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On the solutions of some fractional ¢-differential equations with the
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This paper is devoted to explicit and numerical solutions to linear fractional g¢-difference equations and
the Cauchy type problem associated with the Riemann-Liouville fractional g-derivative in g-calculus. The
approaches based on the reduction to Volterra g-integral equations, on compositional relations, and on
operational calculus are presented to give explicit solutions to linear g-difference equations. For simplicity,
we give results involving fractional g-difference equations of real order ¢ > 0 and given real numbers
in g-calculus. Numerical treatment of fractional g-difference equations is also investigated. Finally, some
examples are provided to illustrate our main results in each subsection.
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Introduction

During the last three decades, fractional differential equations have attracted great attention and have been
wide range used in real world phenomena related to physics, chemistry, biology, signal-and image processing.
Moreover, they are equipped with social sciences such as food supplement, climate and economics, see e.g.
[1-9]. Hence, there has been a significant development in ordinary and partial differential equations involving
fractional derivatives and a huge amount of papers, and also some books devoted to this subject in various spaces
have appeared, see e.g. the monographs of T. Sandev and Z. Tomovski [7], A.A. Kilbas et al. [8], R. Hilfer [9],
K.S. Miller and the B. Ross [10], the papers [11-19] and the references therein.

The origin of the g¢-difference calculus can be traced back to the works in [20, 21| by F. Jackson and
R.D. Carmichael [22] from the beginning of the twentieth century. For more interesting theory results and
scientific applications of the g-difference calculus, we cite the monographs [23, 24, 25] and the references therein.
Recently, the fractional g-difference calculus has been proposed by W. Al-salam [26] and R.P. Agarwal [27] and
P.M. Rajkovic’, S.D. Marinkovic, and M.S. Stankovic [28]. Recently, many researchers got much interested in
looking at fractional ¢-differential equations (FDEs) as new model equations for many physical problems. For
example, some researchers obtained g-analogues of the integral and differential fractional operators properties,
such as the g-Laplace transform and ¢-Taylor’s formula [29], ¢-Mittage Leffler function [27] and so on.

We also pronounce that up to now, much attention has been focused on the fractional ¢-difference equations.
There have been some papers dealing with the existence and uniqueness, or multiplicity of solutions to linear
fractional ¢-difference equations by the use of some well-known fixed point theorems. For some recent developments
on the subject, see e.g. [30-33] and the references therein. In Section 2 of this paper, we construct explicit
solutions to linear fractional g-differential equations with the Riemann-Liouville fractional g-derivative Dg ., f
of order a > 0 given by Definition 2, in the space Cg,,_,[0,a], denned in (8). The main result, in this Section,
is Theorem 1, but in order to prove this result we need to prove two results (Theorem 1 and 3) of independent
interest.

The paper is organized as follows: the main results are presented and proved in subsection 2.1 and subsection
2.3, and the announced examples are given in subsection 2.2, 2.3, and 2.5. In order to not disturb these
presentations, we include in Section 1 some necessary Preliminaries.
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1 Preliminaries

First, we start by recalling some elements of g-calculus, for more information see e.g. the books [23], [25], and
[33]. Throughout this paper, we assume that 0 < ¢ <1 and 0 < a < b < 0.
Let @ € R. Then a g-real number [a], is defined by

where lim 11_‘1
g—1 +74

We introduce for n € N:

= Q.

n—1

(a;Q)O =1 (a;q)” = ]];[0 (1 - qka) ) (a;Q)oo = nh_{rolo(a7Q)n7 (G;Q)a = (;Z;;’]Lo)c;o

The g-analogue of the power function (a — b)g is defined by

(b/a; q)so

S

Notice that (a —b)g = a®(b/a; q)a-
For any two real numbers o and 3, we have
(0= )] (a— D)} = (a— D) 1)

The g-analogue of the binomial coefficients [n],! are defined by

1, if n=0,
[nlq! = { 1], % (2 % -+ x [n]y, ifn €N,

The gamma function I';(z) is defined by

_ (@9 o 1

Lo(z+1).

)

for any « > 0. Moreover, it yields that I';(x)[z], =
The g-analogue differential operator D, f(x) is

qu(x) =
and the g-derivatives Dy (f(z)) of higher order are:

Dy(f(2)) = f(z), Dg(f(x)) =Dy (Dy~'f(2)), (n=1,2,3,...)

