (0, 1), but λk 6= λ0 for all k ≥ 1, then

u(x, t) =

∞∑
k=1

[
ϕk − ωk(ξ)

Eρ(−λkξρ)− α
tρ−1Eρ,ρ(−λktρ) + ωk(t)

]
vk(x), (29)

where

ωk(t) =

t∫
0

ηρ−1Eρ,ρ(−λkηρ)fk(t− η)dη.

The uniqueness of the function u(x, t) follows from the uniqueness of the solutions ω(x, t) and w(x, t).
If α ∈ (0, 1) and λk = λ0, k ∈ K0, then

u(x, t) =
∑
k/∈K0

[
ϕk − ωk(ξ)

Eρ(−λkξρ)− α
tρ−1Eρ,ρ(−λktρ) + ωk(t)

]
vk(x) +

∑
k∈K0

bkt
ρ−1Eρ,ρ(−λktρ)vk(x). (30)
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The orthogonality conditions (17) have the form

(ϕ, vk) = (Jρ−1
t ω(x, t)

∣∣∣
t=ξ

, vk), k ∈ K0; K0 = {k0, k0 + 1, ...., k0 + p0 − 1}.

Instead of these conditions, we can take orthogonality conditions that is easy to verify:

(ϕ, vk) = 0, (f(·, t), vk) = 0, for all t ∈ [0, T ], k ∈ K0; K0 = {k0, k0 + 1, ...., k0 + p0 − 1}. (31)

Thus, we have proved the main result of this section:
Theorem 3. Let ϕ(x) and t1−ρf(x, t) (for all t ∈ [0, T ]) satisfy conditions (7). If α /∈ [0, 1) or

α ∈ (0, 1), but λk 6= λ0 for all k ≥ 1, then problem (1)–(3) has a unique solution and this solution has
the form (29).

If α ∈ (0, 1) and λk = λ0, k ∈ K0, then we assume that the orthogonality conditions (31) are
satisfied. The solution of problem (1)–(3) has the form (30) with arbitrary coefficients bk, k ∈ K0.

3 Inverse problem of determining the right-hand side of the equation

Let us consider the inverse problem
∂ρt u(x, t)−4u(x, t) = f(x), 0 < t ≤ T ; x ∈ Ω;

u(x, t)
∣∣
∂Ω

= 0;

Jρ−1
t u(x, t)

∣∣
t=ξ

= α lim
t→0

Jρ−1
t u(x, t) + ϕ(x), 0 < ξ ≤ T, x ∈ Ω,

(32)

with the additional condition

u(x, θ) = Ψ(x), 0 < θ ≤ T, θ 6= ξ, x ∈ Ω, (33)

where the unknown function f(x), characterizing the action of heat sources, does not depend on t and
Ψ(x), ϕ(x) are given functions, α ≥ 1, ξ and θ are fixed points of (0, T ].

Note that if θ = ξ, then the nonlocal condition in (32) coincides with the Cauchy condition
lim
t→0

Jρ−1
t u(x, t) = ϕ1 with some ϕ1. In this case, this inverse problem was studied in [35].

Theorem 4. Let functions ϕ(x),Ψ(x) satisfy conditions (8). Then the inverse problem (32), (33) has
a unique solution {u(x, t), f(x)} and this solution has the following form

f(x) =

∞∑
k=1

[
α− Eρ(−λkξρ)

θρ−1Eρ,ρ(−λkθρ)ξρEρ,ρ+1(−λkξρ) + θρEρ,ρ+1(−λkθρ)[α− Eρ(−λkξρ)]
Ψk+

+
θρ−1Eρ,ρ(−λkθρ)

θρ−1Eρ,ρ(−λkθρ)ξρEρ,ρ+1(−λkξρ) + θρEρ,ρ+1(−λkθρ)[α− Eρ(−λkξρ)]
ϕk

]
vk(x), (34)

u(x, t) =

∞∑
k=1

[
Eρ,ρ(−λktρ)

Eρ(−λkξρ)− α
tρ−1[ϕk − fkξρEρ,ρ+1(−λkξρ)] + fkt

ρEρ,ρ+1(−λktρ)
]
vk(x). (35)

Proof. Let us first show that the series (34) and (35) are formal solutions to the inverse problem.
Then we show the uniform convergence and differentiability of these series.