The g¢-integral (or Jackson integral) [ f(z)dqx is defined by

O —e

/ f@)dgr = (1-g)a S g™ Flag™
0 m=0

and

a

b b
a/ F(@)dgz = / f@)sz ~ [ f@)iuz,

0
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for 0 < a < b. Notice that

b
[ Dut@ysz = 10 - f(a)
For any ¢, s > 0 the definition of ¢g-Beta function is that:

By(t,s) = W =/O a1 (qw; q)s—1dga. (2)

The (Mittag-Lefler) g-function E, g (#;¢) is defined by

> 22k (a2 q) ke
Eopalze®(a/r;9)aiq) = ) —wF7 (3)
P Ty(ak+0B)
and
oeml Z q chz (4)
k—
where ¢y and ¢ = H %(k €N).

A g-analogue of the classical exponential function e” is

G-y

Jj=0

J

gl

*‘H
—
ot
S—

Moreover, the multiple ¢-integral (I Tat f) (z) is

z t th—1 to

(17 f) () = // / .../dqtldqtz...dqtn_ldqt

a a a a
x

1 n—1
— Fq(n)a/(xqt)q f()dgt

Definition 1. The Riemann-Liouville g-fractional integrals I, f of order v > 0 are defined by

ma—l

e / (qt/23 Q)ar f(Dd,t

a

(I:]l,aJrf) (:E) =
Definition 2.The Riemann-Liouville fractional g-derivative D', f of order a > 0 is defined by

(Dfasf) (@) = (DELIEE"F) (@)
Notice that

(]giaJrl‘)‘(a/x; q))\) («T) = manr)\(a/x a+)\ (6)

for A € (—1, 00).
For 1 < p < 0o we define the space L? = LPa, b] by

1
P

b
Lia,b] :== 4 f: /\f(x)|pdqm < 0
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Let a >0, 8 >0 and 1 < p < co. Then the g—fractional integration has the following semigroup property

( a.a+ a+f)( ) = (ﬁ;;;ff) (z), (7)

for all x € [a,b] and f(z) € Ll[a,b].
Let 0 < a < b < ocoand 0 < A < 1. Then we introduce the space Cy [a,b] of functions f given on [a,b],
such that the functions with the norm

[ £lle, sty = max |2 (qa/z;q), f(z)] < co.

z€la,b]
The space C¢ 0,a] defined forn — ¢ < a <n, n € N by
gn—a
an a[o’ a] = {f(x) : f(@ € Cq,nfoc[aa b}, (fo,aJrf) (x) € Cq,nfa[av b]} (8)

2 On the solutions of some fractional q-differential
equations with the Riemann-Liouville fractional q-derivative

2.1 The Cauchy type problem for the fractional q-differential equation
First, we consider the Cauchy type problem for the fractional ¢-differential equation in the following form:
(Dg,wy) (z) = My(z) = f(z), 0<z<a,a>0;XeR, 9)
with the initial conditions:
(D2oky) (04) =bg, b €R, k=0,1,2,...,n=—[-0]. (10)

Next we construct the explicit solutions to linear fractional g-differential equations. In the classical case,
several authors have considered such problems even in linear cases, see e.g. [8, Section 4] and the references
therein.

Theorem 1. (See [34, Theorem 8.1] ) Let n—1 < @ < m;n € N, G be an open set in R and f(.,.) : (0,a]xG —
R be a function such that F(z,y(z)) = f(z) + Ay(z) € L}[0,a] for any y € G. If y(x) € L}[0,a], then y(t)
satisfies a.e. the relations (9)-(10) if and only if y(z) satisfies a.e. the integral equation

y@) =3 éxk + (120 (1 (1)) (2), V2 € (0, ). (11)

Theorem 2. Let n — 1 < a < n(n € N) and let 0 < v < 1 be such that v = «a. Also, let A € R
and g(z) € C0,b.If fo(x,y(z)) = Ay(x) + f(z), then the Cauchy problem (9)-(10) has unique solution
y(z) € C$"!a,b] and this solution is given by

y(x) = Zbkxa_kEa,a—k-‘rl,O[/\xa;Q]
k=1
+ /w"_l (qt/2;9) 51 Ba,ar [Mx*(q°t/x;9)a; q] f(t)dqgt. (12)
0