Suppose f(x) is known. Then the unique solution to problem (32) has the form (29). Since f(x)
does not depend on t, then, owing to formulas

ωk(t) = fk

t∫
0

ηρ−1Eρ,ρ(−λkηρ)dη

and (13), it is easy to verify that the formal solution of problem (32) has the form of (35).
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Due to the additional condition (33) and completeness of the system {vk(x)} we obtain:

Eρ,ρ(−λkθρ)
Eρ(−λkξρ)− α

θρ−1[ϕk − fkξρEρ,ρ+1(−λkξρ)] + fkθ
ρEρ,ρ+1(−λkθρ) = Ψk.

After simple calculations, we get

fk =
α− Eρ(−λkξρ)

θρ−1Eρ,ρ(−λkθρ)ξρEρ,ρ+1(−λkξρ) + θρEρ,ρ+1(−λkθρ)[α− Eρ(−λkξρ)]
Ψk+

+
θρ−1Eρ,ρ(−λkθρ)

θρ−1Eρ,ρ(−λkθρ)ξρEρ,ρ+1(−λkξρ) + θρEρ,ρ+1(−λkθρ)[α− Eρ(−λkξρ)]
ϕk ≡ fk,1 + fk,2.

Therefore, series (34) is a formal solution of the inverse problem.
Let us prove the convergence of this series uniformly in x ∈ Ω.
If Fj(x) is the partial sums of series (34), then by applying Lemma 1 as above, we have

||Fj(x)||2C(Ω) ≤
j∑

k=1

λ2σ
k [fk,1 + fk,2]2 ≤ 2

j∑
k=1

λ2σ
k f

2
k,1 + 2

j∑
k=1

λ2σ
k f

2
k,2 ≡ 2I1,j + 2I2,j , (36)

where σ > N
4 . Since ξ > 0, then θρ−1Eρ,ρ(−λkθρ)ξρEρ,ρ+1(−λkξρ) > 0. Therefore,

I1,j ≤
j∑

k=1

∣∣∣∣ α− Eρ(−λkξρ)
θρEρ,ρ+1(−λkθρ)[α− Eρ(−λkξρ)]

∣∣∣∣2 λ2σ
k |Ψk|2 =

j∑
k=1

λ2σ
k |Ψk|2

|θρEρ,ρ+1(−λkθρ)|2
.

Apply the asymptotic estimate (10) to get

I1,j ≤
j∑

k=1

λ
2(σ+1)
k |Ψk|2(

1 +O
(
(−λkθρ)−1

))2 ≤ C j∑
k=1

λτ+2
k |Ψk|2, τ = 2σ >

N

2
.

Since θ > 0 and α ≥ 1, then θρEρ,ρ+1(−λkθρ)[α− Eρ(−λkξρ)] > 0. Therefore,

I2,j ≤
j∑

k=1

∣∣∣∣ θρ−1Eρ,ρ(−λkθρ)
θρ−1Eρ,ρ(−λkθρ)ξρEρ,ρ+1(−λkξρ)

∣∣∣∣2 λ2σ
k |ϕk|2 =

j∑
k=1

λ
2(σ+1)
k |ϕk|2

|ξρEρ,ρ+1(−λkξρ)|2
.

By virtue of (10),

I2,j ≤
j∑

k=1

λ
2(σ+1)
k |ϕk|2(

1 +O
(
(−λkξρ)−1

))2 ≤ C j∑
k=1

λτ+2
k |ϕk|2, τ >

N

2
.

Thus, if ϕ(x),Ψ(x) satisfy conditions (8), then from estimates of Ii,j and (36) we obtain f(x) ∈
C(Ω).