Proof. First, we solve the Volterra g-integral equation (11), and apply the method of successive approximations
by setting

n
a—k
T
;I‘qa—k-i—l)

and

Aze—1
Ly (@)

o b @m0 @ (13)

/Ox(qt/x; @)a-1Yi—1(t)dgt

Mathematics series. Ne 4(104),/2021 133



S. Shaimardan, N.S. Tokmagambetov

Using Definition 1 and (6), (13), we find y; (z):

y1(2) = yo(x) + A (Igo490) () + (Igorf) (2)
that is,

bk = bk

<
S
&

Il
AR

=~
Il
—

k=1

3

b k bkl‘Qa_k
Yk A g/ I
Fq(a—k-l-l)x - ;F 2a—k+1) + (L5041 (@)

)\mlmozk

bk Z m + (I(?,O—i-f) (I)

=1

1+ T1-

~
Il
—

Similarly, using Definition 1 and (6), (7), (14) we have for ys(x) that

() = wo(@) +A(I0sw) (2) + ( 3o+f) ()

n m7

_ . bk o k
;Fq(a—k‘—l—l) k:l —1t4
—+ )\(I;XO_._ 30+f())() ( O+f)()

a A «
- Zr a—k+1 uAZb"mZF k+1)x

+ A5 S >> (@) + (I204 f) (@)

n )\mfl
—_ afk Y b [
;r a—k—l— n* 7 D kZFq(a(m—&-l)—k—f—l)x

Thus,
n 3 —1, _
= b AN
v2(2) Z kzl"q(am—k:—i-l)

z [ 2 )\m—lxam—l(qt/x;q)am—l
. /0 lz s F(t)dgt.

Continuing this process, we derive the following relation for y;(x):

n i+1 A lxam k

wla) = Db p e

m=

/Ow lz AT 2 (gt /25 @) am -1

+

TSR P

m=1

Aoy a(m+1)—

- Zb’*mzr k+1)

I et g
; Ly(a(m+1))

+

m=0

] F(£)dgt.

Nair D" O o hen Gt @4 (o) @

ZF (am — k‘—i—l)( a0+t k)(x)

(m+1)—k
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Taking the limit as ¢« — oo and using (1), we obtain the following explicit solution y(x) to the g-integral
equation (11):

> Ao

Zbkx Y;) Iy(am+a—k+1)
¢ a—1 . - A (qt/x; Q)am
+ /O 22 gt/ )01 LZ:O T am i) | {0t

On the basis of Theorem 1 and (3) an explicit solution to the Volterra g-integral equation (11) and hence,
to the Cauchy type problem (9)-(10).

2.2 Miscellaneous FExamples

In this subsection, we present some examples and discuss these examples in connection with the results
obtained in Theorem 2. Our examples are g-analogues of examples given in [8, Examples 3.1-3.2].

Example 1. Let 0 < o < 1 and A, b € R. Then, the solution to the Cauchy type problem in the following
form:

(Dgo1y) (@) = My(x) = f(x), (Dgoty) (04) =1b

has the explicit solution

y(z) = bt Eg a0 [M;q] HC“*/ (at/x;q)a—1Ea .t [A2*(¢7t/2;q)a; q] f()dgt.
0
Hence, we can rewrite as follows:

(Dgo1y) (@) = Ay(z) =0, (Dggly) (0+) =0,

and the solution of this problem
y(x) = 0t By 00 MY q].

In particular, for &« = 1/2 the Cauchy type problem
1/2 1/2
(Dy3vy) (@) = M(@) = £(@), (1) (0+) = b
has the solution given by

b
y(x) = —<Ei21/20 [)\tl/zﬂl}
t2

@ [ @t By [N 0t 250 ] SO
0
and the solution to the problem
1/2 1/2
(Dilovy) (@) = 2@ =0, (Ly) (0+) =b
is given by

b
y(r) = mEl/z,l/z,o [/\tl/ﬂ .