Further, the fact that function u(x, t) given by the series (35) is a solution to the inverse problem
is proved exactly as in Theorem 1.

The uniqueness of the solution follows from the completeness of the systems of eigenfunctions
{vk(x)} (see [9]).
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4 The inverse problem of determining function ϕ from the nonlocal condition

Let us assume that in forward problem (1)–(3) not only function u(x, t), but also function ϕ(x) from
nonlocal condition (3) is unknown. As an additional condition for this inverse problem, we again take
condition (5). We note that if θ = ξ in this condition, then the nonlocal condition Jρ−1

t u(x, t)
∣∣
t=ξ

=

α lim
t→0

Jρ−1
t u(x, t) + ϕ(x) passes to the Cauchy condition lim

t→0
Jρ−1
t u(x, t) = ϕ1(x) (with some ϕ1(x)),

which is investigated, for instance, in [35].
Theorem 5. Let t1−ρf(x, t) as a function of x satisfy conditions (7) for all t ∈ [0, T ] and let function

Ψ(x) satisfy conditions (8). Then the inverse problem (1)–(3), (5) has a unique solution {u(x, t), ϕ(x)}
and this solution has the form

ϕ(x) =

∞∑
k=1

[
Eρ(−λkξρ)− α
θρ−1Eρ,ρ(−λkθρ)

[Ψk − ωk(θ)] + ωk(ξ)

]
vk(x), (37)

u(x, t) =

∞∑
k=1

[
ϕk − ωk(ξ)

Eρ(−λkξρ)− α
tρ−1Eρ,ρ(−λktρ) + ωk(t)

]
vk(x), (38)

where

ωk(t) =

t∫
0

ηρ−1Eρ,ρ(−λkηρ)fk(t− η)dη.

Proof. The solution to problem (1)–(3) has the form (38) (see Theorem 3). Therefore, condition (5)
implies:

u(x, θ) =
∞∑
k=1

[
ϕk − ωk(ξ)

Eρ(−λkξρ)− α
θρ−1Eρ,ρ(−λkθρ) + ωk(θ)

]
vk(x) = Ψ(x).

Passing to the Fourier coefficients, we have

ϕk − ωk(ξ)
Eρ(−λkξρ)− α

θρ−1Eρ,ρ(−λkθρ) + ωk(θ) = Ψk, k ≥ 1,

or

ϕk =
Eρ(−λkξρ)− α
θρ−1Eρ,ρ(−λkθρ)

[Ψk − ωk(θ)] + ωk(ξ).

Thus, equality (37) is formally established. Now, we show that series (37) converges uniformly in x ∈ Ω.
Let Φj(x) be the partial sum of series (37). Then applying Lemma 1 as above, we arrive at

||Φj(x)||2C(Ω) ≤
j∑

k=1

λ2σ
k

∣∣∣∣ Eρ(−λkξρ)− αθρ−1Eρ,ρ(−λkθρ)

[
Ψk − ωk(θ)

]
+ ωk(ξ)

∣∣∣∣2 ≤
≤ 3

j∑
k=1

λ2σ
k

[ ∣∣∣∣ Eρ(−λkξρ)− αθρ−1Eρ,ρ(−λkθρ)

∣∣∣∣2 [|Ψk|2 + |ωk(θ)|2
]

+ |ωk(ξ)|2
]
≡ Φ1

j + Φ2
j + Φ3

j , (39)

where σ > N
4 . Since |Eρ(−λkξ

ρ)− α| ≤ C, then by virtue of the asymptotic estimate (10) we obtain

Φ1
j ≤ C

j∑
k=1

λ
2(σ+1)
k θ2Γ2(1− ρ)(

1 +O
(
(−λkθρ)−1

))2 |Ψk|2 ≤ C1

j∑
k=1

λτ+2
k |Ψk|2, τ = 2σ >

N

2
.