Example 2. We assume that 1 < a < 2 and \,b,d € R. Then the Cauchy type problem in the following
form:

(Dgory) () = My(z) = f(z), (Dioiy) (0+)=0b, (Dggty) (0+)=d,

and its solution has the form:
y@) = bt 'ByaoMq]+dt* ?Eqa-1,0 M 4]

+ x“l/o (/2 @)a-1Ea i N2 (qt/ 75 0)as q] f (1) dgt.
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Particularly, the solution to the problem
(Dgory) (x) = Ay(x) =0, (Dgg.y) (0+) = b,

(Dq 0+y) (O+) = d7
is given by

y(x) = btailEa,a,O [)\ta; Q] + dtaizEa,afl,O [)\ta; q] .
2.8 General homogeneous fractional q-differential equation

In subsection, we consider in the following more general homogeneous fractional g-differential equation than

(9):
(Dg oy y) (x) — MPy(z) =0, 0<z<a<oo,a>0,\cR, (15)
with initial date
(Do oky) (0+) = by, b €RE=0,1,2,...,n = —[—q]. (16)
Theorem 3. Let a > 0, n = —[—a], A € R and 8 > 0. Then the Cauchy type problem (15)-(16) has a unique
solution y(z) in the space Cf',,_,[0,a] and this solution is given by
Proof. Let 3 > —a. Then basic on Theorem 1 the problem (15)-(16) is equivalent in the space Cy',,_,[0, a]
to the Volterra g-integral equation of the second kind in the following form:
W) = 3 et s [ a0 (18)

j=1
Similarity, we again apply the method of successive approximations to solve this g-integral equation (18).

n .
We assume that yo(z) = > %xaﬂ and
j=1""

% 1
@) =)+ £ [ @t/ s ()t (19)
Ly
Using the same arguments as above, by using (2), (7), and (19) we find y; (2):
)\xa—l x 8
0@ = wl)+ i jﬁ 0 (0t @)y 10(2) gt
= Z Tla—7+ 1) / tTP=I (gt f25q),,_, dyt
= Z o _j "y / (@y)* TP (qay/;q) oy xdgy
Y A P
= ZF Y /O v (qy;0) oy dgy
n b, ‘ N pp2atB—j
- S E— Bya+p—-j+1,a
;Fq(a—j—i—l) an ;I’ (a—j+1) a )

= _— x&J
j; Lola—j+1)

\ z”: bjx?eth=i T (a+B—j+1)
ST (a—j+)T,2a+5-j+1)

(20)
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Similarly, for m = 2 using (2), (19) and taking (20) into account, we derive
ya(z) = wolz)+A (L‘fo+y1) (fﬂ)

= ) + )\Z = J -y (I804t*77) (2)

n

bilyla+B—-j+1) y
+ A2 J' q : I t2a+5 j
;Fq(afj+l)rq(2a+/8—]+l)(q,0+ ) (z)

_oN L bt +8 +8)2
B ;W[HQW ) e ()]

where

Lyla+B8—-7+1)

Lya+p8-j+1)
Fya+8—j+DI'y2a+28—-j+1)
Iy2a+8-7+1)TBa+28—5+1)

c1T =

Cy =

Continuing this process for m € N, we have y,, (x):

m( t“’j 1+ Ateth 21
where
ra+p)—j+1]
ke N.
HFq[r +B)+ta—j+1]

Taking the limit as m — oo tow site of (21), we obtain the following explicit solution y(z) to the Cauchy
type problem (15)-(16):

1+ e (Ataw)k] .

k=1

n
ZI‘ —]+1)ta_J

j=1 a

According to the relations (4), we rewrite this solution (18) in terms of the generalized Mittag-Leffler ¢-
function Ey m 1 [2; 4]

2.4 Further Examples

In subsection, we present some examples and discuss them in connection with the results obtained in Section
2.3.
Example 3. Let 0 < a <, > —a and A € R and b € R. Then the solution to the Cauchy type problem

(D(‘;‘70+y) (z) — MPy(z) =0, (Dq O+y) (0+) = b,
is given by

bta—l
yle) = - —=E

MY a+8.
T (o) el+a 1+ [ vq] -

In particular, for & = 1/2 the Cauchy type problem in the following form

(D33 @) = Moy@) =0, (D, 52y) (0+) = b,
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has a unique solution given by
b 1 1
ylz) = ﬁt *E1 1195251 [/\t6+2;CI}~

Lq(1/2
FEzample 4. The solution to the Cauchy type problem
(Dgosy) (@) = MPy(z) =0, (Dgoiy) (0+) = b,
(Dq 0+y) (0+) = d,
withb,de R, 1 <a<2,8€R (8> —a) and A € R has the form

b _
y(x) = T, a)ta 1Ea 14814820 [t ot 4]

t* 2

+ 8
T,() a1+2 14

o M)

2.5 The Cauchy Problems for Ordinary q-Differential Equations

In this subsection, we use the results of subsection 3.1 when a € N, and we derive the explicit solutions to
the Cauchy problems for ordinary g¢-differential equations of order n on [0, a.
Let A\, b € R,n,k € N such that £ < n. Then we consider the ordinary ¢-differential equation:

DM (z) = My(z) = f(x), (22)
with inial data
DR (0+) = by, (23)

which is a particular case of the Cauchy problem (9)-(10) with o € N. Therefore, from (12) we derive the
solution to (22)-(23) in the following form:

y(z): = ijt"_jEn’n,jH’o [(AE)™;q) +

j=1
+ 2! /ox(qt/ @) n—1 Bt N (q"/75.q)n; ] f(1)dgt. (24)

which is the unique explicit solution of the Cauchy problem (24) in the space Cy [0, a].
Example 5. Let a« = 1 and b € R. Then the solution to the Cauchy type problem in the following form

(Dgy) (x) = Ay(z) = f(=z); y(0) =0b,

has a unique solution given by

bE1 1,0 At q]
+ / zE1 1, [A(qt/2);q] f(t)dgt.
0

y()

Form (3) and (5) it follows that

St )\kk
ylz) = /T, k:t+1
x—qt))
+ /0 T 1) Ddats
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Example 6. Let b,d € R. Then the solution to the Cauchy type problem

(D7) (z) = Ay(z) = f(z), y(0) =0, (Dgy)(x)=d,

is given by

y(SU) = thQ_’QyO [)\752, q] + dE271’0 [)\t27 q]
b [0 B [P 5 0)s] 0y,
0
In particular, for b,d € R and f(x) = 0 the solution to the problem

(D3y) (z) = Ay(z) = 0, y(0+) =b, (Dgy)(x)=d,

has the form

y(z) = btEy20 [A?q] +dEa10 [M5q] .
Form (2) and (8) it follows that

& )\thk & )\k‘tQk
ye) = bt < T,(2k +2) < T,(2k + 1)
= bsmq(ft)—kdcosq(\ft),

k
where sin,(Vt) = Z (llf(g;; and cos, (V) = Z T, 2k+1)

For A\, b, € R, n, k 6 N and g > 0 we consider the Cauchy problem in the following form:
y™ (@) = My(x) = f(z); y" T (0+) = by,

which is a particular case of the problem (16)-(17) with o = n. Using (4) we get the solution in the following

form:

n

b, A
1 ip o e
Lo+’ Faetapegn N5

y(z)

j=1
Ezample 7. We assume that g > —1 and b € R. Then the solution to the Cauchy problem

(Dgy) (z) = MPy(x) = f(x); y(0)=1b

has the form

y(@) = bEiisss M)
Example 8. Let b,d € R and 8 > —2. Then the solution to the Cauchy problem

(D7y) (z) = XtPy(z) = f(z), y(0+) =b, (Dgy)(0)=d,
is given by
y@) = bty s s [MFq] +dE, (M2 q]

145,44
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C. Maimnvapman', H.C. ToxkmarambeTros!?

YILH. Nymunes amovmoazss Eypasus yammu yrusepcumemi, Hyp-Cyaman, Kasaxeman;
2 Axademux E.A. Boxemos amuvmodaes, Kapazandv ynusepcumemi, Kapazandw, Kazaxcman

Keii6ip Puman-JInyBuab 6ei1eK ¢-TybIHABLIBI ¢-06JIIeK
anddepeHInaJIbIK, TeHAeYJ/IEePIiH MIelmiMaepi Ty paJibl