Mathematics series. № 2(106)/2022 29



R.R. Ashurov, Yu.E. Fayziev

Similarly, by estimates (10) and (11) we have

Φ2
j ≤ C

j∑
k=1

λ2σ+2
k θ2Γ2(1− ρ)(

1 +O
(
(−λkθρ)−1

))2
∣∣∣∣∣∣
θ∫

0

ηρ−1Eρ,ρ(−λkηρ)fk(θ − η)dη

∣∣∣∣∣∣
2

≤

≤
j∑

k=1

Cελ
2σ+2
k(

1 +O
(
(−λkθρ)−1

))2
∣∣∣∣∣∣
θ∫

0

ηερ−1(θ − η)ρ−1λε−1
k |(θ − η)1−ρfk(θ − η)|dη

∣∣∣∣∣∣
2

(by the generalized Minkowski inequality)

≤ Cε

 θ∫
0

ηερ−1(θ − η)ρ−1

(
j∑

k=1

λτ+2ε
k |(θ − η)1−ρfk(θ − η)|2

) 1
2

dη


2

≤

≤ Cε max
t∈[0,T ]

j∑
k=1

λτ+2ε
k |t1−ρfk(t)|2.

For Φ3
j , one has

Φ3
j ≤

j∑
k=1

λ2σ
k

∣∣∣∣∣∣
ξ∫

0

ηρ−1Eρ,ρ(−λkηρ)fk(ξ − η)dη

∣∣∣∣∣∣
2

≤

≤ C

 θ∫
0

ηρ−1(θ − η)ρ−1

(
j∑

k=1

λτk|(θ − η)1−ρfk(θ − η)|2
) 1

2

dη


2

≤ C max
t∈[0,T ]

j∑
k=1

λτk|t1−ρfk(t)|2.

Since functions Ψ(x), f(x, t) satisfy conditions of the theorem, then by virtue of estimate (39), we
have ϕ(x) ∈ C(Ω).

The fact that the function defined by equality (38) is a solution to problem (1)–(3) is proved
similarly to Theorem 3.

The uniqueness of the solution of the inverse problem follows from the completeness of the system
of eigenfunctions {vk(x)} in the space L2(Ω) in the standard way.
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Риман-Лиувилль туындысы бар субдиффузия теңдеулерi үшiн
уақыт бойынша локальдыемес есептер туралы

Уақыт бойынша бөлшек реттi Риман-Лиувилль туындылары бар субдиффузия теңдеулерi үшiн уақыт
бойынша локальдыемес шарты бар бастапқы-шеттiк есептер қарастырылған. Теңдеудiң эллипстiк
бөлiгi ∂Ω жеткiлiктi тегiс шекарасы бар кез келген N− өлшемдi Ω облысында анықталған Лаплас
операторын бередi. Қарастырылып отырған есептердiң шешiмiнiң бар болуы мен жалғыздығы дәлел-
дендi. Теңдеудiң оң жағын және уақыт бойынша локальдыемес шартты функцияны анықтау үшiн
керi есептер зерттелдi. Фурье әдiсi зерттеудiң негiзгi құралы болып табылады, сондықтан алынған
нәтижелер анағұрлым жалпы эллипстiк операторы бар субдиффузия теңдеулерiне таралуы мүмкiн.
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О нелокальных задачах по времени для уравнений
субдиффузии с производными Римана–Лиувилля

Рассмотрены начально-краевые задачи с нелокальным по времени условием для уравнения субдиф-
фузии с дробными по времени производными Римана–Лиувилля. Эллиптическая часть уравнения
представляет собой оператор Лапласа, определенный в произвольной N -размерной области Ω с до-
статочно гладкой границей ∂Ω. Доказаны существование и единственность решения рассматриваемых
задач. Исследованы обратные задачи для определения правой части уравнения и функции в нело-
кальном во времени условии. Основным инструментом исследования является метод Фурье, поэтому
полученные результаты могут быть распространены на уравнения субдиффузии с более общим эл-
липтическим оператором.

Ключевые слова: нелокальные по времени задачи, производные Римана-Лиувилля, уравнение суб-
диффузии, обратные задачи.
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