Makasia OeJIIeK-ChI3bIKTHIK, G-albIPBIMIBIK, TeHAEYIepi MeH Oesnek ¢-Puman—JInyBuuT TybBIHIBICHIMEH
OaiytanbIcThl KoIti THITEC ecenTepri HAKTHI yKOHE CAHJBIK IIellyre apHa/FaH. ¢-BoiapTep mHTerpasabk
TeHeyIepiHe, KOMIO3UIUSLIBIK, KATBIHACTAPFA YKOHE CBI3BIKTHIK, (-AUbIPBIMJIBIK, TEHIEYIEPIHIH, HAKTHI II1e-
MIiMJIEPiH ajIy VIIiH OIEepAaIUsJIbIK, €CEeIITeyTre PEJIyKIUAFa Heri3/Ie/reH Tocijijiep yehbublraln. Kapanaifbim
Oeusty yIIiH HaKThl a > 0 perTi ¢-OeJieKk albIPBIMJIBIK, TEHJIEYIEPIH KOHE g-ecenTeyJiepinieri HaKThl CaH-
Japbl KAMTUTBIH HoTHXKejep Oepinren. CoHmaii-ak, OeJIIIeK g-aifbIPhIMIBIK, TEH/IEYIEPIHIH, CAHIbIK, OHJIe/TY1
zeprresai. ConbiMen op GestiMie Heri3ri HoTHKeJIep i KepceTeTin GipHelle MbIcajaap KeJaTipijareH.

Kiam ceadep: Kommu Tumrec g-6eirmek ecer, 6ap 60J1ybl, 6ipereitsiiri, g-TybIH/IBI, ¢-€CENTeY, OOJIIIEK eCEnTeY,
Puman—JluyBumin G6esiiex TybIHABICH, g-O6JIIIIEK TYBIH/IDI.

C. Maimnvapman', H.C. Toxkmaramberos!?

! Bepasutickuti nayuonarvnud yrusepcumem umenu JI.H. Dymunesa, Hyp-Cyaman, Kazaxcman;
2 Kapazandurcrkuti ynusepcumem umeny axademuxe E.A.Byxemosa, Kapazanda, Kaszaxcman

O perneHussX HEKOTOPBIX ¢-APOOHBIX AuddepeHnaabHbIX YPaBHEHUIA
C IpOOHBIMU ¢-Tpon3BOAHbIMU Pumana—JluyBusias

Crarbsl MOCBAIIEHA ABHOMY U YHCJIEHHOMY PENIEHUIO JIPOOHO-JIMHEHHBIX ¢-PA3HOCTHBIX YPABHEHUN U 3314~
uan Tuna Komm, cBsa3anHoi ¢ npobHoit g-iponsBoguoii Pumana—/luysuiuis B g-ucuucienuu. [IpecraBiens
MTO/IXO/IbI, OCHOBAHHBIE HA PEIYKIINN K -WHTETPAJbHBIM yYpaBHEHUsSIM Bosbreppa, KOMIO3UIIMOHHBIM COOT-
HOIIIEHUSIM U ONIE€PAIMOHHOMY UCUYMCJIEHUIO, JIJIsl TI0JTYy Y€HUsl SIBHBIX PEIIEeHUI JIMHEHHDBIX g-PA3HOCTHBIX yPaB-
sHeHuit. J1j1s1 IpOCTOTHI aBTOPaMU IIPUBEIEHBI PE3YJILTAThI, BKJIIOYAIOIINE IPOOHBIE g-PA3HOCTHBIE YPABHEHUST
JHefCTBUTETBHOTO opsaka a > 0 U 3aJaHHbIE JeHCTBUTE/IHHBIE YUCIA B ¢-UCINCIEHNN. TaKKe MCCIIeI0BaHA
qucIeHHasi 00paboTKa IPOOHBIX ¢-PAa3HOCTHBIX yYpaBHEHMI. B nTore, B Kax10M MOpa3iesie MpeICTaBIeHbI
HEKOTOPbIE IIPUMEDHI, UJUIIOCTPUPYIOIIHE [T0JIy I€HHbIE OCHOBHbBIE PE3YJILTATHL.

Kmoueswvie caosa: g-npobuas 3amada tuna Kormmm, cyiecTBoBaHUe, €IMHCTBEHHOCTD, ¢-TIPOU3BOIHAMA, (-
BBIYHUCJIEHUE, TPOOHOE UCUYUCIIEeHNe, TPOOHas Ipou3BoaHas Pumana—J/IunyBusis, g-1pobHas IPOU3BOIHAS.
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